forked from halide/Halide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CodeGen_Internal.cpp
736 lines (659 loc) · 27.6 KB
/
CodeGen_Internal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
#include "CodeGen_Internal.h"
#include "CSE.h"
#include "Debug.h"
#include "IRMutator.h"
#include "IROperator.h"
#include "IntegerDivisionTable.h"
#include "LLVM_Headers.h"
#include "Simplify.h"
#include "Simplify_Internal.h"
namespace Halide {
namespace Internal {
using std::string;
using std::vector;
using namespace llvm;
namespace {
vector<llvm::Type *> llvm_types(const Closure &closure, llvm::StructType *halide_buffer_t_type, LLVMContext &context) {
vector<llvm::Type *> res;
for (const auto &v : closure.vars) {
res.push_back(llvm_type_of(&context, v.second));
}
for (const auto &b : closure.buffers) {
res.push_back(llvm_type_of(&context, b.second.type)->getPointerTo());
res.push_back(halide_buffer_t_type->getPointerTo());
}
return res;
}
} // namespace
StructType *build_closure_type(const Closure &closure,
llvm::StructType *halide_buffer_t_type,
LLVMContext *context) {
StructType *struct_t = StructType::create(*context, "closure_t");
struct_t->setBody(llvm_types(closure, halide_buffer_t_type, *context), false);
return struct_t;
}
void pack_closure(llvm::StructType *type,
Value *dst,
const Closure &closure,
const Scope<Value *> &src,
llvm::StructType *halide_buffer_t_type,
IRBuilder<> *builder) {
// type, type of dst should be a pointer to a struct of the type returned by build_type
int idx = 0;
for (const auto &v : closure.vars) {
llvm::Type *t = type->elements()[idx];
Value *ptr = builder->CreateConstInBoundsGEP2_32(type, dst, 0, idx++);
Value *val = src.get(v.first);
val = builder->CreateBitCast(val, t);
builder->CreateStore(val, ptr);
}
for (const auto &b : closure.buffers) {
// For buffers we pass through base address (the symbol with
// the same name as the buffer), and the .buffer symbol (GPU
// code might implicitly need it).
// FIXME: This dependence should be explicitly encoded in the IR.
{
llvm::Type *t = type->elements()[idx];
Value *ptr = builder->CreateConstInBoundsGEP2_32(type, dst, 0, idx++);
Value *val = src.get(b.first);
val = builder->CreateBitCast(val, t);
builder->CreateStore(val, ptr);
}
{
llvm::PointerType *t = halide_buffer_t_type->getPointerTo();
Value *ptr = builder->CreateConstInBoundsGEP2_32(type, dst, 0, idx++);
Value *val = nullptr;
if (src.contains(b.first + ".buffer")) {
val = src.get(b.first + ".buffer");
val = builder->CreateBitCast(val, t);
} else {
val = ConstantPointerNull::get(t);
}
builder->CreateStore(val, ptr);
}
}
}
void unpack_closure(const Closure &closure,
Scope<Value *> &dst,
llvm::StructType *type,
Value *src,
IRBuilder<> *builder) {
// type, type of src should be a pointer to a struct of the type returned by build_type
int idx = 0;
for (const auto &v : closure.vars) {
Value *ptr = builder->CreateConstInBoundsGEP2_32(type, src, 0, idx++);
LoadInst *load = builder->CreateLoad(ptr);
dst.push(v.first, load);
load->setName(v.first);
}
for (const auto &b : closure.buffers) {
{
Value *ptr = builder->CreateConstInBoundsGEP2_32(type, src, 0, idx++);
LoadInst *load = builder->CreateLoad(ptr);
dst.push(b.first, load);
load->setName(b.first);
}
{
Value *ptr = builder->CreateConstInBoundsGEP2_32(type, src, 0, idx++);
LoadInst *load = builder->CreateLoad(ptr);
dst.push(b.first + ".buffer", load);
load->setName(b.first + ".buffer");
}
}
}
llvm::Type *llvm_type_of(LLVMContext *c, Halide::Type t) {
if (t.lanes() == 1) {
if (t.is_float() && !t.is_bfloat()) {
switch (t.bits()) {
case 16:
return llvm::Type::getHalfTy(*c);
case 32:
return llvm::Type::getFloatTy(*c);
case 64:
return llvm::Type::getDoubleTy(*c);
default:
internal_error << "There is no llvm type matching this floating-point bit width: " << t << "\n";
return nullptr;
}
} else if (t.is_handle()) {
return llvm::Type::getInt8PtrTy(*c);
} else {
return llvm::Type::getIntNTy(*c, t.bits());
}
} else {
llvm::Type *element_type = llvm_type_of(c, t.element_of());
return VectorType::get(element_type, t.lanes());
}
}
int get_vector_num_elements(llvm::Type *t) {
if (t->isVectorTy()) {
return dyn_cast<llvm::VectorType>(t)->getNumElements();
} else {
return 1;
}
}
llvm::Type *get_vector_element_type(llvm::Type *t) {
if (t->isVectorTy()) {
return dyn_cast<llvm::VectorType>(t)->getElementType();
} else {
return t;
}
}
// Returns true if the given function name is one of the Halide runtime
// functions that takes a user_context pointer as its first parameter.
bool function_takes_user_context(const std::string &name) {
static const char *user_context_runtime_funcs[] = {
"halide_buffer_copy",
"halide_copy_to_host",
"halide_copy_to_device",
"halide_current_time_ns",
"halide_debug_to_file",
"halide_device_free",
"halide_device_host_nop_free",
"halide_device_free_as_destructor",
"halide_device_and_host_free",
"halide_device_and_host_free_as_destructor",
"halide_device_malloc",
"halide_device_and_host_malloc",
"halide_device_sync",
"halide_do_par_for",
"halide_do_loop_task",
"halide_do_task",
"halide_do_async_consumer",
"halide_error",
"halide_free",
"halide_malloc",
"halide_print",
"halide_profiler_memory_allocate",
"halide_profiler_memory_free",
"halide_profiler_pipeline_start",
"halide_profiler_pipeline_end",
"halide_profiler_stack_peak_update",
"halide_spawn_thread",
"halide_device_release",
"halide_start_clock",
"halide_trace",
"halide_trace_helper",
"halide_memoization_cache_lookup",
"halide_memoization_cache_store",
"halide_memoization_cache_release",
"halide_cuda_run",
"halide_opencl_run",
"halide_opengl_run",
"halide_openglcompute_run",
"halide_metal_run",
"halide_d3d12compute_run",
"halide_msan_annotate_buffer_is_initialized_as_destructor",
"halide_msan_annotate_buffer_is_initialized",
"halide_msan_annotate_memory_is_initialized",
"halide_msan_check_buffer_is_initialized",
"halide_msan_check_memory_is_initialized",
"halide_hexagon_initialize_kernels",
"halide_hexagon_run",
"halide_hexagon_device_release",
"halide_hexagon_power_hvx_on",
"halide_hexagon_power_hvx_on_mode",
"halide_hexagon_power_hvx_on_perf",
"halide_hexagon_power_hvx_off",
"halide_hexagon_power_hvx_off_as_destructor",
"halide_qurt_hvx_lock",
"halide_qurt_hvx_unlock",
"halide_qurt_hvx_unlock_as_destructor",
"halide_vtcm_malloc",
"halide_vtcm_free",
"halide_cuda_initialize_kernels",
"halide_opencl_initialize_kernels",
"halide_opengl_initialize_kernels",
"halide_openglcompute_initialize_kernels",
"halide_metal_initialize_kernels",
"halide_d3d12compute_initialize_kernels",
"halide_get_gpu_device",
"_halide_buffer_crop",
"_halide_buffer_retire_crop_after_extern_stage",
"_halide_buffer_retire_crops_after_extern_stage",
};
const int num_funcs = sizeof(user_context_runtime_funcs) /
sizeof(user_context_runtime_funcs[0]);
for (int i = 0; i < num_funcs; ++i) {
if (name == user_context_runtime_funcs[i]) {
return true;
}
}
// The error functions all take a user context
return starts_with(name, "halide_error_");
}
bool can_allocation_fit_on_stack(int64_t size) {
user_assert(size > 0) << "Allocation size should be a positive number\n";
return (size <= 1024 * 16);
}
Expr lower_int_uint_div(const Expr &a, const Expr &b) {
// Detect if it's a small int division
const int64_t *const_int_divisor = as_const_int(b);
const uint64_t *const_uint_divisor = as_const_uint(b);
Type t = a.type();
internal_assert(!t.is_float())
<< "lower_int_uint_div is not meant to handle floating-point case.\n";
int shift_amount;
if (is_const_power_of_two_integer(b, &shift_amount) &&
(t.is_int() || t.is_uint())) {
return a >> make_const(a.type(), shift_amount);
} else if (const_int_divisor &&
t.is_int() &&
(t.bits() == 8 || t.bits() == 16 || t.bits() == 32) &&
*const_int_divisor > 1 &&
((t.bits() > 8 && *const_int_divisor < 256) || *const_int_divisor < 128)) {
int64_t multiplier, shift;
if (t.bits() == 32) {
multiplier = IntegerDivision::table_s32[*const_int_divisor][2];
shift = IntegerDivision::table_s32[*const_int_divisor][3];
} else if (t.bits() == 16) {
multiplier = IntegerDivision::table_s16[*const_int_divisor][2];
shift = IntegerDivision::table_s16[*const_int_divisor][3];
} else {
// 8 bit
multiplier = IntegerDivision::table_s8[*const_int_divisor][2];
shift = IntegerDivision::table_s8[*const_int_divisor][3];
}
Expr num = a;
// Make an all-ones mask if the numerator is negative
Type num_as_uint_t = num.type().with_code(Type::UInt);
Expr sign = cast(num_as_uint_t, num >> make_const(t, t.bits() - 1));
// Flip the numerator bits if the mask is high.
num = cast(num_as_uint_t, num);
num = num ^ sign;
// Multiply and keep the high half of the
// result, and then apply the shift.
Expr mult = make_const(num.type(), multiplier);
num = Call::make(num.type(), Call::mulhi_shr, {num, mult, make_const(UInt(num.type().bits()), shift)},
Call::PureIntrinsic);
// Maybe flip the bits back again.
num = cast(a.type(), num ^ sign);
return num;
} else if (const_uint_divisor &&
t.is_uint() &&
(t.bits() == 8 || t.bits() == 16 || t.bits() == 32) &&
*const_uint_divisor > 1 && *const_uint_divisor < 256) {
int64_t method, multiplier, shift;
if (t.bits() == 32) {
method = IntegerDivision::table_u32[*const_uint_divisor][1];
multiplier = IntegerDivision::table_u32[*const_uint_divisor][2];
shift = IntegerDivision::table_u32[*const_uint_divisor][3];
} else if (t.bits() == 16) {
method = IntegerDivision::table_u16[*const_uint_divisor][1];
multiplier = IntegerDivision::table_u16[*const_uint_divisor][2];
shift = IntegerDivision::table_u16[*const_uint_divisor][3];
} else {
method = IntegerDivision::table_u8[*const_uint_divisor][1];
multiplier = IntegerDivision::table_u8[*const_uint_divisor][2];
shift = IntegerDivision::table_u8[*const_uint_divisor][3];
}
internal_assert(method != 0)
<< "method 0 division is for powers of two and should have been handled elsewhere\n";
const Expr &num = a;
// Widen, multiply, narrow
Expr mult = make_const(num.type(), multiplier);
Expr val = Call::make(num.type(), Call::mulhi_shr,
{num, mult, make_const(UInt(num.type().bits()), method == 1 ? (int)shift : 0)},
Call::PureIntrinsic);
if (method == 2) {
// Average with original numerator.
val = Call::make(val.type(), Call::sorted_avg, {val, num}, Call::PureIntrinsic);
// Do the final shift
if (shift) {
val = val >> make_const(t, shift);
}
}
return val;
} else {
return lower_euclidean_div(a, b);
}
}
Expr lower_int_uint_mod(const Expr &a, const Expr &b) {
// Detect if it's a small int modulus
const int64_t *const_int_divisor = as_const_int(b);
const uint64_t *const_uint_divisor = as_const_uint(b);
Type t = a.type();
internal_assert(!t.is_float())
<< "lower_int_uint_div is not meant to handle floating-point case.\n";
int bits;
if (is_const_power_of_two_integer(b, &bits)) {
return a & (b - 1);
} else if (const_int_divisor &&
t.is_int() &&
(t.bits() == 8 || t.bits() == 16 || t.bits() == 32) &&
*const_int_divisor > 1 &&
((t.bits() > 8 && *const_int_divisor < 256) || *const_int_divisor < 128)) {
// We can use our fast signed integer division
return common_subexpression_elimination(a - (a / b) * b);
} else if (const_uint_divisor &&
t.is_uint() &&
(t.bits() == 8 || t.bits() == 16 || t.bits() == 32) &&
*const_uint_divisor > 1 && *const_uint_divisor < 256) {
// We can use our fast unsigned integer division
return common_subexpression_elimination(a - (a / b) * b);
} else {
// To match our definition of division, mod should be between 0
// and |b|.
return lower_euclidean_mod(a, b);
}
}
Expr lower_euclidean_div(Expr a, Expr b) {
internal_assert(a.type() == b.type());
Expr q;
if (a.type().is_uint()) {
// IROperator's div_round_to_zero will replace this with a / b for
// unsigned ops, so create the intrinsic directly.
Expr b_is_zero = (b == 0);
if (!can_prove(!b_is_zero)) {
b = b | cast(a.type(), b_is_zero);
}
q = Call::make(a.type(), Call::div_round_to_zero, {a, b}, Call::Intrinsic);
q = select(b_is_zero, 0, q);
} else {
internal_assert(a.type().is_int());
// Signed integer division sucks. It should be defined such
// that it satisifies (a/b)*b + a%b = a, where 0 <= a%b < |b|,
// i.e. Euclidean division.
//
// We additionally define division by zero to be zero, and
// division of the most negative integer by -1 to be the most
// negative integer.
// See div_imp in IROperator.h for the C code we're trying to match.
Expr zero = make_zero(a.type());
Expr minus_one = make_const(a.type(), -1);
Expr a_neg = a >> make_const(a.type(), (a.type().bits() - 1));
Expr b_neg = b >> make_const(a.type(), (a.type().bits() - 1));
Expr b_zero = select(b == zero, minus_one, zero);
// Give the simplifier the chance to skip some of this nonsense
if (can_prove(b != zero)) {
b_zero = zero;
}
if (can_prove(a >= zero)) {
a_neg = zero;
} else if (can_prove(a < zero)) {
a_neg = minus_one;
}
if (can_prove(b >= zero)) {
b_neg = zero;
} else if (can_prove(b < zero)) {
b_neg = minus_one;
}
// If b is zero, set it to one instead to avoid faulting
b -= b_zero;
// If a is negative, add one to it to get the rounding to work out.
a -= a_neg;
// Do the C-style division
q = Call::make(a.type(), Call::div_round_to_zero, {a, b}, Call::Intrinsic);
// If a is negative, either add or subtract one, depending on
// the sign of b, to fix the rounding. This can't overflow,
// because we move the result towards zero in either case (we
// add zero or one when q is negative, and subtract zero or
// one when it's positive).
q += a_neg & (~b_neg - b_neg);
// Set the result to zero when b is zero
q = q & ~b_zero;
}
q = common_subexpression_elimination(q);
return q;
}
Expr lower_euclidean_mod(Expr a, Expr b) {
Expr q;
if (a.type().is_uint()) {
Expr b_is_zero = (b == 0);
if (!can_prove(!b_is_zero)) {
b = b | cast(a.type(), b_is_zero);
}
q = Call::make(a.type(), Call::mod_round_to_zero, {a, b}, Call::Intrinsic);
q = select(b_is_zero, make_zero(a.type()), q);
} else {
internal_assert(a.type().is_int());
Expr zero = make_zero(a.type());
Expr minus_one = make_const(a.type(), -1);
Expr a_neg = a >> make_const(a.type(), (a.type().bits() - 1));
Expr b_neg = b >> make_const(a.type(), (a.type().bits() - 1));
Expr b_zero = select(b == zero, minus_one, zero);
// Give the simplifier the chance to skip some of this nonsense
if (can_prove(b != zero)) {
b_zero = zero;
}
if (can_prove(a >= zero)) {
a_neg = zero;
} else if (can_prove(a < zero)) {
a_neg = minus_one;
}
if (can_prove(b >= zero)) {
b_neg = zero;
} else if (can_prove(b < zero)) {
b_neg = minus_one;
}
// If a is negative, add one to get the rounding to work out
a -= a_neg;
// Do the mod, avoiding taking mod by zero
q = Call::make(a.type(), Call::mod_round_to_zero, {a, (b | b_zero)}, Call::Intrinsic);
// If a is negative, we either need to add b - 1 to the
// result, or -b - 1, depending on the sign of b.
q += (a_neg & ((b ^ b_neg) + ~b_neg));
// If b is zero, return zero by masking off the current result.
q = q & ~b_zero;
}
q = common_subexpression_elimination(q);
return q;
}
Expr lower_signed_shift_left(const Expr &a, const Expr &b) {
internal_assert(b.type().is_int());
const int64_t *const_int_b = as_const_int(b);
if (const_int_b) {
Type t = UInt(a.type().bits(), a.type().lanes());
Expr val;
const uint64_t b_unsigned = std::abs(*const_int_b);
if (*const_int_b >= 0) {
val = a << make_const(t, b_unsigned);
} else if (*const_int_b < 0) {
val = a >> make_const(t, b_unsigned);
}
return common_subexpression_elimination(val);
} else {
// The abs() below uses Halide's abs operator. This eliminates the overflow
// case for the most negative value because its result is unsigned.
Expr b_unsigned = abs(b);
Expr val = select(b >= 0, a << b_unsigned, a >> b_unsigned);
return simplify(common_subexpression_elimination(val));
}
}
Expr lower_signed_shift_right(const Expr &a, const Expr &b) {
internal_assert(b.type().is_int());
const int64_t *const_int_b = as_const_int(b);
if (const_int_b) {
Type t = UInt(a.type().bits(), a.type().lanes());
Expr val;
const uint64_t b_unsigned = std::abs(*const_int_b);
if (*const_int_b >= 0) {
val = a >> make_const(t, b_unsigned);
} else if (*const_int_b < 0) {
val = a << make_const(t, b_unsigned);
}
return common_subexpression_elimination(val);
} else {
// The abs() below uses Halide's abs operator. This eliminates the overflow
// case for the most negative value because its result is unsigned.
Expr b_unsigned = abs(b);
Expr val = select(b >= 0, a >> b_unsigned, a << b_unsigned);
return simplify(common_subexpression_elimination(val));
}
}
bool get_md_bool(llvm::Metadata *value, bool &result) {
if (!value) {
return false;
}
llvm::ConstantAsMetadata *cam = llvm::cast<llvm::ConstantAsMetadata>(value);
if (!cam) {
return false;
}
llvm::ConstantInt *c = llvm::cast<llvm::ConstantInt>(cam->getValue());
if (!c) {
return false;
}
result = !c->isZero();
return true;
}
bool get_md_string(llvm::Metadata *value, std::string &result) {
if (!value) {
result = "";
return false;
}
llvm::MDString *c = llvm::dyn_cast<llvm::MDString>(value);
if (c) {
#if LLVM_VERSION >= 110
result = c->getString().str();
#else
result = c->getString();
#endif
return true;
}
return false;
}
void get_target_options(const llvm::Module &module, llvm::TargetOptions &options, std::string &mcpu, std::string &mattrs) {
bool use_soft_float_abi = false;
get_md_bool(module.getModuleFlag("halide_use_soft_float_abi"), use_soft_float_abi);
get_md_string(module.getModuleFlag("halide_mcpu"), mcpu);
get_md_string(module.getModuleFlag("halide_mattrs"), mattrs);
bool use_pic = true;
get_md_bool(module.getModuleFlag("halide_use_pic"), use_pic);
bool per_instruction_fast_math_flags = false;
get_md_bool(module.getModuleFlag("halide_per_instruction_fast_math_flags"), per_instruction_fast_math_flags);
options = llvm::TargetOptions();
options.AllowFPOpFusion = per_instruction_fast_math_flags ? llvm::FPOpFusion::Strict : llvm::FPOpFusion::Fast;
options.UnsafeFPMath = !per_instruction_fast_math_flags;
options.NoInfsFPMath = !per_instruction_fast_math_flags;
options.NoNaNsFPMath = !per_instruction_fast_math_flags;
options.HonorSignDependentRoundingFPMathOption = !per_instruction_fast_math_flags;
options.NoZerosInBSS = false;
options.GuaranteedTailCallOpt = false;
options.StackAlignmentOverride = 0;
options.FunctionSections = true;
options.UseInitArray = true;
options.FloatABIType =
use_soft_float_abi ? llvm::FloatABI::Soft : llvm::FloatABI::Hard;
options.RelaxELFRelocations = false;
}
void clone_target_options(const llvm::Module &from, llvm::Module &to) {
to.setTargetTriple(from.getTargetTriple());
llvm::LLVMContext &context = to.getContext();
bool use_soft_float_abi = false;
if (get_md_bool(from.getModuleFlag("halide_use_soft_float_abi"), use_soft_float_abi)) {
to.addModuleFlag(llvm::Module::Warning, "halide_use_soft_float_abi", use_soft_float_abi ? 1 : 0);
}
std::string mcpu;
if (get_md_string(from.getModuleFlag("halide_mcpu"), mcpu)) {
to.addModuleFlag(llvm::Module::Warning, "halide_mcpu", llvm::MDString::get(context, mcpu));
}
std::string mattrs;
if (get_md_string(from.getModuleFlag("halide_mattrs"), mattrs)) {
to.addModuleFlag(llvm::Module::Warning, "halide_mattrs", llvm::MDString::get(context, mattrs));
}
bool use_pic = true;
if (get_md_bool(from.getModuleFlag("halide_use_pic"), use_pic)) {
to.addModuleFlag(llvm::Module::Warning, "halide_use_pic", use_pic ? 1 : 0);
}
}
std::unique_ptr<llvm::TargetMachine> make_target_machine(const llvm::Module &module) {
std::string error_string;
const llvm::Target *llvm_target = llvm::TargetRegistry::lookupTarget(module.getTargetTriple(), error_string);
if (!llvm_target) {
std::cout << error_string << "\n";
llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
}
auto triple = llvm::Triple(module.getTargetTriple());
internal_assert(llvm_target) << "Could not create LLVM target for " << triple.str() << "\n";
llvm::TargetOptions options;
std::string mcpu = "";
std::string mattrs = "";
get_target_options(module, options, mcpu, mattrs);
bool use_pic = true;
get_md_bool(module.getModuleFlag("halide_use_pic"), use_pic);
auto *tm = llvm_target->createTargetMachine(module.getTargetTriple(),
mcpu, mattrs,
options,
use_pic ? llvm::Reloc::PIC_ : llvm::Reloc::Static,
#ifdef HALIDE_USE_CODEMODEL_LARGE
llvm::CodeModel::Large,
#else
llvm::CodeModel::Small,
#endif
llvm::CodeGenOpt::Aggressive);
return std::unique_ptr<llvm::TargetMachine>(tm);
}
void set_function_attributes_for_target(llvm::Function *fn, Target t) {
// Turn off approximate reciprocals for division. It's too
// inaccurate even for us.
fn->addFnAttr("reciprocal-estimates", "none");
}
void embed_bitcode(llvm::Module *M, const string &halide_command) {
// Save llvm.compiler.used and remote it.
SmallVector<Constant *, 2> used_array;
SmallPtrSet<GlobalValue *, 4> used_globals;
llvm::Type *used_element_type = llvm::Type::getInt8Ty(M->getContext())->getPointerTo(0);
GlobalVariable *used = collectUsedGlobalVariables(*M, used_globals, true);
for (auto *GV : used_globals) {
if (GV->getName() != "llvm.embedded.module" &&
GV->getName() != "llvm.cmdline")
used_array.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, used_element_type));
}
if (used) {
used->eraseFromParent();
}
// Embed the bitcode for the llvm module.
std::string data;
Triple triple(M->getTargetTriple());
// Create a constant that contains the bitcode.
llvm::raw_string_ostream OS(data);
llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
ArrayRef<uint8_t> module_data =
ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
llvm::Constant *module_constant =
llvm::ConstantDataArray::get(M->getContext(), module_data);
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
*M, module_constant->getType(), true, llvm::GlobalValue::PrivateLinkage,
module_constant);
GV->setSection((triple.getObjectFormat() == Triple::MachO) ? "__LLVM,__bitcode" : ".llvmbc");
used_array.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, used_element_type));
if (llvm::GlobalVariable *old =
M->getGlobalVariable("llvm.embedded.module", true)) {
internal_assert(old->hasOneUse()) << "llvm.embedded.module can only be used once in llvm.compiler.used";
GV->takeName(old);
old->eraseFromParent();
} else {
GV->setName("llvm.embedded.module");
}
// Embed command-line options.
ArrayRef<uint8_t> command_line_data(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(halide_command.data())),
halide_command.size());
llvm::Constant *command_line_constant =
llvm::ConstantDataArray::get(M->getContext(), command_line_data);
GV = new llvm::GlobalVariable(*M, command_line_constant->getType(), true,
llvm::GlobalValue::PrivateLinkage,
command_line_constant);
GV->setSection((triple.getObjectFormat() == Triple::MachO) ? "__LLVM,__cmdline" : ".llvmcmd");
used_array.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, used_element_type));
if (llvm::GlobalVariable *old =
M->getGlobalVariable("llvm.cmdline", true)) {
internal_assert(old->hasOneUse()) << "llvm.cmdline can only be used once in llvm.compiler.used";
GV->takeName(old);
old->eraseFromParent();
} else {
GV->setName("llvm.cmdline");
}
if (!used_array.empty()) {
// Recreate llvm.compiler.used.
ArrayType *ATy = ArrayType::get(used_element_type, used_array.size());
auto *new_used = new GlobalVariable(
*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(ATy, used_array), "llvm.compiler.used");
new_used->setSection("llvm.metadata");
}
}
} // namespace Internal
} // namespace Halide