
Debugging R code

Robert Stojnic rs550@cam.ac.uk

Laurent Gatto lg390@cam.ac.uk

University of Cambridge
DataProgrammers.net

January 9, 2015

Stojnic and Gatto (CSBC) Debugging January 9, 2015 1 / 1

rs550@cam.ac.uk
lg390@cam.ac.uk
DataProgrammers.net

Overview

Using R’s tools

Call traceback() after error to print the sequence of calls that lead
to the error.

Use debug(faultyFunction) to register faultyFunction for
debugging, so that browser() will be called on entry. In browser

mode, the execution of an expression is interrupted and it is possible
to inspect the environment (with ls()). Use
undebug(faultyFunction) to revert to normal usage.

Use trace() to insert code into functions, start the browser or
recover() from error.

Set options(error=recover) to get the call stack and browse in
any of the function calls.

RStudio has build-in debugging facilities.

Good reference: An Introduction to the Interactive Debugging Tools in Ra

ahttp://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf
Stojnic and Gatto (CSBC) Debugging January 9, 2015 2 / 1

http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

Debugging example (1)

Let’s walk through an example1. The buggy code is:

e <- function(i) {
x <- 1:4

if (i < 5) x[1:2]

else x[-1:2] # oops! x[-(1:2)]

}
f <- function() sapply(1:10, e)

g <- function() f()

1credit Martin Morgan and Robert Gentleman
Stojnic and Gatto (CSBC) Debugging January 9, 2015 3 / 1

Debugging example (2)

> g()

Error in x[-1:2] (from #3) : only 0 s may be mixed with negative subscripts

> traceback()

5: FUN(1:10[[5L]], ...)

4: lapply(X = X, FUN = FUN, ...)

3: sapply(1:10, e) at #1

2: f() at #1

1: g()

Stojnic and Gatto (CSBC) Debugging January 9, 2015 4 / 1

Debugging example (3)

Using options(error=recover), we are given a list of frames to debug.
Once inside a frame, one can view and modify variables.

> g()

Error in x[-1:2] (from #3) : only 0 s may be mixed with negative subscripts

Enter a frame number, or 0 to exit

1: g()

2: #1: f()

3: #1: sapply(1:10, e)

4: lapply(X = X, FUN = FUN, ...)

5: FUN(1:10[[5]], ...)

Selection:

Stojnic and Gatto (CSBC) Debugging January 9, 2015 5 / 1

Debugging example (4)

Selection: 5

[...]

Browse[1]> ls()

[1] "i" "x"

Browse[1]> c

Enter a frame number, or 0 to exit

1: g()

2: #1: f()

3: #1: sapply(1:10, e)

4: lapply(X = X, FUN = FUN, ...)

5: FUN(1:10[[5]], ...)

Selection: 0

options(error = NULL)

Stojnic and Gatto (CSBC) Debugging January 9, 2015 6 / 1

Using the debugger directly

> debug(e)

> g()

debugging in: FUN(1:10[[1L]], ...)

debug at #1: {

x <- 1:4

if (i < 5)

x[1:2]

else x[-1:2]

}

Browse[2]> debug at #2: x <- 1:4

Browse[2]> Q

> undebug(e)

Stojnic and Gatto (CSBC) Debugging January 9, 2015 7 / 1

Using trace

Report whenever e invoked

trace(e)

Evaluate arbitrary code whenever e invoked

trace(e, quote(cat("i am", i, "\n")))
Another way to enter browser whenver e invoked

trace(e, browser)

stop tracing

untrace(e)

require("stats4")

Debug S4 methods with signature argument

trace("plot", browser, exit = browser,

signature = c("track", "missing"))

Stojnic and Gatto (CSBC) Debugging January 9, 2015 8 / 1

Calling with custom handlers (1)

The withCallingHandlers function allows to defined special behaviour
in case of /unusual conditions/, including warnings and errors. In the
example below, we start a browser in case of (obscure) warnings.

f <- function(x = 10) {
lapply(seq_len(x), function(i) {

make an example 2x2 contingency table

d = matrix(sample(4:10, 4), nrow=2, ncol=2)

will produce warning if there is a 5 or less

in the contingency table

chisq.test(d)

})
}

Stojnic and Gatto (CSBC) Debugging January 9, 2015 9 / 1

Calling with custom handlers (2)

set.seed(1)

f()

set.seed(1)

withCallingHandlers(f(), warning=function(e) recover())

Stojnic and Gatto (CSBC) Debugging January 9, 2015 10 / 1

Exercise

The readFasta2 function is similar to readFasta, but reads multiple
sequences in a fasta file and returns a list of DnaSeq instances... at least,
that’s what it is supposed to do.

1 Get readFasta2.R file with sequences:::debugme(), and try the
function with the moreDnaSeqs.fasta file
dir(system.file("extdata", package = "sequences"),

full.names=TRUE).

2 Prepare for debugging: debug(readFasta2).

3 Debug!

4 fix the function.

Hint: when debugging, use n (or an empty line) to advance to the next
step, c to continue to the end of the current context (to the end of a loop
for instance), where to print the stack trace of all active function calls and
Q to exit the browser.
Other hint: use ls(all.names=TRUE) to see all objects, also those that
start with a ’.’.

Stojnic and Gatto (CSBC) Debugging January 9, 2015 11 / 1

