/** * This file contains an implementation of finding the Longest Common Substring (LCS) between two * strings using dynamic programming. * *

Time Complexity: O(nm) * * @author William Fiset, william.alexandre.fiset@gmail.com */ public class LongestCommonSubstring { // Returns a non unique Longest Common Substring // between the strings str1 and str2 in O(nm) public static String lcs(char[] A, char[] B) { if (A == null || B == null) return null; final int n = A.length; final int m = B.length; if (n == 0 || m == 0) return null; int[][] dp = new int[n + 1][m + 1]; // Suppose A = a1a2..an-1an and B = b1b2..bn-1bn for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { // If ends match the LCS(a1a2..an-1an, b1b2..bn-1bn) = LCS(a1a2..an-1, b1b2..bn-1) + 1 if (A[i - 1] == B[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; // If the ends do not match the LCS of a1a2..an-1an and b1b2..bn-1bn is // max( LCS(a1a2..an-1, b1b2..bn-1bn), LCS(a1a2..an-1an, b1b2..bn-1) ) else dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } int lcsLen = dp[n][m]; char[] lcs = new char[lcsLen]; int index = 0; // Backtrack to find a LCS. We search for the cells // where we included an element which are those with // dp[i][j] != dp[i-1][j] and dp[i][j] != dp[i][j-1]) int i = n, j = m; while (i >= 1 && j >= 1) { int v = dp[i][j]; // The order of these may output different LCSs while (i > 1 && dp[i - 1][j] == v) i--; while (j > 1 && dp[i][j - 1] == v) j--; // Make sure there is a match before adding if (v > 0) lcs[lcsLen - index++ - 1] = A[i - 1]; // or B[j-1]; i--; j--; } return new String(lcs, 0, lcsLen); } public static void main(String[] args) { char[] A = {'A', 'X', 'B', 'C', 'Y'}; char[] B = {'Z', 'A', 'Y', 'W', 'B', 'C'}; System.out.println(lcs(A, B)); // ABC A = new char[] {'3', '9', '8', '3', '9', '7', '9', '7', '0'}; B = new char[] {'3', '3', '9', '9', '9', '1', '7', '2', '0', '6'}; System.out.println(lcs(A, B)); // 339970 } }