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Introduction

What’s the goal of this book?

This book aims to build up enough knowledge about metaprogramming in Lean 4

so you can be comfortable enough to:

• Start building your own meta helpers (defining new Lean notation such as ∑,

building new Lean commands such as #check, writing tactics such as use, etc.)

• Read and discuss metaprogramming APIs like the ones in Lean 4 core and

Mathlib4

We by no means intend to provide an exhaustive exploration/explanation of the

entire Lean 4 metaprogramming API. We also don’t cover the topic of monadic

programming in Lean 4. However, we hope that the examples provided will be

simple enough for the reader to follow and comprehend without a super deep

understanding of monadic programming. The book Functional Programming in

Lean is a highly recommended source on that subject.

Book structure

The book is organized in a way to build up enough context for the chapters that cover

DSLs and tactics. Backtracking the pre-requisites for each chapter, the dependency

structure is as follows:

• “Tactics” builds on top of “Macros” and “Elaboration”

• “DSLs” builds on top of “Elaboration”

• “Macros” builds on top of “Syntax”

• “Elaboration” builds on top of “Syntax” and “MetaM”

• “MetaM” builds on top of “Expressions”

After the chapter on tactics, you find a cheat sheet containing a wrap-up of key

concepts and functions. And after that, there are some chapters with extra content,

1
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Metaprogramming in Lean 4 .

showing other applications of metaprogramming in Lean 4. Most chapters contain

exercises at the end of the chapter - and at the end of the book you will have full

solutions to those exercises.

The rest of this chapter is a gentle introduction to what metaprogramming is,

offering some small examples to serve as appetizers for what the book shall cover.

Note: the code snippets aren’t self-contained. They are supposed to be run/read

incrementally, starting from the beginning of each chapter.

What does it mean to be in meta?

When we write code in most programming languages such as Python, C, Java or

Scala, we usually have to stick to a pre-defined syntax otherwise the compiler or the

interpreter won’t be able to figure out what we’re trying to say. In Lean, that would

be defining an inductive type, implementing a function, proving a theorem, etc.

The compiler, then, has to parse the code, build an AST (abstract syntax tree) and

elaborate its syntax nodes into terms that can be processed by the language kernel.

We say that such activities performed by the compiler are done in themeta-level,

which will be studied throughout the book. And we also say that the common usage

of the language syntax is done in the object-level.

In most systems, the meta-level activities are done in a different language to the

one that we use to write code. In Isabelle, the meta-level language is ML and Scala.

In Coq, it’s OCaml. In Agda, it’s Haskell. In Lean 4, the meta code is mostly written

in Lean itself, with a few components written in C++.

One cool thing about Lean, though, is that it allows us to define custom syntax nodes

and implement meta-level routines to elaborate them in the very same development

environment that we use to perform object-level activities. So for example, one can

write notation to instantiate a term of a certain type and use it right away, in the

same file! This concept is generally called reflection. We can say that, in Lean, the

meta-level is reflected to the object-level.

If you have done some metaprogramming in languages such as Ruby, Python or

Javascript, it probably took the form of making use of predefined metaprogramming

methods to define something on the fly. For example, in Ruby you can use Class.new

and define_method to define a new class and its new method (with new code inside!)

on the fly, as your program is executing.
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Metaprogramming in Lean 4 .

We don’t usually need to define new commands or tactics “on the fly” in Lean, but

spiritually similar feats are possible with Lean metaprogramming and are equally

straightforward, e.g. you can define a new Lean command using a simple one-liner

elab "#help" : command => do ...normal Lean code....

In Lean, however, we will frequently want to directly manipulate Lean’s CST (Con-

crete Syntax Tree, Lean’s Syntax type) and Lean’s AST (Abstract Syntax Tree, Lean’s

Expr type) instead of using “normal Lean code”, especially when we’re writing tac-

tics. So Lean metaprogramming is more challenging to master - a large chunk of

this book is contributed to studying these types and how we can manipulate them.

Metaprogramming examples

Next, we introduce several examples of Lean metaprogramming, so that you start

getting a taste for what metaprogramming in Lean is, and what it will enable you

to achieve. These examples are meant as mere illustrations - do not worry if you

don’t understand the details for now.

Introducing notation (defining new syntax)

Often one wants to introduce new notation, for example one more suitable for (a

branch of) mathematics. For instance, in mathematics one would write the function

adding 2 to a natural number as x : Nat ↦ x + 2 or simply x ↦ x + 2 if the domain

can be inferred to be the natural numbers. The corresponding lean definitions

fun x : Nat => x + 2 and fun x => x + 2 use => which in mathematics means

implication, so may be confusing to some.

We can introduce notation using a macro which transforms our syntax to Lean’s

syntax (or syntax we previously defined). Here we introduce the ↦ notation for

functions.

import Lean

macro x:ident ":" t:term " ↦ " y:term : term => do

`(fun $x : $t => $y)

#eval (x : Nat ↦ x + 2) 2 -- 4

macro x:ident " ↦ " y:term : term => do

`(fun $x => $y)

Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Böving,
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#eval (x ↦ x + 2) 2 -- 4

Building a command

Suppose we want to build a helper command #assertType which tells whether a

given term is of a certain type. The usage will be:

#assertType <term> : <type>

Let’s see the code:

elab "#assertType " termStx:term " : " typeStx:term : command =>

open Lean Lean.Elab Command Term in

liftTermElabM

try

let tp ← elabType typeStx

discard $ elabTermEnsuringType termStx tp

synthesizeSyntheticMVarsNoPostponing

logInfo "success"

catch | _ => throwError "failure"

/-- info: success -/

#assertType 5 : Nat

/--

error: type mismatch

[]

has type

List ?m.3211 : Type ?u.3210

but is expected to have type

Nat : Type

-/

#assertType [] : Nat

We started by using elab to define a command syntax. When parsed by the compiler,

it will trigger the incoming computation.

At this point, the code should be running in the CommandElabM monad. We then use

liftTermElabM to access the TermElabM monad, which allows us to use elabType

and elabTermEnsuringType to build expressions out of the syntax nodes typeStx

and termStx.

First, we elaborate the expected type tp : Expr, then we use it to elaborate the

term expression. The term should have the type tp otherwise an error will be
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thrown. We then discard the resulting term expression, since it doesn’t matter to

us here - we’re calling elabTermEnsuringType as a sanity check.

We also add synthesizeSyntheticMVarsNoPostponing, which forces Lean to elabo-

rate metavariables right away. Without that line, #assertType [] : ?_ would result

in success.

If no error is thrown until now then the elaboration succeeded and we can use

logInfo to output “success”. If, instead, some error is caught, then we use

throwError with the appropriate message.

Building a DSL and a syntax for it

Let’s parse a classic grammar, the grammar of arithmetic expressions with addition,

multiplication, naturals, and variables. We’ll define an AST (Abstract Syntax Tree)

to encode the data of our expressions, and use operators + and * to denote building

an arithmetic AST. Here’s the AST that we will be parsing:

inductive Arith : Type where

| add : Arith → Arith → Arith -- e + f

| mul : Arith → Arith → Arith -- e * f

| nat : Nat → Arith -- constant

| var : String → Arith -- variable

Now we declare a syntax category to describe the grammar that we will be parsing.

Notice that we control the precedence of + and * by giving a lower precedence

weight to the + syntax than to the * syntax indicating that multiplication binds

tighter than addition (the higher the number, the tighter the binding). This allows

us to declare precedence when defining new syntax.

declare_syntax_cat arith

syntax num : arith -- nat for Arith.nat

syntax str : arith -- strings for Arith.var

syntax:50 arith:50 " + " arith:51 : arith -- Arith.add

syntax:60 arith:60 " * " arith:61 : arith -- Arith.mul

syntax " ( " arith " ) " : arith -- bracketed expressions

-- Auxiliary notation for translating `arith` into `term`

syntax " ⟪ " arith " ⟫ " : term

-- Our macro rules perform the "obvious" translation:

macro_rules

| `(⟪ $s:str ⟫) => `(Arith.var $s)

| `(⟪ $num:num ⟫) => `(Arith.nat $num)
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| `(⟪ $x:arith + $y:arith ⟫) => `(Arith.add ⟪ $x ⟫ ⟪ $y ⟫)

| `(⟪ $x:arith * $y:arith ⟫) => `(Arith.mul ⟪ $x ⟫ ⟪ $y ⟫)

| `(⟪ ( $x ) ⟫) => `( ⟪ $x ⟫ )

#check ⟪ "x" * "y" ⟫

-- Arith.mul (Arith.var "x") (Arith.var "y") : Arith

#check ⟪ "x" + "y" ⟫

-- Arith.add (Arith.var "x") (Arith.var "y") : Arith

#check ⟪ "x" + 20 ⟫

-- Arith.add (Arith.var "x") (Arith.nat 20) : Arith

#check ⟪ "x" + "y" * "z" ⟫ -- precedence

-- Arith.add (Arith.var "x") (Arith.mul (Arith.var "y") (Arith.var "z")) : Arith

#check ⟪ "x" * "y" + "z" ⟫ -- precedence

-- Arith.add (Arith.mul (Arith.var "x") (Arith.var "y")) (Arith.var "z") : Arith

#check ⟪ ("x" + "y") * "z" ⟫ -- brackets

-- Arith.mul (Arith.add (Arith.var "x") (Arith.var "y")) (Arith.var "z")

Writing our own tactic

Let’s create a tactic that adds a new hypothesis to the context with a given name

and postpones the need for its proof to the very end. It’s similar to the suffices

tactic from Lean 3, except that we want to make sure that the new goal goes to the

bottom of the goal list.

It’s going to be called suppose and is used like this:

suppose <name> : <type>

So let’s see the code:

open Lean Meta Elab Tactic Term in

elab "suppose " n:ident " : " t:term : tactic => do

let n : Name := n.getId

let mvarId ← getMainGoal

mvarId.withContext do

let t ← elabType t

let p ← mkFreshExprMVar t MetavarKind.syntheticOpaque n

let (_, mvarIdNew) ← MVarId.intro1P $ ← mvarId.assert n t p

replaceMainGoal [p.mvarId!, mvarIdNew]

evalTactic $ ← `(tactic|rotate_left)

Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Böving,

Jannis Limperg, Siddhartha Gadgil, Siddharth Bhat

6



Metaprogramming in Lean 4 .

example : 0 + a = a := by

suppose add_comm : 0 + a = a + 0

rw [add_comm]; rfl -- closes the initial main goal

rw [Nat.zero_add]; rfl -- proves `add_comm`

We start by storing the main goal in mvarId and using it as a parameter of

withMVarContext to make sure that our elaborations will work with types that

depend on other variables in the context.

This time we’re using mkFreshExprMVar to create a metavariable expression for the

proof of t, which we can introduce to the context using intro1P and assert.

To require the proof of the new hypothesis as a goal, we call replaceMainGoal

passing a list with p.mvarId! in the head. And then we can use the rotate_left

tactic to move the recently added top goal to the bottom.

Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Böving,

Jannis Limperg, Siddhartha Gadgil, Siddharth Bhat

7



Overview

In this chapter, we will provide an overview of the primary steps involved in the Lean

compilation process, including parsing, elaboration, and evaluation. As alluded to

in the introduction, metaprogramming in Lean involves plunging into the heart of

this process. We will explore the fundamental objects involved, Expr and Syntax,

learn what they signify, and discover how one can be turned into another (and

back!).

In the next chapters, you will learn the particulars. As you read on, you might want

to return to this chapter occasionally to remind yourself of how it all fits together.

Connection to compilers

Metaprogramming in Lean is deeply connected to the compilation steps - parsing,

syntactic analysis, transformation, and code generation.

Lean 4 is a reimplementation of the Lean theorem prover in Lean itself. The

new compiler produces C code, and users can now implement efficient proof

automation in Lean, compile it into efficient C code, and load it as a plugin. In

Lean 4, users can access all internal data structures used to implement Lean

by merely importing the Lean package.

Leonardo de Moura, Sebastian Ullrich (The Lean 4 Theorem Prover and Pro-

gramming Language)

The Lean compilation process can be summed up in the following diagram:

First, we will start with Lean code as a string. Then we’ll see it become a Syntax

object, and then an Expr object. Then finally we can execute it.

So, the compiler sees a string of Lean code, say "let a := 2", and the following

process unfolds:

1. apply a relevant syntax rule ("let a := 2" � Syntax)
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During the parsing step, Lean tries to match a string of Lean code to one of

the declared syntax rules in order to turn that string into a Syntax object.

Syntax rules are basically glorified regular expressions - when you write a

Lean string that matches a certain syntax rule’s regex, that rule will be used

to handle subsequent steps.

2. apply all macros in a loop (Syntax � Syntax)

During the elaboration step, each macro simply turns the existing Syntax ob-

ject into some new Syntax object. Then, the new Syntax is processed similarly

(repeating steps 1 and 2), until there are no more macros to apply.

3. apply a single elab (Syntax � Expr)

Finally, it’s time to infuse your syntax with meaning - Lean finds an elab

that’s matched to the appropriate syntax rule by the name argument (syntax

rules, macros and elabs all have this argument, and they must match). The

newfound elab returns a particular Expr object. This completes the elaboration

step.

The expression (Expr) is then converted into executable code during the evaluation

step - we don’t have to specify that in any way, the Lean compiler will handle doing

so for us.

Elaboration and delaboration

Elaboration is an overloaded term in Lean. For example, you might encounter

the following usage of the word “elaboration”, wherein the intention is “taking a

partially-specified expression and inferring what is left implicit”:

When you enter an expression like λ x y z, f (x + y) z for Lean to process,

you are leaving information implicit. For example, the types of x, y, and z have

to be inferred from the context, the notation + may be overloaded, and there

may be implicit arguments to f that need to be filled in as well.

The process of taking a partially-specified expression and inferring what is left

implicit is known as elaboration. Lean’s elaboration algorithm is powerful,

but at the same time, subtle and complex. Working in a system of dependent

type theory requires knowing what sorts of information the elaborator can

reliably infer, as well as knowing how to respond to error messages that are

raised when the elaborator fails. To that end, it is helpful to have a general
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idea of how Lean’s elaborator works.

When Lean is parsing an expression, it first enters a preprocessing phase.

First, Lean inserts “holes” for implicit arguments. If term t has type Π {x

: A}, P x, then t is replaced by @t _ everywhere. Then, the holes — either

the ones inserted in the previous step or the ones explicitly written by the

user — in a term are instantiated by metavariables ?M1, ?M2, ?M3, …. Each

overloaded notation is associated with a list of choices, that is, the possible

interpretations. Similarly, Lean tries to detect the points where a coercion

may need to be inserted in an application s t, to make the inferred type of t

match the argument type of s. These become choice points too. If one possible

outcome of the elaboration procedure is that no coercion is needed, then one

of the choices on the list is the identity.

(Theorem Proving in Lean 2)

We, on the other hand, just defined elaboration as the process of turning Syntax

objects into Expr objects.

These definitions are not mutually exclusive - elaboration is, indeed, the transforma-

tion of Syntax into Exprs - it’s just so that for this transformation to happen we need

a lot of trickery - we need to infer implicit arguments, instantiate metavariables,

perform unification, resolve identifiers, etc. etc. - and these actions can be referred

to as “elaboration” on their own; similarly to how “checking if you turned off the

lights in your apartment” (metavariable instantiation) can be referred to as “going

to school” (elaboration).

There also exists a process opposite to elaboration in Lean - it’s called, appropriately

enough, delaboration. During delaboration, an Expr is turned into a Syntax object;

and then the formatter turns it into a Format object, which can be displayed in

Lean’s infoview. Every time you log something to the screen, or see some output

upon hovering over #check, it’s the work of the delaborator.

Throughout this book you will see references to the elaborator; and in the “Extra:

Pretty Printing” chapter you can read about delaborators.

3 essential commands and their syntax sugars

Now, when you’re reading Lean source code, you will see 11(+?) commands

specifying the parsing/elaboration/evaluation process:
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In the image above, you see notation, prefix, infix, and postfix - all of these

are combinations of syntax and @[macro xxx] def ourMacro, just like macro. These

commands differ from macro in that you can only define syntax of a particular form

with them.

All of these commands are used in Lean and Mathlib source code extensively, so it’s

well worth memorizing them. Most of them are syntax sugars, however, and you can

understand their behaviour by studying the behaviour of the following 3 low-level

commands: syntax (a syntax rule), @[macro xxx] def ourMacro (a macro), and

@[command_elab xxx] def ourElab (an elab).

To give a more concrete example, imagine we’re implementing a #help command,

that can also be written as #h. Then we can write our syntax rule, macro, and

elab as follows:

This image is not supposed to be read row by row - it’s perfectly fine to use

macro_rules together with elab. Suppose, however, that we used the 3 low-level

commands to specify our #help command (the first row). After we’ve done this, we

can write #help "#explode" or #h "#explode", both of which will output a rather

parsimonious documentation for the #explode command - “Displays proof in a Fitch

table”.

If we write #h "#explode", Lean will travel the syntax (name := shortcut_h) �

@[macro shortcut_h] def helpMacro � syntax (name := default_h) � @[command_elab

default_h] def helpElab route.

If we write #help "#explode", Lean will travel the syntax (name := default_h) �

@[command_elab default_h] def helpElab route.

Note how the matching between syntax rules, macros, and elabs is done via the

name argument. If we used macro_rules or other syntax sugars, Lean would figure

out the appropriate name arguments on its own.

If we were defining something other than a command, instead of : command we

could write : term, or : tactic, or any other syntax category.

The elab function can also be of different types - the CommandElab we used to

implement #help - but also TermElab and Tactic:

• TermElab stands for Syntax → Option Expr → TermElabM Expr, so the elab

function is expected to return the Expr object.

• CommandElab stands for Syntax → CommandElabM Unit, so it shouldn’t

return anything.
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• Tactic stands for Syntax → TacticM Unit, so it shouldn’t return anything

either.

This corresponds to our intuitive understanding of terms, commands and tactics

in Lean - terms return a particular value upon execution, commands modify the

environment or print something out, and tactics modify the proof state.

Order of execution: syntax rule, macro, elab

We have hinted at the flow of execution of these three essential commands here

and there, however let’s lay it out explicitly. The order of execution follows the

following pseudocodey template: syntax (macro; syntax)* elab.

Consider the following example.

import Lean

open Lean Elab Command

syntax (name := xxx) "red" : command

syntax (name := yyy) "green" : command

syntax (name := zzz) "blue" : command

@[macro xxx] def redMacro : Macro := λ stx =>

match stx with

| _ => `(green)

@[macro yyy] def greenMacro : Macro := λ stx =>

match stx with

| _ => `(blue)

@[command_elab zzz] def blueElab : CommandElab := λ stx =>

Lean.logInfo "finally, blue!"

red -- finally, blue!

The process is as follows:

• match appropriate syntax rule (happens to have name := xxx) �

apply @[macro xxx] �

• match appropriate syntax rule (happens to have name := yyy) �

apply @[macro yyy] �
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• match appropriate syntax rule (happens to have name := zzz) �

can’t find any macros with name zzz to apply,

so apply @[command_elab zzz]. �.

The behaviour of syntax sugars (elab, macro, etc.) can be understood from these

first principles.

Manual conversions between Syntax/Expr/executable-code

Lean will execute the aforementioned parsing/elaboration/evaluation steps for

you automatically if you use syntax, macro and elab commands, however, when

you’re writing your tactics, you will also frequently need to perform these transitions

manually. You can use the following functions for that:

Note how all functions that let us turn Syntax into Expr start with “elab”, short for

“elaboration”; and all functions that let us turn Expr (or Syntax) into actual code

start with “eval”, short for “evaluation”.

Assigning meaning: macro VS elaboration?

In principle, you can do with a macro (almost?) anything you can do with the elab

function. Just write what you would have in the body of your elab as a syntax within

macro. However, the rule of thumb here is to only use macros when the conversion

is simple and truly feels elementary to the point of aliasing. As Henrik Böving puts

it: “as soon as types or control flow is involved a macro is probably not reasonable

anymore” (Zulip thread).

So - use macros for creating syntax sugars, notations, and shortcuts, and prefer

elabs for writing out code with some programming logic, even if it’s potentially

implementable in a macro.

Additional comments

Finally - some notes that should clarify a few things as you read the coming chap-

ters.
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Printing Messages

In the #assertType example, we used logInfo to make our command print some-

thing. If, instead, we just want to perform a quick debug, we can use dbg_trace.

They behave a bit differently though, as we can see below:

elab "traces" : tactic => do

let array := List.replicate 2 (List.range 3)

Lean.logInfo m!"logInfo: {array}"

dbg_trace f!"dbg_trace: {array}"

example : True := by -- `example` is underlined in blue, outputting:

-- dbg_trace: [[0, 1, 2], [0, 1, 2]]

traces -- now `traces` is underlined in blue, outputting

-- logInfo: [[0, 1, 2], [0, 1, 2]]

trivial

Type correctness

Since the objects defined in the meta-level are not the ones we’re most interested in

proving theorems about, it can sometimes be overly tedious to prove that they are

type correct. For example, we don’t care about proving that a recursive function

to traverse an expression is well-founded. Thus, we can use the partial keyword

if we’re convinced that our function terminates. In the worst-case scenario, our

function gets stuck in a loop, causing the Lean server to crash in VSCode, but the

soundness of the underlying type theory implemented in the kernel isn’t affected.
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Expressions

Expressions (terms of type Expr) are an abstract syntax tree for Lean programs.

This means that each term which can be written in Lean has a corresponding Expr.

For example, the application f e is represented by the expression Expr.app ⟦f⟧

⟦e⟧, where ⟦f⟧ is a representation of f and ⟦e⟧ a representation of e. Similarly, the

term Nat is represented by the expression Expr.const `Nat []. (The backtick and

empty list are discussed below.)

The ultimate purpose of a Lean tactic block is to generate a term which serves

as a proof of the theorem we want to prove. Thus, the purpose of a tactic is to

produce (part of) an Expr of the right type. Much metaprogramming therefore

comes down to manipulating expressions: constructing new ones and taking apart

existing ones.

Once a tactic block is finished, the Expr is sent to the kernel, which checks whether

it is well-typed and whether it really has the type claimed by the theorem. As a

result, tactic bugs are not fatal: if you make a mistake, the kernel will ultimately

catch it. However, many internal Lean functions also assume that expressions are

well-typed, so you may crash Lean before the expression ever reaches the kernel.

To avoid this, Lean provides many functions which help with the manipulation of

expressions. This chapter and the next survey the most important ones.

Let’s get concrete and look at the Expr type:

import Lean

namespace Playground

inductive Expr where

| bvar : Nat → Expr -- bound variables

| fvar : FVarId → Expr -- free variables

| mvar : MVarId → Expr -- meta variables

| sort : Level → Expr -- Sort

| const : Name → List Level → Expr -- constants

| app : Expr → Expr → Expr -- application

| lam : Name → Expr → Expr → BinderInfo → Expr -- lambda abstraction
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| forallE : Name → Expr → Expr → BinderInfo → Expr -- (dependent) arrow

| letE : Name → Expr → Expr → Expr → Bool → Expr -- let expressions

-- less essential constructors:

| lit : Literal → Expr -- literals

| mdata : MData → Expr → Expr -- metadata

| proj : Name → Nat → Expr → Expr -- projection

end Playground

What is each of these constructors doing?

• bvar is a bound variable. For example, the x in fun x => x + 2 or ∑ x, x².

This is any occurrence of a variable in an expression where there is a binder

above it. Why is the argument a Nat? This is called a de Bruijn index and will

be explained later. You can figure out the type of a bound variable by looking

at its binder, since the binder always has the type information for it.

• fvar is a free variable. These are variables which are not bound by a binder.

An example is x in x + 2. Note that you can’t just look at a free variable x and

tell what its type is, there needs to be a context which contains a declaration

for x and its type. A free variable has an ID that tells you where to look for it

in a LocalContext. In Lean 3, free variables were called “local constants” or

“locals”.

• mvar is a metavariable. There will be much more on these later, but you can

think of it as a placeholder or a ‘hole’ in an expression that needs to be filled

at a later point.

• sort is used for Type u, Prop etc.

• const is a constant that has been defined earlier in the Lean document.

• app is a function application. Multiple arguments are done using partial

application: f x y ↝ app (app f x) y.

• lam n t b is a lambda expression (fun ($n : $t) => $b). The b argument is

called the body. Note that you have to give the type of the variable you are

binding.

• forallE n t b is a dependent arrow expression (($n : $t) → $b). This is also

sometimes called a Π-type or Π-expression and is often written ∀ $n : $t,

$b. Note that the non-dependent arrow α → β is a special case of (a : α) → β

where β doesn’t depend on a. The E on the end of forallE is to distinguish it

from the forall keyword.

• letE n t v b is a let binder (let ($n : $t) := $v in $b).

• lit is a literal, this is a number or string literal like 4 or "hello world".

Literals help with performance: we don’t want to represent the expression
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(10000 : Nat) as Nat.succ $ ... $ Nat.succ Nat.zero.

• mdata is just a way of storing extra information on expressions that might be

useful, without changing the nature of the expression.

• proj is for projection. Suppose you have a structure such as p : α × β, rather

than storing the projection π₁ p as app π₁ p, it is expressed as proj Prod 0

p. This is for efficiency reasons ([todo] find link to docstring explaining this).

You’ve probably noticed that you can write many Lean programs which do not

have an obvious corresponding Expr. For example, what about match statements,

do blocks or by blocks? These constructs, and many more, must indeed first be

translated into expressions. The part of Lean which performs this (substantial)

task is called the elaborator and is discussed in its own chapter. The benefit of

this setup is that once the translation to Expr is done, we have a relatively simple

structure to work with. (The downside is that going back from Expr to a high-level

Lean program can be challenging.)

The elaborator also fills in any implicit or typeclass instance arguments which you

may have omitted from your Lean program. Thus, at the Expr level, constants

are always applied to all their arguments, implicit or not. This is both a blessing

(because you get a lot of information which is not obvious from the source code) and

a curse (because when you build an Expr, you must supply any implicit or instance

arguments yourself).

De Bruijn Indexes

Consider the lambda expression (λ x : ℕ => λ y : ℕ => x + y) y. When we eval-

uate it naively, by replacing x with y in the body of the outer lambda, we obtain λ y

: ℕ => y + y. But this is incorrect: the lambda is a function with two arguments

that adds one argument to the other, yet the evaluated version adds its argument to

itself. The root of the issue is that the name y is used for both the variable outside

the lambdas and the variable bound by the inner lambda. Having different variables

use the same name means that when we evaluate, or β-reduce, an application, we

must be careful not to confuse the different variables.

To address this issue, Lean does not, in fact, refer to bound variables by name.

Instead, it uses de Bruijn indexes. In de Bruijn indexing, each variable bound

by a lam or a forallE is converted into a number #n. The number says how many

binders up the Expr tree we should skip to find the binder that binds this variable.
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So our above example would become (replacing inessential parts of the expression

with _ for brevity):

app (lam `x _ (lam `y _ (app (app `plus #1) #0) _) _) (fvar _)

The fvar represents y and the lambdas’ variables are now represented by #0 and

#1. When we evaluate this application, we replace the bound variable belonging to

lam `x (here #1) with the argument fvar _, obtaining

(lam `y _ (app (app `plus (fvar _)) #0) _)

This is pretty-printed as

λ y_1 => y + y_1

Note that Lean has automatically chosen a name y_1 for the remaining bound

variable that does not clash with the name of the fvar y. The chosen name is based

on the name suggestion y contained in the lam.

If a de Bruijn index is too large for the number of binders preceding it, we say it

is a loose bvar; otherwise we say it is bound. For example, in the expression lam

`x _ (app #0 #1) the bvar #0 is bound by the preceding binder and #1 is loose.

The fact that Lean calls all de Bruijn indexes bvars (“bound variables”) points to

an important invariant: outside of some very low-level functions, Lean expects

that expressions do not contain any loose bvars. Instead, whenever we would be

tempted to introduce a loose bvar, we immediately convert it into an fvar (“free

variable”). (Hence, Lean’s binder representation is “locally nameless”.) Precisely

how that works is discussed in the next chapter.

If there are no loose bvars in an expression, we say that the expression is closed. The

process of replacing all instances of a loose bvarwith an Expr is called instantiation.

Going the other way is called abstraction.

If you are familiar with the standard terminology around variables, Lean’s termi-

nology may be confusing, so here’s a map: Lean’s “bvars” are usually called just

“variables”; Lean’s “loose” is usually called “free”; and Lean’s “fvars” might be

called “local hypotheses”.

Universe Levels

Some expressions involve universe levels, represented by the Lean.Level type.

A universe level is a natural number, a universe parameter (introduced with a
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universe declaration), a universe metavariable or the maximum of two universes.

They are relevant for two kinds of expressions.

First, sorts are represented by Expr.sort u, where u is a Level. Prop is sort

Level.zero; Type is sort (Level.succ Level.zero).

Second, universe-polymorphic constants have universe arguments. A universe-

polymorphic constant is one whose type contains universe parameters. For example,

the List.map function is universe-polymorphic, as the pp.universes pretty-printing

option shows:

set_option pp.universes true in

#check @List.map

The .{u_1,u_2} suffix after List.map means that List.map has two universe ar-

guments, u_1 and u_2. The .{u_1} suffix after List (which is itself a universe-

polymorphic constant) means that List is applied to the universe argument u_1,

and similar for .{u_2}.

In fact, whenever you use a universe-polymorphic constant, you must apply it

to the correct universe arguments. This application is represented by the List

Level argument of Expr.const. When we write regular Lean code, Lean infers the

universes automatically, so we do not need think about them much. But when we

construct Exprs, we must be careful to apply each universe-polymorphic constant

to the right universe arguments.

Constructing Expressions

Constants

The simplest expressions we can construct are constants. We use the const con-

structor and give it a name and a list of universe levels. Most of our examples only

involve non-universe-polymorphic constants, in which case the list is empty.

We also show a second form where we write the name with double backticks. This

checks that the name in fact refers to a defined constant, which is useful to avoid

typos.

open Lean

def z' := Expr.const `Nat.zero []

#eval z' -- Lean.Expr.const `Nat.zero []
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def z := Expr.const ``Nat.zero []

#eval z -- Lean.Expr.const `Nat.zero []

The double-backtick variant also resolves the given name, making it fully-qualified.

To illustrate this mechanism, here are two further examples. The first expression,

z₁, is unsafe: if we use it in a context where the Nat namespace is not open, Lean

will complain that there is no constant called zero in the environment. In contrast,

the second expression, z₂, contains the fully-qualified name Nat.zero and does not

have this problem.

open Nat

def z₁ := Expr.const `zero []

#eval z₁ -- Lean.Expr.const `zero []

def z₂ := Expr.const ``zero []

#eval z₂ -- Lean.Expr.const `Nat.zero []

Function Applications

The next class of expressions we consider are function applications. These can be

built using the app constructor, with the first argument being an expression for the

function and the second being an expression for the argument.

Here are two examples. The first is simply a constant applied to another. The second

is a recursive definition giving an expression as a function of a natural number.

def one := Expr.app (.const ``Nat.succ []) z

#eval one

-- Lean.Expr.app (Lean.Expr.const `Nat.succ []) (Lean.Expr.const `Nat.zero [])

def natExpr: Nat → Expr

| 0 => z

| n + 1 => .app (.const ``Nat.succ []) (natExpr n)

Next we use the variant mkAppN which allows application with multiple arguments.

def sumExpr : Nat → Nat → Expr

| n, m => mkAppN (.const ``Nat.add []) #[natExpr n, natExpr m]

As you may have noticed, we didn’t show #eval outputs for the two last functions.

That’s because the resulting expressions can grow so large that it’s hard to make

sense of them.
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Lambda Abstractions

We next use the constructor lam to construct a simple function which takes any

natural number x and returns Nat.zero. The argument BinderInfo.default says

that x is an explicit argument (rather than an implicit or typeclass argument).

def constZero : Expr :=

.lam `x (.const ``Nat []) (.const ``Nat.zero []) BinderInfo.default

#eval constZero

-- Lean.Expr.lam `x (Lean.Expr.const `Nat []) (Lean.Expr.const `Nat.zero [])

-- (Lean.BinderInfo.default)

As a more elaborate example which also involves universe levels, here is the Expr

that represents List.map (λ x => Nat.add x 1) [] (broken up into several defini-

tions to make it somewhat readable):

def nat : Expr := .const ``Nat []

def addOne : Expr :=

.lam `x nat

(mkAppN (.const ``Nat.add []) #[.bvar 0, mkNatLit 1])

BinderInfo.default

def mapAddOneNil : Expr :=

mkAppN (.const ``List.map [levelZero, levelZero])

#[nat, nat, addOne, .app (.const ``List.nil [levelZero]) nat]

With a little trick (more about which in the Elaboration chapter), we can turn our

Expr into a Lean term, which allows us to inspect it more easily.

elab "mapAddOneNil" : term => return mapAddOneNil

#check mapAddOneNil

-- List.map (fun x => Nat.add x 1) [] : List Nat

set_option pp.universes true in

set_option pp.explicit true in

#check mapAddOneNil

-- @List.map.{0, 0} Nat Nat (fun x => x.add 1) (@List.nil.{0} Nat) : List.{0} Nat

#reduce mapAddOneNil

-- []

In the next chapter we explore the MetaM monad, which, among many other things,

allows us to more conveniently construct and destruct larger expressions.
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Exercises

1. Create expression 1 + 2 with Expr.app.

2. Create expression 1 + 2 with Lean.mkAppN.

3. Create expression fun x => 1 + x.

4. [De Bruijn Indexes] Create expression fun a, fun b, fun c, (b * a) + c.

5. Create expression fun x y => x + y.

6. Create expression fun x, String.append "hello, " x.

7. Create expression ∀ x : Prop, x ∧ x.

8. Create expression Nat → String.

9. Create expression fun (p : Prop) => (λ hP : p => hP).

10. [Universe levels] Create expression Type 6.
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MetaM

The Lean 4 metaprogramming API is organised around a small zoo of monads. The

four main ones are:

• CoreM gives access to the environment, i.e. the set of things that have been

declared or imported at the current point in the program.

• MetaM gives access to the metavariable context, i.e. the set of metavariables

that are currently declared and the values assigned to them (if any).

• TermElabM gives access to various information used during elaboration.

• TacticM gives access to the list of current goals.

These monads extend each other, so a MetaM operation also has access to the

environment and a TermElabM computation can use metavariables. There are also

other monads which do not neatly fit into this hierarchy, e.g. CommandElabM extends

MetaM but neither extends nor is extended by TermElabM.

This chapter demonstrates a number of useful operations in the MetaM monad.

MetaM is of particular importance because it allows us to give meaning to every

expression: the environment (from CoreM) gives meaning to constants like Nat.zero

or List.map and the metavariable context gives meaning to both metavariables and

local hypotheses.

import Lean

open Lean Lean.Expr Lean.Meta

Metavariables

Overview

The ‘Meta’ in MetaM refers to metavariables, so we should talk about these first. Lean

users do not usually interact much with metavariables – at least not consciously –
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but they are used all over the place in metaprograms. There are two ways to view

them: as holes in an expression or as goals.

Take the goal perspective first. When we prove things in Lean, we always operate

on goals, such as

n m : Nat

⊢ n + m = m + n

These goals are internally represented by metavariables. Accordingly, each

metavariable has a local context containing hypotheses (here [n : Nat, m : Nat])

and a target type (here n + m = m + n). Metavariables also have a unique name,

say m, and we usually render them as ?m.

To close a goal, we must give an expression e of the target type. The expression

may contain fvars from the metavariable’s local context, but no others. Internally,

closing a goal in this way corresponds to assigning the metavariable; we write ?m

:= e for this assignment.

The second, complementary view of metavariables is that they represent holes in

an expression. For instance, an application of Eq.trans may generate two goals

which look like this:

n m : Nat

⊢ n = ?x

n m : Nat

⊢ ?x = m

Here ?x is another metavariable – a hole in the target types of both goals, to be

filled in later during the proof. The type of ?x is Nat and its local context is [n :

Nat, m : Nat]. Now, if we solve the first goal by reflexivity, then ?x must be n, so

we assign ?x := n. Crucially, this also affects the second goal: it is “updated” (not

really, as we will see) to have target n = m. The metavariable ?x represents the

same expression everywhere it occurs.

Tactic Communication via Metavariables

Tactics use metavariables to communicate the current goals. To see how, consider

this simple (and slightly artificial) proof:

example {α} (a : α) (f : α → α) (h : ∀ a, f a = a) : f (f a) = a := by

apply Eq.trans
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apply h

apply h

After we enter tactic mode, our ultimate goal is to generate an expression of type

f (f a) = a which may involve the hypotheses α, a, f and h. So Lean generates

a metavariable ?m1 with target f (f a) = a and a local context containing these

hypotheses. This metavariable is passed to the first apply tactic as the current

goal.

The apply tactic then tries to apply Eq.trans and succeeds, generating three new

metavariables:

...

⊢ f (f a) = ?b

...

⊢ ?b = a

...

⊢ α

Call these metavariables ?m2, ?m3 and ?b. The last one, ?b, stands for the intermedi-

ate element of the transitivity proof and occurs in ?m2 and ?m3. The local contexts

of all metavariables in this proof are the same, so we omit them.

Having created these metavariables, apply assigns

?m1 := @Eq.trans α (f (f a)) ?b a ?m2 ?m3

and reports that ?m2, ?m3 and ?b are now the current goals.

At this point the second apply tactic takes over. It receives ?m2 as the current

goal and applies h to it. This succeeds and the tactic assigns ?m2 := h (f a).

This assignment implies that ?b must be f a, so the tactic also assigns ?b := f

a. Assigned metavariables are not considered open goals, so the only goal that

remains is ?m3.

Now the third apply comes in. Since ?b has been assigned, the target of ?m3 is now

f a = a. Again, the application of h succeeds and the tactic assigns ?m3 := h a.

At this point, all metavariables are assigned as follows:

?m1 := @Eq.trans α (f (f a)) ?b a ?m2 ?m3

?m2 := h (f a)

?m3 := h a

?b := f a
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Exiting the by block, Lean constructs the final proof term by taking the assignment

of ?m1 and replacing each metavariable with its assignment. This yields

@Eq.trans α (f (f a)) (f a) a (h (f a)) (h a)

The example also shows how the two views of metavariables – as holes in an

expression or as goals – are related: the goals we get are holes in the final proof

term.

Basic Operations

Let us make these concepts concrete. When we operate in the MetaM monad, we

have read-write access to a MetavarContext structure containing information about

the currently declared metavariables. Each metavariable is identified by an MVarId

(a unique Name). To create a new metavariable, we use Lean.Meta.mkFreshExprMVar

with type

mkFreshExprMVar (type? : Option Expr) (kind := MetavarKind.natural)

(userName := Name.anonymous) : MetaM Expr

Its arguments are:

• type?: the target type of the new metavariable. If none, the target type is

Sort ?u, where ?u is a universe level metavariable. (This is a special class of

metavariables for universe levels, distinct from the expression metavariables

which we have been calling simply “metavariables”.)

• kind: the metavariable kind. See the Metavariable Kinds section (but the

default is usually correct).

• userName: the new metavariable’s user-facing name. This is what gets printed

when the metavariable appears in a goal. Unlike the MVarId, this name does

not need to be unique.

The returned Expr is always a metavariable. We can use Lean.Expr.mvarId! to

extract the MVarId, which is guaranteed to be unique. (Arguably mkFreshExprMVar

should just return the MVarId.)

The local context of the new metavariable is inherited from the current local context,

more about which in the next section. If you want to give a different local context,

use Lean.Meta.mkFreshExprMVarAt.

Metavariables are initially unassigned. To assign them, use Lean.MVarId.assign

with type
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assign (mvarId : MVarId) (val : Expr) : MetaM Unit

This updates the MetavarContext with the assignment ?mvarId := val. You must

make sure that mvarId is not assigned yet (or that the old assignment is definitionally

equal to the new assignment). You must also make sure that the assigned value,

val, has the right type. This means (a) that val must have the target type of mvarId

and (b) that val must only contain fvars from the local context of mvarId.

If you #check Lean.MVarId.assign, you will see that its real type is more gen-

eral than the one we showed above: it works in any monad that has access to a

MetavarContext. But MetaM is by far the most important such monad, so in this

chapter, we specialise the types of assign and similar functions.

To get information about a declared metavariable, use Lean.MVarId.getDecl. Given

an MVarId, this returns a MetavarDecl structure. (If no metavariable with the given

MVarId is declared, the function throws an exception.) The MetavarDecl contains

information about the metavariable, e.g. its type, local context and user-facing

name. This function has some convenient variants, such as Lean.MVarId.getType.

To get the current assignment of ametavariable (if any), use Lean.getExprMVarAssignment?.

To check whether a metavariable is assigned, use Lean.MVarId.isAssigned. How-

ever, these functions are relatively rarely used in tactic code because we usually

prefer a more powerful operation: Lean.Meta.instantiateMVars with type

instantiateMVars : Expr → MetaM Expr

Given an expression e, instantiateMVars replaces any assigned metavariable ?m in

e with its assigned value. Unassigned metavariables remain as they are.

This operation should be used liberally. When we assign a metavariable, existing

expressions containing this metavariable are not immediately updated. This is a

problem when, for example, we match on an expression to check whether it is an

equation. Without instantiateMVars, we might miss the fact that the expression ?m,

where ?m happens to be assigned to 0 = n, represents an equation. In other words,

instantiateMVars brings our expressions up to date with the current metavariable

state.

Instantiating metavariables requires a full traversal of the input expression, so

it can be somewhat expensive. But if the input expression does not contain any

metavariables, instantiateMVars is essentially free. Since this is the common case,

liberal use of instantiateMVars is fine in most situations.

Before we go on, here is a synthetic example demonstrating how the basic metavari-

able operations are used. More natural examples appear in the following sections.
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#eval show MetaM Unit from do

-- Create two fresh metavariables of type `Nat`.

let mvar1 ← mkFreshExprMVar (Expr.const ``Nat []) (userName := `mvar1)

let mvar2 ← mkFreshExprMVar (Expr.const ``Nat []) (userName := `mvar2)

-- Create a fresh metavariable of type `Nat → Nat`. The `mkArrow` function

-- creates a function type.

let mvar3 ← mkFreshExprMVar (← mkArrow (.const ``Nat []) (.const ``Nat []))

(userName := `mvar3)

-- Define a helper function that prints each metavariable.

let printMVars : MetaM Unit := do

IO.println s!" meta1: {← instantiateMVars mvar1}"

IO.println s!" meta2: {← instantiateMVars mvar2}"

IO.println s!" meta3: {← instantiateMVars mvar3}"

IO.println "Initially, all metavariables are unassigned:"

printMVars

-- Assign `mvar1 : Nat := ?mvar3 ?mvar2`.

mvar1.mvarId!.assign (.app mvar3 mvar2)

IO.println "After assigning mvar1:"

printMVars

-- Assign `mvar2 : Nat := 0`.

mvar2.mvarId!.assign (.const ``Nat.zero [])

IO.println "After assigning mvar2:"

printMVars

-- Assign `mvar3 : Nat → Nat := Nat.succ`.

mvar3.mvarId!.assign (.const ``Nat.succ [])

IO.println "After assigning mvar3:"

printMVars

-- Initially, all metavariables are unassigned:

-- meta1: ?_uniq.1

-- meta2: ?_uniq.2

-- meta3: ?_uniq.3

-- After assigning mvar1:

-- meta1: ?_uniq.3 ?_uniq.2

-- meta2: ?_uniq.2

-- meta3: ?_uniq.3

-- After assigning mvar2:

-- meta1: ?_uniq.3 Nat.zero

-- meta2: Nat.zero

-- meta3: ?_uniq.3

-- After assigning mvar3:

-- meta1: Nat.succ Nat.zero
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-- meta2: Nat.zero

-- meta3: Nat.succ

Local Contexts

Consider the expression e which refers to the free variable with unique name h:

e := .fvar (FVarId.mk `h)

What is the type of this expression? The answer depends on the local context in

which e is interpreted. One local context may declare that h is a local hypothesis of

type Nat; another local context may declare that h is a local definition with value

List.map.

Thus, expressions are only meaningful if they are interpreted in the local context

for which they were intended. And as we saw, each metavariable has its own local

context. So in principle, functions which manipulate expressions should have an

additional MVarId argument specifying the goal in which the expression should be

interpreted.

That would be cumbersome, so Lean goes a slightly different route. In MetaM, we

always have access to an ambient LocalContext, obtained with Lean.getLCtx of

type

getLCtx : MetaM LocalContext

All operations involving fvars use this ambient local context.

The downside of this setup is that we always need to update the ambient lo-

cal context to match the goal we are currently working on. To do this, we use

Lean.MVarId.withContext of type

withContext (mvarId : MVarId) (c : MetaM α) : MetaM α

This function takes a metavariable mvarId and a MetaM computation c and executes

c with the ambient context set to the local context of mvarId. A typical use case

looks like this:

def someTactic (mvarId : MVarId) ... : ... :=

mvarId.withContext do

...

The tactic receives the current goal as the metavariable mvarId and immediately

sets the current local context. Any operations within the do block then use the local

context of mvarId.
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Once we have the local context properly set, we can manipulate fvars. Like metavari-

ables, fvars are identified by an FVarId (a unique Name). Basic operations include:

• Lean.FVarId.getDecl : FVarId → MetaM LocalDecl retrieves the declaration

of a local hypothesis. As with metavariables, a LocalDecl contains all infor-

mation pertaining to the local hypothesis, e.g. its type and its user-facing

name.

• Lean.Meta.getLocalDeclFromUserName : Name → MetaM LocalDecl retrieves

the declaration of the local hypothesis with the given user-facing name. If

there are multiple such hypotheses, the bottommost one is returned. If there

is none, an exception is thrown.

We can also iterate over all hypotheses in the local context, using the ForIn instance

of LocalContext. A typical pattern is this:

for ldecl in ← getLCtx do

if ldecl.isImplementationDetail then

continue

-- do something with the ldecl

The loop iterates over every LocalDecl in the context. The isImplementationDetail

check skips local hypotheses which are ‘implementation details’, meaning they are

introduced by Lean or by tactics for bookkeeping purposes. They are not shown to

users and tactics are expected to ignore them.

At this point, we can build the MetaM part of an assumption tactic:

def myAssumption (mvarId : MVarId) : MetaM Bool := do

-- Check that `mvarId` is not already assigned.

mvarId.checkNotAssigned `myAssumption

-- Use the local context of `mvarId`.

mvarId.withContext do

-- The target is the type of `mvarId`.

let target ← mvarId.getType

-- For each hypothesis in the local context:

for ldecl in ← getLCtx do

-- If the hypothesis is an implementation detail, skip it.

if ldecl.isImplementationDetail then

continue

-- If the type of the hypothesis is definitionally equal to the target

-- type:

if ← isDefEq ldecl.type target then

-- Use the local hypothesis to prove the goal.

mvarId.assign ldecl.toExpr

-- Stop and return true.
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return true

-- If we have not found any suitable local hypothesis, return false.

return false

The myAssumption tactic contains three functions we have not seen before:

• Lean.MVarId.checkNotAssigned checks that a metavariable is not already as-

signed. The ‘myAssumption’ argument is the name of the current tactic. It is

used to generate a nicer error message.

• Lean.Meta.isDefEq checks whether two definitions are definitionally equal.

See the Definitional Equality section.

• Lean.LocalDecl.toExpr is a helper function which constructs the fvar expres-

sion corresponding to a local hypothesis.

Delayed Assignments

The above discussion of metavariable assignment contains a lie by omission: there

are actually two ways to assign a metavariable. We have seen the regular way; the

other way is called a delayed assignment.

We do not discuss delayed assignments in any detail here since they are rarely

useful for tactic writing. If you want to learn more about them, see the comments

in MetavarContext.lean in the Lean standard library. But they create two compli-

cations which you should be aware of.

First, delayed assignmentsmake Lean.MVarId.isAssigned and getExprMVarAssignment?

medium-calibre footguns. These functions only check for regular assignments, so

youmay need to use Lean.MVarId.isDelayedAssigned and Lean.Meta.getDelayedMVarAssignment?

as well.

Second, delayed assignments break an intuitive invariant. You may have assumed

that any metavariable which remains in the output of instantiateMVars is unas-

signed, since the assigned metavariables have been substituted. But delayed

metavariables can only be substituted once their assigned value contains no unas-

signed metavariables. So delayed-assigned metavariables can appear in an expres-

sion even after instantiateMVars.

Metavariable Depth

Metavariable depth is also a niche feature, but one that is occasionally useful.

Any metavariable has a depth (a natural number), and a MetavarContext has a
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corresponding depth as well. Lean only assigns a metavariable if its depth is equal

to the depth of the current MetavarContext. Newly created metavariables inherit

the MetavarContext’s depth, so by default every metavariable is assignable.

This setup can be used when a tactic needs some temporary metavariables and also

needs to make sure that other, non-temporary metavariables will not be assigned.

To ensure this, the tactic proceeds as follows:

1. Save the current MetavarContext.

2. Increase the depth of the MetavarContext.

3. Perform whatever computation is necessary, possibly creating and assigning

metavariables. Newly created metavariables are at the current depth of the

MetavarContext and so can be assigned. Old metavariables are at a lower

depth, so cannot be assigned.

4. Restore the saved MetavarContext, thereby erasing all the temporary metavari-

ables and resetting the MetavarContext depth.

This pattern is encapsulated in Lean.Meta.withNewMCtxDepth.

Computation

Computation is a core concept of dependent type theory. The terms 2, Nat.succ 1

and 1 + 1 are all “the same” in the sense that they compute the same value. We

call them definitionally equal. The problem with this, from a metaprogramming

perspective, is that definitionally equal terms may be represented by entirely differ-

ent expressions, but our users would usually expect that a tactic which works for 2

also works for 1 + 1. So when we write our tactics, we must do additional work to

ensure that definitionally equal terms are treated similarly.

Full Normalisation

The simplest thing we can do with computation is to bring a term into normal form.

With some exceptions for numeric types, the normal form of a term t of type T is

a sequence of applications of T’s constructors. E.g. the normal form of a list is a

sequence of applications of List.cons and List.nil.

The function that normalises a term (i.e. brings it into normal form) is

Lean.Meta.reduce with type signature
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reduce (e : Expr) (explicitOnly skipTypes skipProofs := true) : MetaM Expr

We can use it like this:

def someNumber : Nat := (· + 2) $ 3

#eval Expr.const ``someNumber []

-- Lean.Expr.const `someNumber []

#eval reduce (Expr.const ``someNumber [])

-- Lean.Expr.lit (Lean.Literal.natVal 5)

Incidentally, this shows that the normal form of a term of type Nat is not always an

application of the constructors of Nat; it can also be a literal. Also note that #eval

can be used not only to evaluate a term, but also to execute a MetaM program.

The optional arguments of reduce allow us to skip certain parts of an expression.

E.g. reduce e (explicitOnly := true) does not normalise any implicit arguments

in the expression e. This yields better performance: since normal forms can be very

big, it may be a good idea to skip parts of an expression that the user is not going

to see anyway.

The #reduce command is essentially an application of reduce:

#reduce someNumber

-- 5

Transparency

An ugly but important detail of Lean 4metaprogramming is that any given expression

does not have a single normal form. Rather, it has a normal form up to a given

transparency.

A transparency is a value of Lean.Meta.TransparencyMode, an enumeration

with four values: reducible, instances, default and all. Any MetaM computa-

tion has access to an ambient TransparencyMode which can be obtained with

Lean.Meta.getTransparency.

The current transparency determines which constants get unfolded during normali-

sation, e.g. by reduce. (To unfold a constant means to replace it with its definition.)

The four settings unfold progressively more constants:

• reducible: unfold only constants tagged with the @[reducible] attribute. Note

that abbrev is a shorthand for @[reducible] def.
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• instances: unfold reducible constants and constants tagged with the

@[instance] attribute. Again, the instance command is a shorthand for

@[instance] def.

• default: unfold all constants except those tagged as @[irreducible].

• all: unfold all constants, even those tagged as @[irreducible].

The ambient transparency is usually default. To execute an operation with a

specific transparency, use Lean.Meta.withTransparency. There are also shorthands

for specific transparencies, e.g. Lean.Meta.withReducible.

Putting everything together for an example (where we use Lean.Meta.ppExpr to

pretty-print an expression):

def traceConstWithTransparency (md : TransparencyMode) (c : Name) :

MetaM Format := do

ppExpr (← withTransparency md $ reduce (.const c []))

@[irreducible] def irreducibleDef : Nat := 1

def defaultDef : Nat := irreducibleDef + 1

abbrev reducibleDef : Nat := defaultDef + 1

We start with reducible transparency, which only unfolds reducibleDef:

#eval traceConstWithTransparency .reducible ``reducibleDef

-- defaultDef + 1

If we repeat the above command but let Lean print implicit arguments as well, we

can see that the + notation amounts to an application of the hAdd function, which is

a member of the HAdd typeclass:

set_option pp.explicit true in

#eval traceConstWithTransparency .reducible ``reducibleDef

-- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) defaultDef 1

When we reduce with instances transparency, this applications is unfolded and

replaced by Nat.add:

#eval traceConstWithTransparency .instances ``reducibleDef

-- Nat.add defaultDef 1

With default transparency, Nat.add is unfolded as well:

#eval traceConstWithTransparency .default ``reducibleDef

-- Nat.succ (Nat.succ irreducibleDef)

And with TransparencyMode.all, we’re finally able to unfold irreducibleDef:
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#eval traceConstWithTransparency .all ``reducibleDef

-- 3

The #eval commands illustrate that the same term, reducibleDef, can have a

different normal form for each transparency.

Why all this ceremony? Essentially for performance: if we allowed normalisation

to always unfold every constant, operations such as type class search would be-

come prohibitively expensive. The tradeoff is that we must choose the appropriate

transparency for each operation that involves normalisation.

Weak Head Normalisation

Transparency addresses some of the performance issues with normalisation. But

even more important is to recognise that for many purposes, we don’t need to fully

normalise terms at all. Suppose we are building a tactic that automatically splits

hypotheses of the type P ∧ Q. We might want this tactic to recognise a hypothesis h

: X if X reduces to P ∧ Q. But if P additionally reduces to Y ∨ Z, the specific Y and Z

do not concern us. Reducing P would be unnecessary work.

This situation is so common that the fully normalising reduce is in fact rarely used.

Instead, the normalisation workhorse of Lean is whnf, which reduces an expression

to weak head normal form (WHNF).

Roughly speaking, an expression e is in weak-head normal form when it has the

form

e = f x₁ ... xₙ (n ≥ 0)

and f cannot be reduced (at the current transparency). To conveniently check the

WHNF of an expression, we define a function whnf', using some functions that will

be discussed in the Elaboration chapter.

open Lean.Elab.Term in

def whnf' (e : TermElabM Syntax) : TermElabM Format := do

let e ← elabTermAndSynthesize (← e) none

ppExpr (← whnf e)

Now, here are some examples of expressions in WHNF.

Constructor applications are in WHNF (with some exceptions for numeric types):

#eval whnf' `(List.cons 1 [])

-- [1]
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The arguments of an application in WHNFmay or may not be in WHNF themselves:

#eval whnf' `(List.cons (1 + 1) [])

-- [1 + 1]

Applications of constants are in WHNF if the current transparency does not allow

us to unfold the constants:

#eval withTransparency .reducible $ whnf' `(List.append [1] [2])

-- List.append [1] [2]

Lambdas are in WHNF:

#eval whnf' `(λ x : Nat => x)

-- fun x => x

Foralls are in WHNF:

#eval whnf' `(∀ x, x > 0)

-- ∀ (x : Nat), x > 0

Sorts are in WHNF:

#eval whnf' `(Type 3)

-- Type 3

Literals are in WHNF:

#eval whnf' `((15 : Nat))

-- 15

Here are some more expressions in WHNF which are a bit tricky to test:

?x 0 1 -- Assuming the metavariable `?x` is unassigned, it is in WHNF.

h 0 1 -- Assuming `h` is a local hypothesis, it is in WHNF.

On the flipside, here are some expressions that are not in WHNF.

Applications of constants are not in WHNF if the current transparency allows us to

unfold the constants:

#eval whnf' `(List.append [1])

-- fun x => 1 :: List.append [] x

Applications of lambdas are not in WHNF:

#eval whnf' `((λ x y : Nat => x + y) 1)

-- `fun y => 1 + y`

let bindings are not in WHNF:
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#eval whnf' `(let x : Nat := 1; x)

-- 1

And again some tricky examples:

?x 0 1 -- Assuming `?x` is assigned (e.g. to `Nat.add`), its application is not

in WHNF.

h 0 1 -- Assuming `h` is a local definition (e.g. with value `Nat.add`), its

application is not in WHNF.

Returning to the tactic that motivated this section, let us write a function that

matches a type of the form P ∧ Q, avoiding extra computation. WHNF makes it

easy:

def matchAndReducing (e : Expr) : MetaM (Option (Expr × Expr)) := do

match ← whnf e with

| (.app (.app (.const ``And _) P) Q) => return some (P, Q)

| _ => return none

By using whnf, we ensure that if e evaluates to something of the form P ∧ Q, we’ll

notice. But at the same time, we don’t perform any unnecessary computation in P

or Q.

However, our ‘no unnecessary computation’ mantra also means that if we want to

perform deeper matching on an expression, we need to use whnf multiple times.

Suppose we want to match a type of the form P ∧ Q ∧ R. The correct way to do this

uses whnf twice:

def matchAndReducing₂ (e : Expr) : MetaM (Option (Expr × Expr × Expr)) := do

match ← whnf e with

| (.app (.app (.const ``And _) P) e') =>

match ← whnf e' with

| (.app (.app (.const ``And _) Q) R) => return some (P, Q, R)

| _ => return none

| _ => return none

This sort of deepmatching up to computation could be automated. But until someone

builds this automation, we have to figure out the necessary whnfs ourselves.

Definitional Equality

As mentioned, definitional equality is equality up to computation. Two expressions t

and s are definitionally equal or defeq (at the current transparency) if their normal

forms (at the current transparency) are equal.
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To check whether two expressions are defeq, use Lean.Meta.isDefEq with type

signature

isDefEq : Expr → Expr → MetaM Bool

Even though definitional equality is defined in terms of normal forms, isDefEq

does not actually compute the normal forms of its arguments, which would be very

expensive. Instead, it tries to “match up” t and s using as few reductions as possible.

This is a necessarily heuristic endeavour and when the heuristics misfire, isDefEq

can become very expensive. In the worst case, it may have to reduce s and t so

often that they end up in normal form anyway. But usually the heuristics are good

and isDefEq is reasonably fast.

If expressions t and u contain assignable metavariables, isDefEq may assign these

metavariables to make t defeq to u. We also say that isDefEq unifies t and u; such

unification queries are sometimes written t =?= u. For instance, the unification

List ?m =?= List Nat succeeds and assigns ?m := Nat. The unification Nat.succ

?m =?= n + 1 succeeds and assigns ?m := n. The unification ?m₁ + ?m₂ + ?m₃ =?=

m + n - k fails and no metavariables are assigned (even though there is a ‘partial

match’ between the expressions).

Whether isDefEq considers a metavariable assignable is determined by two fac-

tors:

1. The metavariable’s depth must be equal to the current MetavarContext depth.

See the Metavariable Depth section.

2. Each metavariable has a kind (a value of type MetavarKind) whose sole purpose

is to modify the behaviour of isDefEq. Possible kinds are:

• Natural: isDefEq may freely assign the metavariable. This is the default.

• Synthetic: isDefEq may assign the metavariable, but avoids doing so if

possible. For example, suppose ?n is a natural metavariable and ?s is a

synthetic metavariable. When faced with the unification problem ?s =?=

?n, isDefEq assigns ?n rather than ?s.

• Synthetic opaque: isDefEq never assigns the metavariable.

Constructing Expressions

In the previous chapter, we saw some primitive functions for building expressions:

Expr.app, Expr.const, mkAppN and so on. There is nothing wrong with these func-

tions, but the additional facilities of MetaM often provide more convenient ways.
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Applications

When we write regular Lean code, Lean helpfully infers many implicit arguments

and universe levels. If it did not, our code would look rather ugly:

def appendAppend (xs ys : List α) := (xs.append ys).append xs

set_option pp.all true in

set_option pp.explicit true in

#print appendAppend

-- def appendAppend.{u_1} : {α : Type u_1} → List.{u_1} α → List.{u_1} α → List.{u_1} α

:=↪

-- fun {α : Type u_1} (xs ys : List.{u_1} α) => @List.append.{u_1} α (@List.append.{u_1}

α xs ys) xs↪

The .{u_1} suffixes are universe levels, which must be given for every polymorphic

constant. And of course the type α is passed around everywhere.

Exactly the same problem occurs during metaprogramming when we construct

expressions. A hand-made expression representing the right-hand side of the above

definition looks like this:

def appendAppendRHSExpr₁ (u : Level) (α xs ys : Expr) : Expr :=

mkAppN (.const ``List.append [u])

#[α, mkAppN (.const ``List.append [u]) #[α, xs, ys], xs]

Having to specify the implicit arguments and universe levels is annoying and

error-prone. So MetaM provides a helper function which allows us to omit implicit

information: Lean.Meta.mkAppM of type

mkAppM : Name → Array Expr → MetaM Expr

Like mkAppN, mkAppM constructs an application. But while mkAppN requires us to

give all universe levels and implicit arguments ourselves, mkAppM infers them. This

means we only need to provide the explicit arguments, which makes for a much

shorter example:

def appendAppendRHSExpr₂ (xs ys : Expr) : MetaM Expr := do

mkAppM ``List.append #[← mkAppM ``List.append #[xs, ys], xs]

Note the absence of any αs and us. There is also a variant of mkAppM, mkAppM', which

takes an Expr instead of a Name as the first argument, allowing us to construct

applications of expressions which are not constants.

However, mkAppM is not magic: if you write mkAppM ``List.append #[], you will get

an error at runtime. This is because mkAppM tries to determine what the type α is,

but with no arguments given to append, α could be anything, so mkAppM fails.
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Another occasionally useful variant of mkAppM is Lean.Meta.mkAppOptM of type

mkAppOptM : Name → Array (Option Expr) → MetaM Expr

Whereas mkAppM always infers implicit and instance arguments and always requires

us to give explicit arguments, mkAppOptM lets us choose freely which arguments to

provide and which to infer. With this, we can, for example, give instances explicitly,

which we use in the following example to give a non-standard Ord instance.

def revOrd : Ord Nat where

compare x y := compare y x

def ordExpr : MetaM Expr := do

mkAppOptM ``compare #[none, Expr.const ``revOrd [], mkNatLit 0, mkNatLit 1]

#eval format <$> ordExpr

-- Ord.compare.{0} Nat revOrd

-- (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))

-- (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))

Like mkAppM, mkAppOptM has a primed variant Lean.Meta.mkAppOptM' which takes an

Expr instead of a Name as the first argument. The file which contains mkAppM also

contains various other helper functions, e.g. for making list literals or sorrys.

Lambdas and Foralls

Another common task is to construct expressions involving λ or ∀ binders. Suppose

we want to create the expression λ (x : Nat), Nat.add x x. One way is to write

out the lambda directly:

def doubleExpr₁ : Expr :=

.lam `x (.const ``Nat []) (mkAppN (.const ``Nat.add []) #[.bvar 0, .bvar 0])

BinderInfo.default

#eval ppExpr doubleExpr₁

-- fun x => Nat.add x x

This works, but the use of bvar is highly unidiomatic. Lean uses a so-called locally

closed variable representation. This means that all but the lowest-level functions in

the Lean API expect expressions not to contain ‘loose bvars’, where a bvar is loose if

it is not bound by a binder in the same expression. (Outside of Lean, such variables

are usually called ‘free’. The name bvar – ‘bound variable’ – already indicates that

bvars are never supposed to be free.)
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As a result, if in the above example we replace mkAppN with the slightly higher-level

mkAppM, we get a runtime error. Adhering to the locally closed convention, mkAppM

expects any expressions given to it to have no loose bound variables, and .bvar 0

is precisely that.

So instead of using bvars directly, the Lean way is to construct expressions with

bound variables in two steps:

1. Construct the body of the expression (in our example: the body of the lambda),

using temporary local hypotheses (fvars) to stand in for the bound variables.

2. Replace these fvars with bvars and, at the same time, add the corresponding

lambda binders.

This process ensures that we do not need to handle expressions with loose bvars

at any point (except during step 2, which is performed ‘atomically’ by a bespoke

function). Applying the process to our example:

def doubleExpr₂ : MetaM Expr :=

withLocalDecl `x BinderInfo.default (.const ``Nat []) λ x => do

let body ← mkAppM ``Nat.add #[x, x]

mkLambdaFVars #[x] body

#eval show MetaM _ from do

ppExpr (← doubleExpr₂)

-- fun x => Nat.add x x

There are two new functions. First, Lean.Meta.withLocalDecl has type

withLocalDecl (name : Name) (bi : BinderInfo) (type : Expr) (k : Expr → MetaM α) : MetaM

α↪

Given a variable name, binder info and type, withLocalDecl constructs a new fvar

and passes it to the computation k. The fvar is available in the local context during

the execution of k but is deleted again afterwards.

The second new function is Lean.Meta.mkLambdaFVars with type (ignoring some

optional arguments)

mkLambdaFVars : Array Expr → Expr → MetaM Expr

This function takes an array of fvars and an expression e. It then adds one lambda

binder for each fvar x and replaces every occurrence of x in e with a bound vari-

able corresponding to the new lambda binder. The returned expression does not

contain the fvars any more, which is good since they disappear after we leave the

withLocalDecl context. (Instead of fvars, we can also give mvars to mkLambdaFVars,

despite its name.)
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Some variants of the above functions may be useful:

• withLocalDecls declares multiple temporary fvars.

• mkForallFVars creates ∀ binders instead of λ binders. mkLetFVars creates let

binders.

• mkArrow is the non-dependent version of mkForallFVars which construcs a

function type X → Y. Since the type is non-dependent, there is no need for

temporary fvars.

Using all these functions, we can construct larger expressions such as this one:

λ (f : Nat → Nat), ∀ (n : Nat), f n = f (n + 1)

def somePropExpr : MetaM Expr := do

let funcType ← mkArrow (.const ``Nat []) (.const ``Nat [])

withLocalDecl `f BinderInfo.default funcType fun f => do

let feqn ← withLocalDecl `n BinderInfo.default (.const ``Nat []) fun n => do

let lhs := .app f n

let rhs := .app f (← mkAppM ``Nat.succ #[n])

let eqn ← mkEq lhs rhs

mkForallFVars #[n] eqn

mkLambdaFVars #[f] feqn

The next line registers someProp as a name for the expression we’ve just constructed,

allowing us to play with it more easily. The mechanisms behind this are discussed

in the Elaboration chapter.

elab "someProp" : term => somePropExpr

#check someProp

-- fun f => ∀ (n : Nat), f n = f (Nat.succ n) : (Nat → Nat) → Prop

#reduce someProp Nat.succ

-- ∀ (n : Nat), Nat.succ n = Nat.succ (Nat.succ n)

Deconstructing Expressions

Just like we can construct expressions more easily in MetaM, we can also deconstruct

them more easily. Particularly useful is a family of functions for deconstructing

expressions which start with λ and ∀ binders.

When we are given a type of the form ∀ (x₁ : T₁) ... (xₙ : Tₙ), U, we are often

interested in doing something with the conclusion U. For instance, the apply tactic,

when given an expression e : ∀ ..., U, compares U with the current target to

determine whether e can be applied.
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To do this, we could repeatedly match on the type expression, removing ∀ binders

until we get to U. But this would leave us with an U containing unbound bvars, which,

as we saw, is bad. Instead, we use Lean.Meta.forallTelescope of type

forallTelescope (type : Expr) (k : Array Expr → Expr → MetaM α) : MetaM α

Given type = ∀ (x₁ : T₁) ... (xₙ : Tₙ), U x₁ ... xₙ, this function creates one

fvar fᵢ for each ∀-bound variable xᵢ and replaces each xᵢ with fᵢ in the conclusion

U. It then calls the computation k, passing it the fᵢ and the conclusion U f₁ ... fₙ.

Within this computation, the fᵢ are registered in the local context; afterwards, they

are deleted again (similar to withLocalDecl).

There are many useful variants of forallTelescope:

• forallTelescopeReducing: like forallTelescope but matching is performed

up to computation. This means that if you have an expression X which is differ-

ent from but defeq to ∀ x, P x, forallTelescopeReducing X will deconstruct

X into x and P x. The non-reducing forallTelescope would not recognise X as

a quantified expression. The matching is performed by essentially calling whnf

repeatedly, using the ambient transparency.

• forallBoundedTelescope: like forallTelescopeReducing (even though there

is no “reducing” in the name) but stops after a specified number of ∀ binders.

• forallMetaTelescope, forallMetaTelescopeReducing, forallMetaBoundedTelescope:

like the corresponding non-meta functions, but the bound variables are re-

placed by new mvars instead of fvars. Unlike the non-meta functions, the

meta functions do not delete the new metavariables after performing some

computation, so the metavariables remain in the environment indefinitely.

• lambdaTelescope, lambdaTelescopeReducing, lambdaBoundedTelescope,

lambdaMetaTelescope: like the corresponding forall functions, but for λ

binders instead of ∀.

Using one of the telescope functions, we can implement our own apply tactic:

def myApply (goal : MVarId) (e : Expr) : MetaM (List MVarId) := do

-- Check that the goal is not yet assigned.

goal.checkNotAssigned `myApply

-- Operate in the local context of the goal.

goal.withContext do

-- Get the goal's target type.

let target ← goal.getType

-- Get the type of the given expression.

let type ← inferType e

-- If `type` has the form `∀ (x₁ : T₁) ... (xₙ : Tₙ), U`, introduce new
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-- metavariables for the `xᵢ` and obtain the conclusion `U`. (If `type` does

-- not have this form, `args` is empty and `conclusion = type`.)

let (args, _, conclusion) ← forallMetaTelescopeReducing type

-- If the conclusion unifies with the target:

if ← isDefEq target conclusion then

-- Assign the goal to `e x₁ ... xₙ`, where the `xᵢ` are the fresh

-- metavariables in `args`.

goal.assign (mkAppN e args)

-- `isDefEq` may have assigned some of the `args`. Report the rest as new

-- goals.

let newGoals ← args.filterMapM λ mvar => do

let mvarId := mvar.mvarId!

if ! (← mvarId.isAssigned) && ! (← mvarId.isDelayedAssigned) then

return some mvarId

else

return none

return newGoals.toList

-- If the conclusion does not unify with the target, throw an error.

else

throwTacticEx `myApply goal m!"{e} is not applicable to goal with target {target}"

The real apply does some additional pre- and postprocessing, but the core logic is

what we show here. To test our tactic, we need an elaboration incantation, more

about which in the Elaboration chapter.

elab "myApply" e:term : tactic => do

let e ← Elab.Term.elabTerm e none

Elab.Tactic.liftMetaTactic (myApply · e)

example (h : α → β) (a : α) : β := by

myApply h

myApply a

Backtracking

Many tactics naturally require backtracking: the ability to go back to a previous

state, as if the tactic had never been executed. A few examples:

• first | t | u first executes t. If t fails, it backtracks and executes u.

• try t executes t. If t fails, it backtracks to the initial state, erasing any

changes made by t.

• trivial attempts to solve the goal using a number of simple tactics (e.g. rfl or

contradiction). After each unsuccessful application of such a tactic, trivial
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backtracks.

Good thing, then, that Lean’s core data structures are designed to enable

easy and efficient backtracking. The corresponding API is provided by the

Lean.MonadBacktrack class. MetaM, TermElabM and TacticM are all instances of this

class. (CoreM is not but could be.)

MonadBacktrack provides two fundamental operations:

• Lean.saveState : m s returns a representation of the current state, where m

is the monad we are in and s is the state type. E.g. for MetaM, saveState re-

turns a Lean.Meta.SavedState containing the current environment, the current

MetavarContext and various other pieces of information.

• Lean.restoreState : s → m Unit takes a previously saved state and restores

it. This effectively resets the compiler state to the previous point.

With this, we can roll our own MetaM version of the try tactic:

def tryM (x : MetaM Unit) : MetaM Unit := do

let s ← saveState

try

x

catch _ =>

restoreState s

We first save the state, then execute x. If x fails, we backtrack the state.

The standard library defines many combinators like tryM. Here are the most useful

ones:

• Lean.withoutModifyingState (x : m α) : m α executes the action x, then re-

sets the state and returns x’s result. You can use this, for example, to check

for definitional equality without assigning metavariables:

withoutModifyingState $ isDefEq x y

If isDefEq succeeds, it may assign metavariables in x and y. Using

withoutModifyingState, we can make sure this does not happen.

• Lean.observing? (x : m α) : m (Option α) executes the action x. If x

succeeds, observing? returns its result. If x fails (throws an exception),

observing? backtracks the state and returns none. This is a more informative

version of our tryM combinator.
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• Lean.commitIfNoEx (x : m α) : m α executes x. If x succeeds, commitIfNoEx

returns its result. If x throws an exception, commitIfNoEx backtracks the state

and rethrows the exception.

Note that the builtin try ... catch ... finally does not perform any backtrack-

ing. So code which looks like this is probably wrong:

try

doSomething

catch e =>

doSomethingElse

The catch branch, doSomethingElse, is executed in a state containing whatever

modifications doSomething made before it failed. Since we probably want to erase

these modifications, we should write instead:

try

commitIfNoEx doSomething

catch e =>

doSomethingElse

Another MonadBacktrack gotcha is that restoreState does not backtrack the entire

state. Caches, trace messages and the global name generator, among other things,

are not backtracked, so changes made to these parts of the state are not reset by

restoreState. This is usually what we want: if a tactic executed by observing?

produces some trace messages, we want to see them even if the tactic fails. See

Lean.Meta.SavedState.restore and Lean.Core.restore for details on what is and

is not backtracked.

In the next chapter, we move towards the topic of elaboration, of which you’ve

already seen several glimpses in this chapter. We start by discussing Lean’s syntax

system, which allows you to add custom syntactic constructs to the Lean parser.

Exercises

1. [Metavariables] Create a metavariable with type Nat, and assign to it value 3.

Notice that changing the type of the metavariable from Nat to, for example,

String, doesn’t raise any errors - that’s why, as was mentioned, we must make

sure “(a) that val must have the target type of mvarId and (b) that val must

only contain fvars from the local context of mvarId”.
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2. [Metavariables] What would instantiateMVars (Lean.mkAppN (Expr.const

'Nat.add []) #[mkNatLit 1, mkNatLit 2]) output?

3. [Metavariables] Fill in the missing lines in the following code.

#eval show MetaM Unit from do

let oneExpr := Expr.app (Expr.const `Nat.succ []) (Expr.const ``Nat.zero [])

let twoExpr := Expr.app (Expr.const `Nat.succ []) oneExpr

-- Create `mvar1` with type `Nat`

-- let mvar1 ← ...

-- Create `mvar2` with type `Nat`

-- let mvar2 ← ...

-- Create `mvar3` with type `Nat`

-- let mvar3 ← ...

-- Assign `mvar1` to `2 + ?mvar2 + ?mvar3`

-- ...

-- Assign `mvar3` to `1`

-- ...

-- Instantiate `mvar1`, which should result in expression `2 + ?mvar2 + 1`

...

4. [Metavariables] Consider the theorem red, and tactic explore below. a)What

would be the type and userName of metavariable mvarId? b) What would be

the types and userNames of all local declarations in this metavariable’s local

context? Print them all out.

elab "explore" : tactic => do

let mvarId : MVarId ← Lean.Elab.Tactic.getMainGoal

let metavarDecl : MetavarDecl ← mvarId.getDecl

IO.println "Our metavariable"

-- ...

IO.println "All of its local declarations"

-- ...

theorem red (hA : 1 = 1) (hB : 2 = 2) : 2 = 2 := by

explore

sorry

5. [Metavariables] Write a tactic solve that proves the theorem red.

6. [Computation] What is the normal form of the following expressions: a) fun
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x => x of type Bool → Bool b) (fun x => x) ((true && false) || true) of

type Bool c) 800 + 2 of type Nat

7. [Computation] Show that 1 created with Expr.lit (Lean.Literal.natVal 1)

is definitionally equal to an expression created with Expr.app (Expr.const

``Nat.succ []) (Expr.const ``Nat.zero []).

8. [Computation] Determine whether the following expressions are definitionally

equal. If Lean.Meta.isDefEq succeeds, and it leads to metavariable assignment,

write down the assignments. a) 5 =?= (fun x => 5) ((fun y : Nat → Nat

=> y) (fun z : Nat => z)) b) 2 + 1 =?= 1 + 2 c) ?a =?= 2, where ?a has a

type String d) ?a + Int =?= "hi" + ?b, where ?a and ?b don’t have a type e)

2 + ?a =?= 3 f) 2 + ?a =?= 2 + 1

9. [Computation] Write down what you expect the following code to output.

@[reducible] def reducibleDef : Nat := 1 -- same as `abbrev`

@[instance] def instanceDef : Nat := 2 -- same as `instance`

def defaultDef : Nat := 3

@[irreducible] def irreducibleDef : Nat := 4

@[reducible] def sum := [reducibleDef, instanceDef, defaultDef, irreducibleDef]

#eval show MetaM Unit from do

let constantExpr := Expr.const `sum []

Meta.withTransparency Meta.TransparencyMode.reducible do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- ...

Meta.withTransparency Meta.TransparencyMode.instances do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- ...

Meta.withTransparency Meta.TransparencyMode.default do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- ...

Meta.withTransparency Meta.TransparencyMode.all do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- ...

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- ...

10. [Constructing Expressions] Create expression fun x => 1 + x in two ways:
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a) not idiomatically, with loose bound variables b) idiomatically. In what version

can you use Lean.mkAppN? In what version can you use Lean.Meta.mkAppM?

11. [Constructing Expressions] Create expression ∀ (yellow: Nat), yellow.

12. [Constructing Expressions] Create expression ∀ (n : Nat), n = n + 1 in

two ways: a) not idiomatically, with loose bound variables b) idiomatically.

In what version can you use Lean.mkApp3? In what version can you use

Lean.Meta.mkEq?

13. [Constructing Expressions] Create expression fun (f : Nat → Nat), ∀ (n

: Nat), f n = f (n + 1) idiomatically.

14. [Constructing Expressions] What would you expect the output of the follow-

ing code to be?

#eval show Lean.Elab.Term.TermElabM _ from do

let stx : Syntax ← `(∀ (a : Prop) (b : Prop), a ∨ b → b → a ∧ a)

let expr ← Elab.Term.elabTermAndSynthesize stx none

let (_, _, conclusion) ← forallMetaTelescope expr

dbg_trace conclusion -- ...

let (_, _, conclusion) ← forallMetaBoundedTelescope expr 2

dbg_trace conclusion -- ...

let (_, _, conclusion) ← lambdaMetaTelescope expr

dbg_trace conclusion -- ...

15. [Backtracking] Check that the expressions ?a + Int and "hi" + ?b are defini-

tionally equal with isDefEq (make sure to use the proper types or Option.none

for the types of your metavariables!). Use saveState and restoreState to

revert metavariable assignments.
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Syntax

This chapter is concerned with the means to declare and operate on syntax in Lean.

Since there are a multitude of ways to operate on it, we will not go into great detail

about this yet and postpone quite a bit of this to later chapters.

Declaring Syntax

Declaration helpers

Some readers might be familiar with the infix or even the notation commands,

for those that are not here is a brief recap:

import Lean

-- XOR, denoted \oplus

infixl:60 " ⊕ " => fun l r => (!l && r) || (l && !r)

#eval true ⊕ true -- false

#eval true ⊕ false -- true

#eval false ⊕ true -- true

#eval false ⊕ false -- false

-- with `notation`, "left XOR"

notation:10 l:10 " LXOR " r:11 => (!l && r)

#eval true LXOR true -- false

#eval true LXOR false -- false

#eval false LXOR true -- true

#eval false LXOR false -- false

As we can see the infixl command allows us to declare a notation for a binary

operation that is infix, meaning that the operator is in between the operands (as

opposed to e.g. before which would be done using the prefix command). The l

at the end of infixl means that the notation is left associative so a ⊕ b ⊕ c gets

parsed as (a ⊕ b) ⊕ c as opposed to a ⊕ (b ⊕ c) (which would be achieved by
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infixr). On the right hand side, it expects a function that operates on these two

parameters and returns some value. The notation command, on the other hand,

allows us some more freedom: we can just “mention” the parameters right in the

syntax definition and operate on them on the right hand side. It gets even better

though, we can in theory create syntax with 0 up to as many parameters as we

wish using the notation command, it is hence also often referred to as “mixfix”

notation.

The two unintuitive parts about these two are: - The fact that we are leaving spaces

around our operators: ” ⊕ “,” LXOR “. This is so that, when Lean pretty prints

our syntax later on, it also uses spaces around the operators, otherwise the syntax

would just be presented as l⊕r as opposed to l ⊕ r. - The 60 and 10 right after the

respective commands – these denote the operator precedence, meaning how strong

they bind to their arguments, let’s see this in action:

#eval true ⊕ false LXOR false -- false

#eval (true ⊕ false) LXOR false -- false

#eval true ⊕ (false LXOR false) -- true

As we can see, the Lean interpreter analyzed the first term without parentheses

like the second instead of the third one. This is because the ⊕ notation has higher

precedence than LXOR (60 > 10 after all) and is thus evaluated before it. This is

also how you might implement rules like * being evaluated before +.

Lastly at the notation example there are also these :precedence bindings at the

arguments: l:10 and r:11. This conveys that the left argument must have prece-

dence at least 10 or greater, and the right argument must have precedence at 11

or greater. The way the arguments are assigned their respective precedence is by

looking at the precedence of the rule that was used to parse them. Consider for

example a LXOR b LXOR c. Theoretically speaking this could be parsed in two ways:

1. (a LXOR b) LXOR c 2. a LXOR (b LXOR c)

Since the arguments in parentheses are parsed by the LXOR rule with precedence

10 they will appear as arguments with precedence 10 to the outer LXOR rule: 1. (a

LXOR b):10 LXOR c 2. a LXOR (b LXOR c):10

However if we check the definition of LXOR: notation:10 l:10 " LXOR " r:11 we

can see that the right hand side argument requires a precedence of at least 11 or

greater, thus the second parse is invalid and we remain with: (a LXOR b) LXOR c

assuming that: - a has precedence 10 or higher - b has precedence 11 or higher - c

has precedence 11 or higher

Thus LXOR is a left associative notation. Can you make it right associative?
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NOTE: If parameters of a notation are not explicitly given a precedence they will

implicitly be tagged with precedence 0.

As a last remark for this section: Lean will always attempt to obtain the longest

matching parse possible, this has three important implications. First a very intuitive

one, if we have a right associative operator ^ and Lean sees something like a ^

b ^ c, it will first parse the a ^ b and then attempt to keep parsing (as long as

precedence allows it) until it cannot continue anymore. Hence Lean will parse this

expression as a ^ (b ^ c) (as we would expect it to).

Secondly, if we have a notation where precedence does not allow to figure out how

the expression should be parenthesized, for example:

notation:65 lhs:65 " ~ " rhs:65 => (lhs - rhs)

An expression like a ~ b ~ c will be parsed as a ~ (b ~ c) because Lean attempts

to find the longest parse possible. As a general rule of thumb: If precedence is

ambiguous Lean will default to right associativity.

#eval 5 ~ 3 ~ 3 -- 5 because this is parsed as 5 - (3 - 3)

Lastly, if we define overlapping notation such as:

-- define `a ~ b mod rel` to mean that a and b are equivalent with respect to some

equivalence relation rel↪

notation:65 a:65 " ~ " b:65 " mod " rel:65 => rel a b

Lean will prefer this notation over parsing a ~ b as defined above and then erroring

because it doesn’t know what to do with mod and the relation argument:

#check 0 ~ 0 mod Eq -- 0 = 0 : Prop

This is again because it is looking for the longest possible parser which in this case

involves also consuming mod and the relation argument.

Free form syntax declarations

With the above infix and notation commands, you can get quite far with declaring

ordinary mathematical syntax already. Lean does however allow you to introduce

arbitrarily complex syntax as well. This is done using two main commands syntax

and declare_syntax_cat. A syntax command allows you add a new syntax rule to an

already existing so-called “syntax category”. The most common syntax categories

are: - term, this category will be discussed in detail in the elaboration chapter, for
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now you can think of it as “the syntax of everything that has a value” - command, this

is the category for top-level commands like #check, def etc. - TODO: …

Let’s see this in action:

syntax "MyTerm" : term

We can now write MyTerm in place of things like 1 + 1 and it will be syntactically

valid, this does not mean the code will compile yet, it just means that the Lean

parser can understand it:

#check_failure MyTerm

-- elaboration function for 'termMyTerm' has not been implemented

-- MyTerm

Note: #check_failure command allows incorrectly typed terms to be indicated

without error.

Implementing this so-called “elaboration function”, which will actually give meaning

to this syntax in terms of Lean’s fundamental Expr type, is topic of the elaboration

chapter.

The notation and infix commands are utilities that conveniently bundle syntax

declaration with macro definition (for more on macros, see the macro chapter),

where the contents left of the => declare the syntax. All the previously mentioned

principles from notation and infix regarding precedence fully apply to syntax as

well.

We can, of course, also involve other syntax into our own declarations in order to

build up syntax trees. For example, we could try to build our own little boolean

expression language:

namespace Playground2

-- The scoped modifier makes sure the syntax declarations remain in this `namespace`

-- because we will keep modifying this along the chapter

scoped syntax "⊥" : term -- ⊥ for false

scoped syntax "⊤" : term -- ⊤ for true

scoped syntax:40 term " OR " term : term

scoped syntax:50 term " AND " term : term

#check_failure ⊥ OR (⊤ AND ⊥) -- elaboration function hasn't been implemented but

parsing passes↪

end Playground2

While this does work, it allows arbitrary terms to the left and right of our AND and

OR operation. If we want to write a mini language that only accepts our boolean
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language on a syntax level we will have to declare our own syntax category on top.

This is done using the declare_syntax_cat command:

declare_syntax_cat boolean_expr

syntax "⊥" : boolean_expr -- ⊥ for false

syntax "⊤" : boolean_expr -- ⊤ for true

syntax:40 boolean_expr " OR " boolean_expr : boolean_expr

syntax:50 boolean_expr " AND " boolean_expr : boolean_expr

Now that we are working in our own syntax category, we are completely discon-

nected from the rest of the system. And these cannot be used in place of terms

anymore:

#check ⊥ AND ⊤ -- expected term

In order to integrate our syntax category into the rest of the system we will have to

extend an already existing one with new syntax, in this case we will re-embed it

into the term category:

syntax "[Bool|" boolean_expr "]" : term

#check_failure [Bool| ⊥ AND ⊤] -- elaboration function hasn't been implemented but

parsing passes↪

Syntax combinators

In order to declare more complex syntax, it is often very desirable to have some

basic operations on syntax already built-in, these include:

• helper parsers without syntax categories (i.e. not extendable)

• alternatives

• repetitive parts

• optional parts

While all of these do have an encoding based on syntax categories, this can make

things quite ugly at times, so Lean provides an easier way to do all of these.

In order to see all of these in action, we will briefly define a simple binary expression

syntax. First things first, declaring named parsers that don’t belong to a syntax

category is quite similar to ordinary defs:

syntax binOne := "O"

syntax binZero := "Z"

These named parsers can be used in the same positions as syntax categories from

above, their only difference to them is, that they are not extensible. That is, they are
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directly expanded within syntax declarations, and we cannot define new patterns

for them as we would with proper syntax categories. There does also exist a number

of built-in named parsers that are generally useful, most notably: - str for string

literals - num for number literals - ident for identifiers - … TODO: better list or link

to compiler docs

Next up we want to declare a parser that understands digits, a binary digit is either

0 or 1 so we can write:

syntax binDigit := binZero <|> binOne

Where the <|> operator implements the “accept the left or the right” behaviour.

We can also chain them to achieve parsers that accept arbitrarily many, arbitrarily

complex other ones. Now we will define the concept of a binary number, usually

this would be written as digits directly after each other but we will instead use

comma separated ones to showcase the repetition feature:

-- the "+" denotes "one or many", in order to achieve "zero or many" use "*" instead

-- the "," denotes the separator between the `binDigit`s, if left out the default

separator is a space↪

syntax binNumber := binDigit,+

Since we can just use named parsers in place of syntax categories, we can now

easily add this to the term category:

syntax "bin(" binNumber ")" : term

#check bin(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing

passes↪

#check bin() -- fails to parse because `binNumber` is "one or many": expected 'O' or 'Z'

syntax binNumber' := binDigit,* -- note the *

syntax "emptyBin(" binNumber' ")" : term

#check_failure emptyBin() -- elaboration function hasn't been implemented but parsing

passes↪

Note that nothing is limiting us to only using one syntax combinator per parser, we

could also have written all of this inline:

syntax "binCompact(" ("Z" <|> "O"),+ ")" : term

#check_failure binCompact(Z, O, Z, Z, O) -- elaboration function hasn't been implemented

but parsing passes↪

As a final feature, let’s add an optional string comment that explains the binary

literal being declared:

-- The (...)? syntax means that the part in parentheses is optional

syntax "binDoc(" (str ";")? binNumber ")" : term
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#check_failure binDoc(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but

parsing passes↪

#check_failure binDoc("mycomment"; Z, O, Z, Z, O) -- elaboration function hasn't been

implemented but parsing passes↪

Operating on Syntax

As explained above, we will not go into detail in this chapter on how to teach Lean

about the meaning you want to give your syntax. We will, however, take a look

at how to write functions that operate on it. Like all things in Lean, syntax is

represented by the inductive type Lean.Syntax, on which we can operate. It does

contain quite some information, but most of what we are interested in, we can

condense in the following simplified view:

namespace Playground2

inductive Syntax where

| missing : Syntax

| node (kind : Lean.SyntaxNodeKind) (args : Array Syntax) : Syntax

| atom : String -> Syntax

| ident : Lean.Name -> Syntax

end Playground2

Lets go through the definition one constructor at a time: - missing is used when

there is something the Lean compiler cannot parse, it is what allows Lean to have

a syntax error in one part of the file but recover from it and try to understand

the rest of it. This also means we pretty much don’t care about this constructor. -

node is, as the name suggests, a node in the syntax tree. It has a so called kind :

SyntaxNodeKind where SyntaxNodeKind is just a Lean.Name. Basically, each of our

syntax declarations receives an automatically generated SyntaxNodeKind (we can

also explicitly specify the name with syntax (name := foo) ... : cat) so we can

tell Lean “this function is responsible for processing this specific syntax construct”.

Furthermore, like all nodes in a tree, it has children, in this case in the form of an

Array Syntax. - atom represents (with the exception of one) every syntax object

that is at the bottom of the hierarchy. For example, our operators ⊕ and LXOR from

above will be represented as atoms. - ident is the mentioned exception to this

rule. The difference between ident and atom is also quite obvious: an identifier has

a Lean.Name instead of a String that represents it. Why a Lean.Name is not just a

String is related to a concept called macro hygiene that will be discussed in detail

in the macro chapter. For now, you can consider them basically equivalent.
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Constructing new Syntax

Now that we know how syntax is represented in Lean, we could of course write pro-

grams that generate all of these inductive trees by hand, which would be incredibly

tedious and is something we most definitely want to avoid. Luckily for us there is

quite an extensive API hidden inside the Lean.Syntax namespace we can explore:

open Lean

#check Syntax -- Syntax. autocomplete

The interesting functions for creating Syntax are the Syntax.mk* ones that allow us

to create both very basic Syntax objects like idents but also more complex ones

like Syntax.mkApp which we can use to create the Syntax object that would amount

to applying the function from the first argument to the argument list (all given as

Syntax) in the second one. Let’s see a few examples:

-- Name literals are written with this little ` in front of the name

#eval Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"] -- is

the syntax of `Nat.add 1 1`↪

#eval mkNode `«term_+_» #[Syntax.mkNumLit "1", mkAtom "+", Syntax.mkNumLit "1"] -- is

the syntax for `1 + 1`↪

-- note that the `«term_+_» is the auto-generated SyntaxNodeKind for the + syntax

If you don’t like this way of creating Syntax at all you are not alone. However, there

are a few things involved with the machinery of doing this in a pretty and correct

(the machinery is mostly about the correct part) way which will be explained in the

macro chapter.

Matching on Syntax

Just like constructing Syntax is an important topic, especially with macros, matching

on syntax is equally (or in fact even more) interesting. Luckily we don’t have to

match on the inductive type itself either: we can instead use so-called “syntax

patterns”. They are quite simple, their syntax is just `(the syntax I want to

match on). Let’s see one in action:

def isAdd11 : Syntax → Bool

| `(Nat.add 1 1) => true

| _ => false
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#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit

"1"]) -- true↪

#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) --

false↪

The next level with matches is to capture variables from the input instead of just

matching on literals, this is done with a slightly fancier-looking syntax:

def isAdd : Syntax → Option (Syntax × Syntax)

| `(Nat.add $x $y) => some (x, y)

| _ => none

#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit

"1"]) -- some ...↪

#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) --

some ...↪

#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo]) -- none

Typed Syntax

Note that x and y in this example are of type TSyntax `term, not Syntax. Even

though we are pattern matching on Syntax which, as we can see in the constructors,

is purely composed of types that are not TSyntax, so what is going on? Basically

the `() Syntax is smart enough to figure out the most general syntax category the

syntax we are matching might be coming from (in this case term). It will then use

the typed syntax type TSyntax which is parameterized by the Name of the syntax

category it came from. This is not only more convenient for the programmer to

see what is going on, it also has other benefits. For Example if we limit the syntax

category to just num in the next example Lean will allow us to call getNat on the

resulting TSyntax `num directly without pattern matching or the option to panic:

-- Now we are also explicitly marking the function to operate on term syntax

def isLitAdd : TSyntax `term → Option Nat

| `(Nat.add $x:num $y:num) => some (x.getNat + y.getNat)

| _ => none

#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit

"1"]) -- some 2↪

#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) --

none↪

If you want to access the Syntax behind a TSyntax you can do this using TSyntax.raw

although the coercion machinery should just work most of the time. We will see

some further benefits of the TSyntax system in the macro chapter.
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One last important note about the matching on syntax: In this basic form it only

works on syntax from the term category. If you want to use it to match on your own

syntax categories you will have to use `(category| ...).

Mini Project

As a final mini project for this chapter we will declare the syntax of a mini arithmetic

expression language and a function of type Syntax → Nat to evaluate it. We will see

more about some of the concepts presented below in future chapters.

declare_syntax_cat arith

syntax num : arith

syntax arith "-" arith : arith

syntax arith "+" arith : arith

syntax "(" arith ")" : arith

partial def denoteArith : TSyntax `arith → Nat

| `(arith| $x:num) => x.getNat

| `(arith| $x:arith + $y:arith) => denoteArith x + denoteArith y

| `(arith| $x:arith - $y:arith) => denoteArith x - denoteArith y

| `(arith| ($x:arith)) => denoteArith x

| _ => 0

-- You can ignore Elab.TermElabM, what is important for us is that it allows

-- us to use the ``(arith| (12 + 3) - 4)` notation to construct `Syntax`

-- instead of only being able to match on it like this.

def test : Elab.TermElabM Nat := do

let stx ← `(arith| (12 + 3) - 4)

pure (denoteArith stx)

#eval test -- 11

Feel free to play around with this example and extend it in whatever way you want

to. The next chapters will mostly be about functions that operate on Syntax in some

way.
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More elaborate examples

Using type classes for notations

We can use type classes in order to add notation that is extensible via the type

instead of the syntax system, this is for example how + using the typeclasses HAdd

and Add and other common operators in Lean are generically defined.

For example, we might want to have a generic notation for subset notation. The

first thing we have to do is define a type class that captures the function we want

to build notation for.

class Subset (α : Type u) where

subset : α → α → Prop

The second step is to define the notation, what we can do here is simply turn every

instance of a ⊆ appearing in the code to a call to Subset.subset because the type

class resolution should be able to figure out which Subset instance is referred to.

Thus the notation will be a simple:

-- precedence is arbitrary for this example

infix:50 " ⊆ " => Subset.subset

Let’s define a simple theory of sets to test it:

-- a `Set` is defined by the elements it contains

-- -> a simple predicate on the type of its elements

def Set (α : Type u) := α → Prop

def Set.mem (X : Set α) (x : α) : Prop := X x

-- Integrate into the already existing typeclass for membership notation

instance : Membership α (Set α) where

mem := Set.mem

def Set.empty : Set α := λ _ => False

instance : Subset (Set α) where

subset X Y := ∀ (x : α), x ∈ X → x ∈ Y

example : ∀ (X : Set α), Set.empty ⊆ X := by

intro X x

-- ⊢ x ∈ Set.empty → x ∈ X

intro h

exact False.elim h -- empty set has no members
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Binders

Because declaring syntax that uses variable binders used to be a rather unintuitive

thing to do in Lean 3, we’ll take a brief look at how naturally this can be done in

Lean 4.

For this example we will define the well-known notation for the set that contains all

elements x such that some property holds: {x ∈ ℕ | x < 10} for example.

First things first we need to extend the theory of sets from above slightly:

-- the basic "all elements such that" function for the notation

def setOf {α : Type} (p : α → Prop) : Set α := p

Equipped with this function, we can now attempt to intuitively define a basic version

of our notation:

notation "{ " x " | " p " }" => setOf (fun x => p)

#check { (x : Nat) | x ≤ 1 } -- { x | x ≤ 1 } : Set Nat

example : 1 ∈ { (y : Nat) | y ≤ 1 } := by simp[Membership.mem, Set.mem, setOf]

example : 2 ∈ { (y : Nat) | y ≤ 3 ∧ 1 ≤ y } := by simp[Membership.mem, Set.mem, setOf]

This intuitive notation will indeed deal with what we could throw at it in the way

we would expect it.

As to how one might extend this notation to allow more set-theoretic things such as

{x ∈ X | p x} and leave out the parentheses around the bound variables, we refer

the reader to the macro chapter.

Exercises

1. Create an “urgent minus �” notation such that 5 * 8 � 4 returns 20, and 8 �

6 � 1 returns 3.

a) Using notation command. b) Using infix command. c) Using syntax

command.

Hint: multiplication in Lean 4 is defined as infixl:70 " * " => HMul.hMul.

2. Consider the following syntax categories: term, command, tactic; and 3 syntax

rules given below. Make use of each of these newly defined syntaxes.
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syntax "good morning" : term

syntax "hello" : command

syntax "yellow" : tactic

3. Create a syntax rule that would accept the following commands:

• red red red 4

• blue 7

• blue blue blue blue blue 18

(So, either all reds followed by a number; or all blues followed by a number;

red blue blue 5 - shouldn’t work.)

Use the following code template:

syntax (name := colors) ...

-- our "elaboration function" that infuses syntax with semantics

@[command_elab colors] def elabColors : CommandElab := λ stx => Lean.logInfo

"success!"↪

4. Mathlib has a #help option command that displays all options available in the

current environment, and their descriptions. #help option pp.r will display

all options starting with a “pp.r” substring.

Create a syntax rule that would accept the following commands:

• #better_help option

• #better_help option pp.r

• #better_help option some.other.name

Use the following template:

syntax (name := help) ...

-- our "elaboration function" that infuses syntax with semantics

@[command_elab help] def elabHelp : CommandElab := λ stx => Lean.logInfo "success!"

5. Mathlib has a ∑ operator. Create a syntax rule that would accept the following

terms:

• ∑ x in { 1, 2, 3 }, x^2

• ∑ x in { "apple", "banana", "cherry" }, x.length

Use the following template:

import Batteries.Classes.SetNotation

import Batteries.Util.ExtendedBinder

syntax (name := bigsumin) ...
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-- our "elaboration function" that infuses syntax with semantics

@[term_elab bigsumin] def elabSum : TermElab := λ stx tp => return mkNatLit 666

Hint: use the Batteries.ExtendedBinder.extBinder parser. Hint: you need

Batteries installed in your Lean project for these imports to work.
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Macros

What is a macro

Macros in Lean are Syntax → MacroM Syntax functions. MacroM is the macro monad

which allows macros to have some static guarantees we will discuss in the next

section, you can mostly ignore it for now.

Macros are registered as handlers for a specific syntax declaration using the macro

attribute. The compiler will take care of applying these function to the syntax for

us before performing actual analysis of the input. This means that the only thing

we have to do is declare our syntax with a specific name and bind a function of

type Lean.Macro to it. Let’s try to reproduce the LXOR notation from the Syntax

chapter:

import Lean

open Lean

syntax:10 (name := lxor) term:10 " LXOR " term:11 : term

@[macro lxor] def lxorImpl : Macro

| `($l:term LXOR $r:term) => `(!$l && $r) -- we can use the quotation mechanism to

create `Syntax` in macros↪

| _ => Macro.throwUnsupported

#eval true LXOR true -- false

#eval true LXOR false -- false

#eval false LXOR true -- true

#eval false LXOR false -- false

That was quite easy! The Macro.throwUnsupported function can be used by a macro

to indicate that “it doesn’t feel responsible for this syntax”. In this case it’s merely

used to fill a wildcard pattern that should never be reached anyways.

However we can in fact register multiple macros for the same syntax this way

if we desire, they will be tried one after another (the later registered ones have
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higher priority) – is “higher” correct? until one throws either a real error using

Macro.throwError or succeeds, that is it does not Macro.throwUnsupported. Let’s

see this in action:

@[macro lxor] def lxorImpl2 : Macro

-- special case that changes behaviour of the case where the left and

-- right hand side are these specific identifiers

| `(true LXOR true) => `(true)

| _ => Macro.throwUnsupported

#eval true LXOR true -- true, handled by new macro

#eval true LXOR false -- false, still handled by the old

This capability is obviously very powerful! It should not be used lightly and without

careful thinking since it can introduce weird behaviour while writing code later on.

The following example illustrates this weird behaviour:

#eval true LXOR true -- true, handled by new macro

def foo := true

#eval foo LXOR foo -- false, handled by old macro, after all the identifiers have a

different name↪

Without knowing exactly how this macro is implemented this behaviour will be very

confusing to whoever might be debugging an issue based on this. The rule of thumb

for when to use a macro vs. other mechanisms like elaboration is that as soon as

you are building real logic like in the 2nd macro above, it should most likely not be a

macro but an elaborator (explained in the elaboration chapter). This means ideally

we want to use macros for simple syntax to syntax translations, that a human could

easily write out themselves as well but is too lazy to.

Simplifying macro declaration

Now that we know the basics of what a macro is and how to register it we can take

a look at slightly more automated ways to do this (in fact all of the ways about to

be presented are implemented as macros themselves).

First things first there is macro_rules which basically desugars to functions like the

ones we wrote above, for example:

syntax:10 term:10 " RXOR " term:11 : term

macro_rules

| `($l:term RXOR $r:term) => `($l && !$r)

Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Böving,

Jannis Limperg, Siddhartha Gadgil, Siddharth Bhat

65



Metaprogramming in Lean 4 .

As you can see, it figures out lot’s of things on its own for us: - the name of the syntax

declaration - the macro attribute registration - the throwUnsupported wildcard

apart from this it just works like a function that is using pattern matching syntax,

we can in theory encode arbitrarily complex macro functions on the right hand

side.

If this is still not short enough for you, there is a next step using the macro macro:

macro l:term:10 " ⊕ " r:term:11 : term => `((!$l && $r) || ($l && !$r))

#eval true ⊕ true -- false

#eval true ⊕ false -- true

#eval false ⊕ true -- true

#eval false ⊕ false -- false

As you can see, macro is quite close to notation already: - it performed syntax

declaration for us - it automatically wrote a macro_rules style function to match on

it

The are of course differences as well: - notation is limited to the term syntax

category - notation cannot have arbitrary macro code on the right hand side

Syntax Quotations

The basics

So far we’ve handwaved the `(foo $bar) syntax to both create and match on Syntax

objects but it’s time for a full explanation since it will be essential to all non trivial

things that are syntax related.

First things first we call the `() syntax a Syntax quotation. When we plug variables

into a syntax quotation like this: `($x) we call the $x part an anti-quotation. When

we insert x like this it is required that x is of type TSyntax y where y is some Name

of a syntax category. The Lean compiler is actually smart enough to figure the

syntax categories that are allowed in this place out. Hence you might sometimes

see errors of the form:

application type mismatch

x.raw

argument

x

has type
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TSyntax `a : Type

but is expected to have type

TSyntax `b : Type

If you are sure that your thing from the a syntax category can be used as a b here

you can declare a coercion of the form:

instance : Coe (TSyntax `a) (TSyntax `b) where

coe s := ⟨s.raw⟩

Which will allow Lean to perform the type cast automatically. If you notice that your

a can not be used in place of the b here congrats, you just discovered a bug in your

Syntax function. Similar to the Lean compiler, you could also declare functions that

are specific to certain TSyntax variants. For example as we have seen in the syntax

chapter there exists the function:

#check TSyntax.getNat -- TSyntax.getNat : TSyntax numLitKind → Nat

Which is guaranteed to not panic because we know that the Syntax that the function

is receiving is a numeric literal and can thus naturally be converted to a Nat.

If we use the antiquotation syntax in pattern matching it will, as discussed in the

syntax chapter, give us a variable x of type TSyntax y where y is the Name of the

syntax category that fits in the spot where we pattern matched. If we wish to insert

a literal $x into the Syntax for some reason, for example macro creating macros,

we can escape the anti quotation using: `($$x).

If we want to specify the syntax kind we wish x to be interpreted as we can make

this explicit using: `($x:term) where term can be replaced with any other valid

syntax category (e.g. command) or parser (e.g. ident).

So far this is only a more formal explanation of the intuitive things we’ve already

seen in the syntax chapter and up to now in this chapter, next we’ll discuss some

more advanced anti-quotations.

Advanced anti-quotations

For convenience we can also use anti-quotations in a way similar to format strings:

`($(mkIdent `c)) is the same as: let x := mkIdent `c; `($x).

Furthermore there are sometimes situations in which we are not working with

basic Syntax but Syntax wrapped in more complex datastructures, most notably

Array (TSyntax c) or TSepArray c s. Where TSepArray c s, is a Syntax specific
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type, it is what we get if we pattern match on some Syntax that users a separator s

to separate things from the category c. For example if we match using: $xs,*, xs

will have type TSepArray c ",",. With the special case of matching on no specific

separator (i.e. whitespace): $xs* in which we will receive an Array (TSyntax c).

If we are dealing with xs : Array (TSyntax c) and want to insert it into a quotation

we have twomain ways to achieve this: 1. Insert it using a separator, most commonly

,: `($xs,*). This is also the way to insert a TSepArray c ","" 2. Insert it point

blank without a separator (TODO): `()

For example:

-- syntactically cut away the first element of a tuple if possible

syntax "cut_tuple " "(" term ", " term,+ ")" : term

macro_rules

-- cutting away one element of a pair isn't possible, it would not result in a tuple

| `(cut_tuple ($x, $y)) => `(($x, $y))

| `(cut_tuple ($x, $y, $xs,*)) => `(($y, $xs,*))

#check cut_tuple (1, 2) -- (1, 2) : Nat × Nat

#check cut_tuple (1, 2, 3) -- (2, 3) : Nat × Nat

The last thing for this section will be so called “anti-quotation splices”. There are

two kinds of anti quotation splices, first the so called optional ones. For example we

might declare a syntax with an optional argument, say our own let (in real projects

this would most likely be a let in some functional language we are writing a theory

about):

syntax "mylet " ident (" : " term)? " := " term " in " term : term

There is this optional (" : " term)? argument involved which can let the user

define the type of the term to the left of it. With the methods we know so far we’d

have to write two macro_rules now, one for the case with, one for the case without

the optional argument. However the rest of the syntactic translation works exactly

the same with and without the optional argument so what we can do using a splice

here is to essentially define both cases at once:

macro_rules

| `(mylet $x $[: $ty]? := $val in $body) => `(let $x $[: $ty]? := $val; $body)

The $[...]? part is the splice here, it basically says “if this part of the syntax

isn’t there, just ignore the parts on the right hand side that involve anti quotation

variables involved here”. So now we can run this syntax both with and without type

ascription:
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#eval mylet x := 5 in x - 10 -- 0, due to subtraction behaviour of `Nat`

#eval mylet x : Int := 5 in x - 10 -- -5, after all it is an `Int` now

The second and last splice might remind readers of list comprehension as seen for

example in Python. We will demonstrate it using an implementation of map as a

macro:

-- run the function given at the end for each element of the list

syntax "foreach " "[" term,* "]" term : term

macro_rules

| `(foreach [ $[$x:term],* ] $func:term) => `(let f := $func; [ $[f $x],* ])

#eval foreach [1,2,3,4] (Nat.add 2) -- [3, 4, 5, 6]

In this case the $[...],* part is the splice. On the match side it tries to match the

pattern we define inside of it repetitively (given the separator we tell it to). However

unlike regular separator matching it does not give us an Array or SepArray, instead

it allows us to write another splice on the right hand side that gets evaluated for

each time the pattern we specified matched, with the specific values from the match

per iteration.

Hygiene issues and how to solve them

If you are familiar with macro systems in other languages like C you probably know

about so called macro hygiene issues already. A hygiene issue is when a macro

introduces an identifier that collides with an identifier from some syntax that it is

including. For example:

-- Applying this macro produces a function that binds a new identifier `x`.

macro "const" e:term : term => `(fun x => $e)

-- But `x` can also be defined by a user

def x : Nat := 42

-- Which `x` should be used by the compiler in place of `$e`?

#eval (const x) 10 -- 42

Given the fact that macros perform only syntactic translations one might expect

the above eval to return 10 instead of 42: after all, the resulting syntax should be

(fun x => x) 10. While this was of course not the intention of the author, this is

what would happen in more primitive macro systems like the one of C. So how does
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Lean avoid these hygiene issues? You can read about this in detail in the excellent

Beyond Notations paper which discusses the idea and implementation in Lean in

detail. We will merely give an overview of the topic, since the details are not that

interesting for practical uses. The idea described in Beyond Notations comes down

to a concept called “macro scopes”. Whenever a new macro is invoked, a new

macro scope (basically a unique number) is added to a list of all the macro scopes

that are active right now. When the current macro introduces a new identifier what

is actually getting added is an identifier of the form:

<actual name>._@.(<module_name>.<scopes>)*.<module_name>._hyg.<scopes>

For example, if the module name is Init.Data.List.Basic, the name is foo.bla,

and macros scopes are [2, 5] we get:

foo.bla._@.Init.Data.List.Basic._hyg.2.5

Since macro scopes are unique numbers the list of macro scopes appended in the

end of the name will always be unique across all macro invocations, hence macro

hygiene issues like the ones above are not possible.

If you are wondering why there is more than just the macro scopes to this name

generation, that is because we may have to combine scopes from different files/mod-

ules. The main module being processed is always the right most one. This situation

may happen when we execute a macro generated in a file imported in the current

file.

foo.bla._@.Init.Data.List.Basic.2.1.Init.Lean.Expr_hyg.4

The delimiter _hyg at the end is used just to improve performance of the function

Lean.Name.hasMacroScopes – the format could also work without it.

This was a lot of technical details. You do not have to understand them in order to

use macros, if you want you can just keep in mind that Lean will not allow name

clashes like the one in the const example.

Note that this extends to all names that are introduced using syntax quotations,

that is if you write a macro that produces: `(def foo := 1), the user will not

be able to access foo because the name will subject to hygiene. Luckily there is

a way to circumvent this. You can use mkIdent to generate a raw identifier, for

example: `(def $(mkIdent `foo) := 1). In this case it won’t be subject to hygiene

and accessible to the user.
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MonadQuotation and MonadRef

Based on this description of the hygiene mechanism one interesting question pops

up, how do we know what the current list of macro scopes actually is? After all in

the macro functions that were defined above there is never any explicit passing

around of the scopes happening. As is quite common in functional programming,

as soon as we start having some additional state that we need to bookkeep (like the

macro scopes) this is done with a monad, this is the case here as well with a slight

twist.

Instead of implementing this for only a single monad MacroM the general concept

of keeping track of macro scopes in monadic way is abstracted away using a type

class called MonadQuotation. This allows any other monad to also easily provide

this hygienic Syntax creation mechanism by simply implementing this type class.

This is also the reason that while we are able to use pattern matching on syntax

with `(syntax) we cannot just create Syntax with the same syntax in pure functions:

there is no Monad implementing MonadQuotation involved in order to keep track of

the macro scopes.

Now let’s take a brief look at the MonadQuotation type class:

namespace Playground

class MonadRef (m : Type → Type) where

getRef : m Syntax

withRef {α} : Syntax → m α → m α

class MonadQuotation (m : Type → Type) extends MonadRef m where

getCurrMacroScope : m MacroScope

getMainModule : m Name

withFreshMacroScope {α : Type} : m α → m α

end Playground

Since MonadQuotation is based on MonadRef, let’s take a look at MonadRef first. The

idea here is quite simple: MonadRef is meant to be seen as an extension to the Monad

typeclass which - gives us a reference to a Syntax value with getRef - can evaluate

a certain monadic action m α with a new reference to a Syntax using withRef

On it’s own MonadRef isn’t exactly interesting, but once it is combined with

MonadQuotation it makes sense.

As you can see MonadQuotation extends MonadRef and adds 3 new functions:
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- getCurrMacroScope which obtains the latest MacroScope that was created -

getMainModulewhich (obviously) obtains the name of the main module, both of these

are used to create these hygienic identifiers explained above - withFreshMacroScope

which will compute the next macro scope and run some computation m α that

performs syntax quotation with this new macro scope in order to avoid name

clashes. While this is mostly meant to be used internally whenever a new macro

invocation happens, it can sometimes make sense to use this in our own macros,

for example when we are generating some syntax block repeatedly and want to

avoid name clashes.

How MonadRef comes into play here is that Lean requires a way to indicate errors

at certain positions to the user. One thing that wasn’t introduced in the Syntax

chapter is that values of type Syntax actually carry their position in the file around

as well. When an error is detected, it is usually bound to a Syntax value which

tells Lean where to indicate the error in the file. What Lean will do when using

withFreshMacroScope is to apply the position of the result of getRef to each intro-

duced symbol, which then results in better error positions than not applying any

position.

To see error positioning in action, we can write a little macro that makes use of it:

syntax "error_position" ident : term

macro_rules

| `(error_position all) => Macro.throwError "Ahhh"

-- the `%$tk` syntax gives us the Syntax of the thing before the %,

-- in this case `error_position`, giving it the name `tk`

| `(error_position%$tk first) => withRef tk (Macro.throwError "Ahhh")

#check_failure error_position all -- the error is indicated at `error_position all`

#check_failure error_position first -- the error is only indicated at `error_position`

Obviously controlling the positions of errors in this way is quite important for a

good user experience.

Mini project

As a final mini project for this section we will re-build the arithmetic DSL from the

syntax chapter in a slightly more advanced way, using a macro this time so we can

actually fully integrate it into the Lean syntax.
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declare_syntax_cat arith

syntax num : arith

syntax arith "-" arith : arith

syntax arith "+" arith : arith

syntax "(" arith ")" : arith

syntax "[Arith|" arith "]" : term

macro_rules

| `([Arith| $x:num]) => `($x)

| `([Arith| $x:arith + $y:arith]) => `([Arith| $x] + [Arith| $y]) -- recursive macros

are possible↪

| `([Arith| $x:arith - $y:arith]) => `([Arith| $x] - [Arith| $y])

| `([Arith| ($x:arith)]) => `([Arith| $x])

#eval [Arith| (12 + 3) - 4] -- 11

Again feel free to play around with it. If you want to build more complex things,

like expressions with variables, maybe consider building an inductive type using

macros instead. Once you got your arithmetic expression term as an inductive,

you could then write a function that takes some form of variable assignment and

evaluates the given expression for this assignment. You could also try to embed

arbitrary terms into your arith language using some special syntax or whatever else

comes to your mind.

More elaborate examples

Binders 2.0

As promised in the syntax chapter here is Binders 2.0. We’ll start by reintroducing

our theory of sets:

def Set (α : Type u) := α → Prop

def Set.mem (X : Set α) (x : α) : Prop := X x

-- Integrate into the already existing typeclass for membership notation

instance : Membership α (Set α) where

mem := Set.mem

def Set.empty : Set α := λ _ => False

-- the basic "all elements such that" function for the notation

def setOf {α : Type} (p : α → Prop) : Set α := p
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The goal for this section will be to allow for both {x : X | p x} and {x ∈ X, p x}

notations. In principle there are two ways to do this: 1. Define a syntax and macro

for each way to bind a variable we might think of 2. Define a syntax category of

binders that we could reuse across other binder constructs such as Σ or Π as well

and implement macros for the { | } case

In this section we will use approach 2 because it is more easily reusable.

declare_syntax_cat binder_construct

syntax "{" binder_construct "|" term "}" : term

Now let’s define the two binders constructs we are interested in:

syntax ident " : " term : binder_construct

syntax ident " ∈ " term : binder_construct

And finally the macros to expand our syntax:

macro_rules

| `({ $var:ident : $ty:term | $body:term }) => `(setOf (fun ($var : $ty) => $body))

| `({ $var:ident ∈ $s:term | $body:term }) => `(setOf (fun $var => $var ∈ $s ∧ $body))

-- Old examples with better syntax:

#check { x : Nat | x ≤ 1 } -- setOf fun x => x ≤ 1 : Set Nat

example : 1 ∈ { y : Nat | y ≤ 1 } := by simp[Membership.mem, Set.mem, setOf]

example : 2 ∈ { y : Nat | y ≤ 3 ∧ 1 ≤ y } := by simp[Membership.mem, Set.mem, setOf]

-- New examples:

def oneSet : Set Nat := λ x => x = 1

#check { x ∈ oneSet | 10 ≤ x } -- setOf fun x => x ∈ oneSet ∧ 10 ≤ x : Set Nat

example : ∀ x, ¬(x ∈ { y ∈ oneSet | y ≠ 1 }) := by

intro x h

-- h : x ∈ setOf fun y => y ∈ oneSet ∧ y ≠ 1

-- ⊢ False

cases h

-- : x ∈ oneSet

-- : x ≠ 1

contradiction

Reading further

If you want to knowmore about macros you can read: - the API docs: TODO link - the

source code: the lower parts of Init.Prelude as you can see they are declared quite
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early in Lean because of their importance to building up syntax - the aforementioned

Beyond Notations paper
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Elaboration

The elaborator is the component in charge of turning the user facing Syntax into

something with which the rest of the compiler can work. Most of the time, this

means translating Syntax into Exprs but there are also other use cases such as

#check or #eval. Hence the elaborator is quite a large piece of code, it lives here.

Command elaboration

A command is the highest level of Syntax, a Lean file is made up of a list of commands.

The most commonly used commands are declarations, for example: - def - inductive

- structure

but there are also other ones, most notably #check, #eval and friends. All commands

live in the command syntax category so in order to declare custom commands, their

syntax has to be registered in that category.

Giving meaning to commands

The next step is giving some semantics to the syntax. With commands, this is done

by registering a so called command elaborator.

Command elaborators have type CommandElab which is an alias for: Syntax →

CommandElabM Unit. What they do, is take the Syntax that represents whatever

the user wants to call the command and produce some sort of side effect on the

CommandElabM monad, after all the return value is always Unit. The CommandElabM

monad has 4 main kinds of side effects: 1. Logging messages to the user via

the Monad extensions MonadLog and AddMessageContext, like #check. This is done

via functions that can be found in Lean.Elab.Log, the most notable ones being:

logInfo, logWarning and logError. 2. Interacting with the Environment via the

Monad extension MonadEnv. This is the place where all of the relevant information for

the compiler is stored, all known declarations, their types, doc-strings, values etc.
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The current environment can be obtained via getEnv and set via setEnv once it has

been modified. Note that quite often wrappers around setEnv like addDecl are the

correct way to add information to the Environment. 3. Performing IO, CommandElabM

is capable of running any IO operation. For example reading from files and based

on their contents perform declarations. 4. Throwing errors, since it can run any

kind of IO, it is only natural that it can throw errors via throwError.

Furthermore there are a bunch of other Monad extensions that are supported by

CommandElabM: - MonadRef and MonadQuotation for Syntax quotations like in macros

- MonadOptions to interact with the options framework - MonadTrace for debug trace

information - TODO: There are a few others though I’m not sure whether they are

relevant, see the instance in Lean.Elab.Command

Command elaboration

Now that we understand the type of command elaborators let’s take a brief look at

how the elaboration process actually works: 1. Check whether any macros can be

applied to the current Syntax. If there is a macro that does apply and does not throw

an error the resulting Syntax is recursively elaborated as a command again. 2. If no

macro can be applied, we search for all CommandElabs that have been registered for

the SyntaxKind of the Syntax we are elaborating, using the command_elab attribute.

3. All of these CommandElab are then tried in order until one of them does not throw

an unsupportedSyntaxException, Lean’s way of indicating that the elaborator “feels

responsible” for this specific Syntax construct. Note that it can still throw a regular

error to indicate to the user that something is wrong. If no responsible elaborator is

found, then the command elaboration is aborted with an unexpected syntax error

message.

As you can see the general idea behind the procedure is quite similar to ordinary

macro expansion.

Making our own

Now that we know both what a CommandElab is and how they are used, we can

start looking into writing our own. The steps for this, as we learned above, are: 1.

Declaring the syntax 2. Declaring the elaborator 3. Registering the elaborator as

responsible for the syntax via the command_elab attribute.

Let’s see how this is done:
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import Lean

open Lean Elab Command Term Meta

syntax (name := mycommand1) "#mycommand1" : command -- declare the syntax

@[command_elab mycommand1]

def mycommand1Impl : CommandElab := fun stx => do -- declare and register the elaborator

logInfo "Hello World"

#mycommand1 -- Hello World

You might think that this is a little boiler-platey and it turns out the Lean devs did

as well so they added a macro for this!

elab "#mycommand2" : command =>

logInfo "Hello World"

#mycommand2 -- Hello World

Note that, due to the fact that command elaboration supports multiple registered

elaborators for the same syntax, we can in fact overload syntax, if we want to.

@[command_elab mycommand1]

def myNewImpl : CommandElab := fun stx => do

logInfo "new!"

#mycommand1 -- new!

Furthermore it is also possible to only overload parts of syntax by throwing an

unsupportedSyntaxException in the cases we want the default handler to deal with

it or just letting the elab command handle it.

In the following example, we are not extending the original #check syntax, but

adding a new SyntaxKind for this specific syntax construct. However, from the point

of view of the user, the effect is basically the same.

elab "#check" "mycheck" : command => do

logInfo "Got ya!"

This is actually extending the original #check

@[command_elab Lean.Parser.Command.check] def mySpecialCheck : CommandElab := fun stx =>

do↪

if let some str := stx[1].isStrLit? then

logInfo s!"Specially elaborated string literal!: {str} : String"

else
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throwUnsupportedSyntax

#check mycheck -- Got ya!

#check "Hello" -- Specially elaborated string literal!: Hello : String

#check Nat.add -- Nat.add : Nat → Nat → Nat

Mini project

As a final mini project for this section let’s build a command elaborator that is actu-

ally useful. It will take a command and use the same mechanisms as elabCommand

(the entry point for command elaboration) to tell us which macros or elaborators

are relevant to the command we gave it.

We will not go through the effort of actually reimplementing elabCommand though

elab "#findCElab " c:command : command => do

let macroRes ← liftMacroM <| expandMacroImpl? (←getEnv) c

match macroRes with

| some (name, _) => logInfo s!"Next step is a macro: {name.toString}"

| none =>

let kind := c.raw.getKind

let elabs := commandElabAttribute.getEntries (←getEnv) kind

match elabs with

| [] => logInfo s!"There is no elaborators for your syntax, looks like its bad :("

| _ => logInfo s!"Your syntax may be elaborated by: {elabs.map (fun el =>

el.declName.toString)}"↪

#findCElab def lala := 12 -- Your syntax may be elaborated by:

[Lean.Elab.Command.elabDeclaration]↪

#findCElab abbrev lolo := 12 -- Your syntax may be elaborated by:

[Lean.Elab.Command.elabDeclaration]↪

#findCElab #check foo -- even our own syntax!: Your syntax may be elaborated by:

[mySpecialCheck, Lean.Elab.Command.elabCheck]↪

#findCElab open Hi -- Your syntax may be elaborated by: [Lean.Elab.Command.elabOpen]

#findCElab namespace Foo -- Your syntax may be elaborated by:

[Lean.Elab.Command.elabNamespace]↪

#findCElab #findCElab open Bar -- even itself!: Your syntax may be elaborated by:

[«_aux_lean_elaboration___elabRules_command#findCElab__1»]↪

TODO: Maybe we should also add a mini project that demonstrates a non # style

command aka a declaration, although nothing comes to mind right now. TODO:

Define a conjecture declaration, similar to lemma/theorem, except that it is auto-

matically sorried. The sorry could be a custom one, to reflect that the “conjecture”

might be expected to be true.
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Term elaboration

A term is a Syntax object that represents some sort of Expr. Term elaborators are

the ones that do the work for most of the code we write. Most notably they elaborate

all the values of things like definitions, types (since these are also just Expr) etc.

All terms live in the term syntax category (which we have seen in action in the

macro chapter already). So, in order to declare custom terms, their syntax needs

to be registered in that category.

Giving meaning to terms

As with command elaboration, the next step is giving some semantics to the syntax.

With terms, this is done by registering a so called term elaborator.

Term elaborators have type TermElab which is an alias for: Syntax → Option Expr

→ TermElabM Expr. This type is already quite different from command elaboration:

- As with command elaboration the Syntax is whatever the user used to create

this term - The Option Expr is the expected type of the term, since this cannot

always be known it is only an Option argument - Unlike command elaboration, term

elaboration is not only executed because of its side effects – the TermElabM Expr

return value does actually contain something of interest, namely, the Expr that

represents the Syntax object.

TermElabM is basically an upgrade of CommandElabM in every regard: it supports all

the capabilities we mentioned above, plus two more. The first one is quite simple:

On top of running IO code it is also capable of running MetaM code, so Exprs can be

constructed nicely. The second one is very specific to the term elaboration loop.

Term elaboration

The basic idea of term elaboration is the same as command elaboration: expand

macros and recurse or run term elaborators that have been registered for the

Syntax via the term_elab attribute (they might in turn run term elaboration) until

we are done. There is, however, one special action that a term elaborator can do

during its execution.

A term elaborator may throw Except.postpone. This indicates that the term elab-

orator requires more information to continue its work. In order to represent this
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missing information, Lean uses so called synthetic metavariables. As you know from

before, metavariables are holes in Exprs that are waiting to be filled in. Synthetic

metavariables are different in that they have special methods that are used to

solve them, registered in SyntheticMVarKind. Right now, there are four of these: -

typeClass, the metavariable should be solved with typeclass synthesis - coe, the

metavariable should be solved via coercion (a special case of typeclass) - tactic, the

metavariable is a tactic term that should be solved by running a tactic - postponed,

the ones that are created at Except.postpone

Once such a synthetic metavariable is created, the next higher level term elaborator

will continue. At some point, execution of postponed metavariables will be resumed

by the term elaborator, in hopes that it can now complete its execution. We can try

to see this in action with the following example:

#check set_option trace.Elab.postpone true in List.foldr .add 0 [1,2,3] --

[Elab.postpone] .add : ?m.5695 → ?m.5696 → ?m.5696↪

What happened here is that the elaborator for function applications started at

List.foldr which is a generic function so it created metavariables for the implicit

type parameters. Then, it attempted to elaborate the first argument .add.

In case you don’t know how .name works, the basic idea is that quite often (like

in this case) Lean should be able to infer the output type (in this case Nat) of a

function (in this case Nat.add). In such cases, the .name feature will then simply

search for a function named name in the namespace Nat. This is especially useful

when you want to use constructors of a type without referring to its namespace or

opening it, but can also be used like above.

Now back to our example, while Lean does at this point already know that .add

needs to have type: ?m1 → ?m2 → ?m2 (where ?x is notation for a metavariable) the

elaborator for .add does need to know the actual value of ?m2 so the term elaborator

postpones execution (by internally creating a synthetic metavariable in place of

.add), the elaboration of the other two arguments then yields the fact that ?m2 has

to be Nat so once the .add elaborator is continued it can work with this information

to complete elaboration.

We can also easily provoke cases where this does not work out. For example:

#check_failure set_option trace.Elab.postpone true in List.foldr .add

-- [Elab.postpone] .add : ?m.5808 → ?m.5809 → ?m.5809

-- invalid dotted identifier notation, expected type is not of the form (... → C ...)

where C is a constant↪

-- ?m.5808 → ?m.5809 → ?m.5809
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In this case .add first postponed its execution, then got called again but didn’t have

enough information to finish elaboration and thus failed.

Making our own

Adding new term elaborators works basically the same way as adding new command

elaborators so we’ll only take a very brief look:

syntax (name := myterm1) "myterm_1" : term

def mytermValues := [1, 2]

@[term_elab myterm1]

def myTerm1Impl : TermElab := fun stx type? => do

mkAppM ``List.get! #[.const ``mytermValues [], mkNatLit 0] -- `MetaM` code

#eval myterm_1 -- 1

-- Also works with `elab`

elab "myterm_2" : term => do

mkAppM ``List.get! #[.const ``mytermValues [], mkNatLit 1] -- `MetaM` code

#eval myterm_2 -- 2

Mini project

As a final mini project for this chapter we will recreate one of the most commonly

used Lean syntax sugars, the ⟨a,b,c⟩ notation as a short hand for single constructor

types:

-- slightly different notation so no ambiguity happens

syntax (name := myanon) "⟨⟨" term,* "⟩⟩" : term

def getCtors (typ : Name) : MetaM (List Name) := do

let env ← getEnv

match env.find? typ with

| some (ConstantInfo.inductInfo val) =>

pure val.ctors

| _ => pure []

@[term_elab myanon]

def myanonImpl : TermElab := fun stx typ? => do

-- Attempt to postpone execution if the type is not known or is a metavariable.

-- Metavariables are used by things like the function elaborator to fill
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-- out the values of implicit parameters when they haven't gained enough

-- information to figure them out yet.

-- Term elaborators can only postpone execution once, so the elaborator

-- doesn't end up in an infinite loop. Hence, we only try to postpone it,

-- otherwise we may cause an error.

tryPostponeIfNoneOrMVar typ?

-- If we haven't found the type after postponing just error

let some typ := typ? | throwError "expected type must be known"

if typ.isMVar then

throwError "expected type must be known"

let Expr.const base .. := typ.getAppFn | throwError s!"type is not of the expected

form: {typ}"↪

let [ctor] ← getCtors base | throwError "type doesn't have exactly one constructor"

let args := TSyntaxArray.mk stx[1].getSepArgs

let stx ← `($(mkIdent ctor) $args*) -- syntax quotations

elabTerm stx typ -- call term elaboration recursively

#check (⟨⟨1, sorry⟩⟩ : Fin 12) -- { val := 1, isLt := (_ : 1 < 12) } : Fin 12

#check_failure ⟨⟨1, sorry⟩⟩ -- expected type must be known

#check_failure (⟨⟨0⟩⟩ : Nat) -- type doesn't have exactly one constructor

#check_failure (⟨⟨⟩⟩ : Nat → Nat) -- type is not of the expected form: Nat -> Nat

As a final note, we can shorten the postponing act by using an additional syntax

sugar of the elab syntax instead:

-- This `t` syntax will effectively perform the first two lines of `myanonImpl`

elab "⟨⟨" args:term,* "⟩⟩" : term <= t => do

sorry

Exercises

1. Consider the following code. Rewrite syntax + @[term_elab hi]... :

TermElab combination using just elab.

syntax (name := hi) term " ♥ " " ♥ "? " ♥ "? : term

@[term_elab hi]

def heartElab : TermElab := fun stx tp =>

match stx with

| `($l:term ♥) => do

let nExpr ← elabTermEnsuringType l (mkConst `Nat)

return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 1)

| `($l:term ♥♥) => do

let nExpr ← elabTermEnsuringType l (mkConst `Nat)

return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 2)
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| `($l:term ♥♥♥) => do

let nExpr ← elabTermEnsuringType l (mkConst `Nat)

return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 3)

| _ =>

throwUnsupportedSyntax

2. Here is some syntax taken from a real mathlib command alias.

syntax (name := our_alias) (docComment)? "our_alias " ident " ← " ident* : command

We want alias hi ← hello yes to print out the identifiers after ← - that is,

“hello” and “yes”.

Please add these semantics:

a) using syntax + @[command_elab alias] def elabOurAlias : CommandElab.

b) using syntax + elab_rules. c) using elab.

3. Here is some syntax taken from a real mathlib tactic nth_rewrite.

open Parser.Tactic

syntax (name := nthRewriteSeq) "nth_rewrite " (config)? num rwRuleSeq (ppSpace

location)? : tactic↪

Wewant nth_rewrite 5 [←add_zero a] at h to print out "rewrite location!"

if the user provided location, and "rewrite target!" if the user didn’t provide

location.

Please add these semantics:

a) using syntax+ @[tactic nthRewrite] def elabNthRewrite : Lean.Elab.Tactic.Tactic.

b) using syntax + elab_rules. c) using elab.
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Embedding DSLs By Elaboration

In this chapter we will learn how to use elaboration to build a DSL. We will not

explore the full power of MetaM, and simply gesture at how to get access to this

low-level machinery.

More precisely, we shall enable Lean to understand the syntax of IMP, which is a

simple imperative language, often used for teaching operational and denotational

semantics.

We are not going to define everything with the same encoding that the book does.

For instance, the book defines arithmetic expressions and boolean expressions. We,

will take a different path and just define generic expressions that take unary or

binary operators.

This means that we will allow weirdnesses like 1 + true! But it will simplify the

encoding, the grammar and consequently the metaprogramming didactic.

Defining our AST

We begin by defining our atomic literal value.

import Lean

open Lean Elab Meta

inductive IMPLit

| nat : Nat → IMPLit

| bool : Bool → IMPLit

This is our only unary operator

inductive IMPUnOp

| not

These are our binary operations.
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inductive IMPBinOp

| and | add | less

Now we define the expressions that we want to handle.

inductive IMPExpr

| lit : IMPLit → IMPExpr

| var : String → IMPExpr

| un : IMPUnOp → IMPExpr → IMPExpr

| bin : IMPBinOp → IMPExpr → IMPExpr → IMPExpr

And finally the commands of our language. Let’s follow the book and say that “each

piece of a program is also a program”:

inductive IMPProgram

| Skip : IMPProgram

| Assign : String → IMPExpr → IMPProgram

| Seq : IMPProgram → IMPProgram → IMPProgram

| If : IMPExpr → IMPProgram → IMPProgram → IMPProgram

| While : IMPExpr → IMPProgram → IMPProgram

Elaborating literals

Now that we have our data types, let’s elaborate terms of Syntax into terms of Expr.

We begin by defining the syntax and an elaboration function for literals.

declare_syntax_cat imp_lit

syntax num : imp_lit

syntax "true" : imp_lit

syntax "false" : imp_lit

def elabIMPLit : Syntax → MetaM Expr

-- `mkAppM` creates an `Expr.app`, given the function `Name` and the args

-- `mkNatLit` creates an `Expr` from a `Nat`

| `(imp_lit| $n:num) => mkAppM ``IMPLit.nat #[mkNatLit n.getNat]

| `(imp_lit| true ) => mkAppM ``IMPLit.bool #[.const ``Bool.true []]

| `(imp_lit| false ) => mkAppM ``IMPLit.bool #[.const ``Bool.false []]

| _ => throwUnsupportedSyntax

elab "test_elabIMPLit " l:imp_lit : term => elabIMPLit l

#reduce test_elabIMPLit 4 -- IMPLit.nat 4

#reduce test_elabIMPLit true -- IMPLit.bool true

#reduce test_elabIMPLit false -- IMPLit.bool true
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Elaborating expressions

In order to elaborate expressions, we also need a way to elaborate our unary and

binary operators.

Notice that these could very much be pure functions (Syntax → Expr), but we’re

staying in MetaM because it allows us to easily throw an error for match completion.

declare_syntax_cat imp_unop

syntax "not" : imp_unop

def elabIMPUnOp : Syntax → MetaM Expr

| `(imp_unop| not) => return .const ``IMPUnOp.not []

| _ => throwUnsupportedSyntax

declare_syntax_cat imp_binop

syntax "+" : imp_binop

syntax "and" : imp_binop

syntax "<" : imp_binop

def elabIMPBinOp : Syntax → MetaM Expr

| `(imp_binop| +) => return .const ``IMPBinOp.add []

| `(imp_binop| and) => return .const ``IMPBinOp.and []

| `(imp_binop| <) => return .const ``IMPBinOp.less []

| _ => throwUnsupportedSyntax

Now we define the syntax for expressions:

declare_syntax_cat imp_expr

syntax imp_lit : imp_expr

syntax ident : imp_expr

syntax imp_unop imp_expr : imp_expr

syntax imp_expr imp_binop imp_expr : imp_expr

Let’s also allow parentheses so the IMP programmer can denote their parsing

precedence.

syntax "(" imp_expr ")" : imp_expr

Now we can elaborate our expressions. Note that expressions can be recursive.

This means that our elabIMPExpr function will need to be recursive! We’ll need

to use partial because Lean can’t prove the termination of Syntax consumption

alone.

partial def elabIMPExpr : Syntax → MetaM Expr

| `(imp_expr| $l:imp_lit) => do

let l ← elabIMPLit l
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mkAppM ``IMPExpr.lit #[l]

-- `mkStrLit` creates an `Expr` from a `String`

| `(imp_expr| $i:ident) => mkAppM ``IMPExpr.var #[mkStrLit i.getId.toString]

| `(imp_expr| $b:imp_unop $e:imp_expr) => do

let b ← elabIMPUnOp b

let e ← elabIMPExpr e -- recurse!

mkAppM ``IMPExpr.un #[b, e]

| `(imp_expr| $l:imp_expr $b:imp_binop $r:imp_expr) => do

let l ← elabIMPExpr l -- recurse!

let r ← elabIMPExpr r -- recurse!

let b ← elabIMPBinOp b

mkAppM ``IMPExpr.bin #[b, l, r]

| `(imp_expr| ($e:imp_expr)) => elabIMPExpr e

| _ => throwUnsupportedSyntax

elab "test_elabIMPExpr " e:imp_expr : term => elabIMPExpr e

#reduce test_elabIMPExpr a

-- IMPExpr.var "a"

#reduce test_elabIMPExpr a + 5

-- IMPExpr.bin IMPBinOp.add (IMPExpr.var "a") (IMPExpr.lit (IMPLit.nat 5))

#reduce test_elabIMPExpr 1 + true

-- IMPExpr.bin IMPBinOp.add (IMPExpr.lit (IMPLit.nat 1)) (IMPExpr.lit (IMPLit.bool

true))↪

Elaborating programs

And now we have everything we need to elaborate our IMP programs!

declare_syntax_cat imp_program

syntax "skip" : imp_program

syntax ident ":=" imp_expr : imp_program

syntax imp_program ";;" imp_program : imp_program

syntax "if" imp_expr "then" imp_program "else" imp_program "fi" : imp_program

syntax "while" imp_expr "do" imp_program "od" : imp_program

partial def elabIMPProgram : Syntax → MetaM Expr

| `(imp_program| skip) => return .const ``IMPProgram.Skip []

| `(imp_program| $i:ident := $e:imp_expr) => do

let i : Expr := mkStrLit i.getId.toString

let e ← elabIMPExpr e
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mkAppM ``IMPProgram.Assign #[i, e]

| `(imp_program| $p₁:imp_program ;; $p₂:imp_program) => do

let p₁ ← elabIMPProgram p₁

let p₂ ← elabIMPProgram p₂

mkAppM ``IMPProgram.Seq #[p₁, p₂]

| `(imp_program| if $e:imp_expr then $pT:imp_program else $pF:imp_program fi) => do

let e ← elabIMPExpr e

let pT ← elabIMPProgram pT

let pF ← elabIMPProgram pF

mkAppM ``IMPProgram.If #[e, pT, pF]

| `(imp_program| while $e:imp_expr do $pT:imp_program od) => do

let e ← elabIMPExpr e

let pT ← elabIMPProgram pT

mkAppM ``IMPProgram.While #[e, pT]

| _ => throwUnsupportedSyntax

And we can finally test our full elaboration pipeline. Let’s use the following syntax:

elab ">>" p:imp_program "<<" : term => elabIMPProgram p

#reduce >>

a := 5;;

if not a and 3 < 4 then

c := 5

else

a := a + 1

fi;;

b := 10

<<

-- IMPProgram.Seq (IMPProgram.Assign "a" (IMPExpr.lit (IMPLit.nat 5)))

-- (IMPProgram.Seq

-- (IMPProgram.If

-- (IMPExpr.un IMPUnOp.not

-- (IMPExpr.bin IMPBinOp.and (IMPExpr.var "a")

-- (IMPExpr.bin IMPBinOp.less (IMPExpr.lit (IMPLit.nat 3)) (IMPExpr.lit

(IMPLit.nat 4)))))↪

-- (IMPProgram.Assign "c" (IMPExpr.lit (IMPLit.nat 5)))

-- (IMPProgram.Assign "a" (IMPExpr.bin IMPBinOp.add (IMPExpr.var "a") (IMPExpr.lit

(IMPLit.nat 1)))))↪

-- (IMPProgram.Assign "b" (IMPExpr.lit (IMPLit.nat 10))))
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Tactics

Tactics are Lean programs that manipulate a custom state. All tactics are, in the

end, of type TacticM Unit. This has the type:

-- from Lean/Elab/Tactic/Basic.lean

TacticM = ReaderT Context $ StateRefT State TermElabM

But before demonstrating how to use TacticM, we shall explore macro-based tac-

tics.

Tactics by Macro Expansion

Just like many other parts of the Lean 4 infrastructure, tactics too can be declared

by lightweight macro expansion.

For example, we build an example of a custom_sorry_macro that elaborates into

a sorry. We write this as a macro expansion, which expands the piece of syntax

custom_sorry_macro into the piece of syntax sorry:

import Lean.Elab.Tactic

macro "custom_sorry_macro" : tactic => `(tactic| sorry)

example : 1 = 42 := by

custom_sorry_macro

Implementing trivial: Extensible Tactics by Macro Expansion

As more complex examples, we can write a tactic such as custom_tactic, which is

initially completely unimplemented, and can be extended with more tactics. We

start by simply declaring the tactic with no implementation:

syntax "custom_tactic" : tactic
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/-- error: tactic 'tacticCustom_tactic' has not been implemented -/

example : 42 = 42 := by

custom_tactic

sorry

We will now add the rfl tactic into custom_tactic, which will allow us to prove the

previous theorem

macro_rules

| `(tactic| custom_tactic) => `(tactic| rfl)

example : 42 = 42 := by

custom_tactic

-- Goals accomplished �

We can now try a harder problem, that cannot be immediately dispatched by rfl:

#check_failure (by custom_tactic : 43 = 43 ∧ 42 = 42)

-- type mismatch

-- Iff.rfl

-- has type

-- ?m.1437 ↔ ?m.1437 : Prop

-- but is expected to have type

-- 43 = 43 ∧ 42 = 42 : Prop

We extend the custom_tactic tactic with a tactic that tries to break And down with

apply And.intro, and then (recursively (!)) applies custom_tactic to the two cases

with (<;> trivial) to solve the generated subcases 43 = 43, 42 = 42.

macro_rules

| `(tactic| custom_tactic) => `(tactic| apply And.intro <;> custom_tactic)

The above declaration uses <;> which is a tactic combinator. Here, a <;> b means

“run tactic a, and apply”b” to each goal produced by a“. Thus, And.intro <;>

custom_tactic means”run And.intro, and then run custom_tactic on each goal”.

We test it out on our previous theorem and see that we dispatch the theorem.

example : 43 = 43 ∧ 42 = 42 := by

custom_tactic

-- Goals accomplished �

In summary, we declared an extensible tactic called custom_tactic. It initially

had no elaboration at all. We added the rfl as an elaboration of custom_tactic,

which allowed it to solve the goal 42 = 42. We then tried a harder theorem, 43

= 43 ∧ 42 = 42 which custom_tactic was unable to solve. We were then able

to enrich custom_tactic to split “and” with And.intro, and also recursively call

custom_tactic in the two subcases.
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Implementing <;>: Tactic Combinators by Macro Expansion

Recall that in the previous section, we said that a <;> b meant “run a, and then

run b for all goals”. In fact, <;> itself is a tactic macro. In this section, we will

implement the syntax a and_then b which will stand for “run a, and then run b for

all goals”.

-- 1. We declare the syntax `and_then`

syntax tactic " and_then " tactic : tactic

-- 2. We write the expander that expands the tactic

-- into running `a`, and then running `b` on all goals produced by `a`.

macro_rules

| `(tactic| $a:tactic and_then $b:tactic) =>

`(tactic| $a:tactic; all_goals $b:tactic)

-- 3. We test this tactic.

theorem test_and_then: 1 = 1 ∧ 2 = 2 := by

apply And.intro and_then rfl

#print test_and_then

-- theorem test_and_then : 1 = 1 ∧ 2 = 2 :=

-- { left := Eq.refl 1, right := Eq.refl 2 }

Exploring TacticM

The simplest tactic: sorry

In this section, we wish to write a tactic that fills the proof with sorry:

example : 1 = 2 := by

custom_sorry

We begin by declaring such a tactic:

elab "custom_sorry_0" : tactic => do

return

example : 1 = 2 := by

custom_sorry_0

-- unsolved goals: ⊢ 1 = 2

sorry

This defines a syntax extension to Lean, where we are naming the piece of syntax

custom_sorry_0 as living in tactic syntax category. This informs the elaborator
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that, in the context of elaborating tactics, the piece of syntax custom_sorry_0

must be elaborated as what we write to the right-hand-side of the => (the actual

implementation of the tactic).

Next, we write a term in TacticM Unit to fill in the goal with sorryAx α, which can

synthesize an artificial term of type α. To do this, we first access the goal with

Lean.Elab.Tactic.getMainGoal : Tactic MVarId, which returns the main goal,

represented as a metavariable. Recall that under types-as-propositions, the type of

our goal must be the proposition that 1 = 2. We check this by printing the type of

goal.

But first we need to start our tactic with Lean.Elab.Tactic.withMainContext, which

computes in TacticM with an updated context.

elab "custom_sorry_1" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goal ← Lean.Elab.Tactic.getMainGoal

let goalDecl ← goal.getDecl

let goalType := goalDecl.type

dbg_trace f!"goal type: {goalType}"

example : 1 = 2 := by

custom_sorry_1

-- goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} Nat 2

(instOfNatNat 2))↪

-- unsolved goals: ⊢ 1 = 2

sorry

To sorry the goal, we can use the helper Lean.Elab.admitGoal:

elab "custom_sorry_2" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goal ← Lean.Elab.Tactic.getMainGoal

Lean.Elab.admitGoal goal

theorem test_custom_sorry : 1 = 2 := by

custom_sorry_2

#print test_custom_sorry

-- theorem test_custom_sorry : 1 = 2 :=

-- sorryAx (1 = 2) true

And we no longer have the error unsolved goals: ⊢ 1 = 2.
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The custom_assump tactic: Accessing Hypotheses

In this section, we will learn how to access the hypotheses to prove a goal. In

particular, we shall attempt to implement a tactic custom_assump, which looks

for an exact match of the goal among the hypotheses, and solves the theorem if

possible.

In the example below, we expect custom_assump to use (H2 : 2 = 2) to solve the

goal (2 = 2):

theorem assump_correct (H1 : 1 = 1) (H2 : 2 = 2) : 2 = 2 := by

custom_assump

#print assump_correct

-- theorem assump_correct : 1 = 1 → 2 = 2 → 2 = 2 :=

-- fun H1 H2 => H2

When we do not have a matching hypothesis to the goal, we expect the tactic

custom_assump to throw an error, telling us that we cannot find a hypothesis of the

type we are looking for:

theorem assump_wrong (H1 : 1 = 1) : 2 = 2 := by

custom_assump

#print assump_wrong

-- tactic 'custom_assump' failed, unable to find matching hypothesis of type (2 = 2)

-- H1 : 1 = 1

-- ⊢ 2 = 2

We begin by accessing the goal and the type of the goal so we know what we

are trying to prove. The goal variable will soon be used to help us create error

messages.

elab "custom_assump_0" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goalType ← Lean.Elab.Tactic.getMainTarget

dbg_trace f!"goal type: {goalType}"

example (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by

custom_assump_0

-- goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2

(instOfNatNat 2))↪

-- unsolved goals

-- H1 : 1 = 1

-- H2 : 2 = 2

-- ⊢ 2 = 2
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sorry

example (H1 : 1 = 1): 2 = 2 := by

custom_assump_0

-- goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2

(instOfNatNat 2))↪

-- unsolved goals

-- H1 : 1 = 1

-- ⊢ 2 = 2

sorry

Next, we access the list of hypotheses, which are stored in a data structure called

LocalContext. This is accessed via Lean.MonadLCtx.getLCtx. The LocalContext

contains LocalDeclarations, from which we can extract information such as the

name that is given to declarations (.userName), the expression of the declaration

(.toExpr). Let’s write a tactic called list_local_decls that prints the local decla-

rations:

elab "list_local_decls_1" : tactic =>

Lean.Elab.Tactic.withMainContext do

let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.

ctx.forM fun decl: Lean.LocalDecl => do

let declExpr := decl.toExpr -- Find the expression of the declaration.

let declName := decl.userName -- Find the name of the declaration.

dbg_trace f!"+ local decl: name: {declName} | expr: {declExpr}"

example (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by

list_local_decls_1

-- + local decl: name: test_list_local_decls_1 | expr: _uniq.3339

-- + local decl: name: H1 | expr: _uniq.3340

-- + local decl: name: H2 | expr: _uniq.3341

rfl

Recall that we are looking for a local declaration that has the same type as the

hypothesis. We get the type of LocalDecl by calling Lean.Meta.inferType on the

local declaration’s expression.

elab "list_local_decls_2" : tactic =>

Lean.Elab.Tactic.withMainContext do

let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.

ctx.forM fun decl: Lean.LocalDecl => do

let declExpr := decl.toExpr -- Find the expression of the declaration.

let declName := decl.userName -- Find the name of the declaration.

let declType ← Lean.Meta.inferType declExpr -- **NEW:** Find the type.

dbg_trace f!"+ local decl: name: {declName} | expr: {declExpr} | type: {declType}"
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example (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by

list_local_decls_2

-- + local decl: name: test_list_local_decls_2 | expr: _uniq.4263 | type: (Eq.{1} Nat

...)↪

-- + local decl: name: H1 | expr: _uniq.4264 | type: Eq.{1} Nat ...)

-- + local decl: name: H2 | expr: _uniq.4265 | type: Eq.{1} Nat ...)

rfl

We check if the type of the LocalDecl is equal to the goal type with Lean.Meta.isExprDefEq.

See that we check if the types are equal at eq?, and we print that H1 has the same

type as the goal (local decl[EQUAL? true]: name: H1), and we print that H2 does

not have the same type (local decl[EQUAL? false]: name: H2):

elab "list_local_decls_3" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goalType ← Lean.Elab.Tactic.getMainTarget

let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.

ctx.forM fun decl: Lean.LocalDecl => do

let declExpr := decl.toExpr -- Find the expression of the declaration.

let declName := decl.userName -- Find the name of the declaration.

let declType ← Lean.Meta.inferType declExpr -- Find the type.

let eq? ← Lean.Meta.isExprDefEq declType goalType -- **NEW** Check if type equals

goal type.↪

dbg_trace f!"+ local decl[EQUAL? {eq?}]: name: {declName}"

example (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by

list_local_decls_3

-- + local decl[EQUAL? false]: name: test_list_local_decls_3

-- + local decl[EQUAL? true]: name: H1

-- + local decl[EQUAL? false]: name: H2

rfl

Finally, we put all of these parts together to write a tactic that loops over

all declarations and finds one with the correct type. We loop over dec-

larations with lctx.findDeclM?. We infer the type of declarations with

Lean.Meta.inferType. We check that the declaration has the same type as

the goal with Lean.Meta.isExprDefEq:

elab "custom_assump_1" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goalType ← Lean.Elab.Tactic.getMainTarget

let lctx ← Lean.MonadLCtx.getLCtx

-- Iterate over the local declarations...

let option_matching_expr ← lctx.findDeclM? fun ldecl: Lean.LocalDecl => do

let declExpr := ldecl.toExpr -- Find the expression of the declaration.

let declType ← Lean.Meta.inferType declExpr -- Find the type.
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if (← Lean.Meta.isExprDefEq declType goalType) -- Check if type equals goal type.

then return some declExpr -- If equal, success!

else return none -- Not found.

dbg_trace f!"matching_expr: {option_matching_expr}"

example (H1 : 1 = 1) (H2 : 2 = 2) : 2 = 2 := by

custom_assump_1

-- matching_expr: some _uniq.6241

rfl

example (H1 : 1 = 1) : 2 = 2 := by

custom_assump_1

-- matching_expr: none

rfl

Now that we are able to find the matching expression, we need to close the theorem

by using the match. We do this with Lean.Elab.Tactic.closeMainGoal. When we do

not have a matching expression, we throw an error with Lean.Meta.throwTacticEx,

which allows us to report an error corresponding to a given goal. When throwing this

error, we format the error using m!"..." which builds a MessageData. This provides

nicer error messages than using f!"..." which builds a Format. This is because

MessageData also runs delaboration, which allows it to convert raw Lean terms

like (Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0}

Nat 2 (instOfNatNat 2))) into readable strings like(2 = 2). The full code listing

given below shows how to do this:

elab "custom_assump_2" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goal ← Lean.Elab.Tactic.getMainGoal

let goalType ← Lean.Elab.Tactic.getMainTarget

let ctx ← Lean.MonadLCtx.getLCtx

let option_matching_expr ← ctx.findDeclM? fun decl: Lean.LocalDecl => do

let declExpr := decl.toExpr

let declType ← Lean.Meta.inferType declExpr

if ← Lean.Meta.isExprDefEq declType goalType

then return Option.some declExpr

else return Option.none

match option_matching_expr with

| some e => Lean.Elab.Tactic.closeMainGoal `custom_assump_2 e

| none =>

Lean.Meta.throwTacticEx `custom_assump_2 goal

(m!"unable to find matching hypothesis of type ({goalType})")

example (H1 : 1 = 1) (H2 : 2 = 2) : 2 = 2 := by

custom_assump_2
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#check_failure (by custom_assump_2 : (H1 : 1 = 1) → 2 = 2)

-- tactic 'custom_assump_2' failed, unable to find matching hypothesis of type (2 = 2)

-- H1 : 1 = 1

-- ⊢ 2 = 2

Tweaking the context

Until now, we’ve only performed read-like operations with the context. But what if

we want to change it? In this section we will see how to change the order of goals

and how to add content to it (new hypotheses).

Then, after elaborating our terms, we will need to use the helper function

Lean.Elab.Tactic.liftMetaTactic, which allows us to run computations in MetaM

while also giving us the goal MVarId for us to play with. In the end of our

computation, liftMetaTactic expects us to return a List MVarId as the resulting

list of goals.

The only substantial difference between custom_let and custom_have is that the

former uses Lean.MVarId.define and the later uses Lean.MVarId.assert:

open Lean.Elab.Tactic in

elab "custom_let " n:ident " : " t:term " := " v:term : tactic =>

withMainContext do

let t ← elabTerm t none

let v ← elabTermEnsuringType v t

liftMetaTactic fun mvarId => do

let mvarIdNew ← mvarId.define n.getId t v

let (_, mvarIdNew) ← mvarIdNew.intro1P

return [mvarIdNew]

open Lean.Elab.Tactic in

elab "custom_have " n:ident " : " t:term " := " v:term : tactic =>

withMainContext do

let t ← elabTerm t none

let v ← elabTermEnsuringType v t

liftMetaTactic fun mvarId => do

let mvarIdNew ← mvarId.assert n.getId t v

let (_, mvarIdNew) ← mvarIdNew.intro1P

return [mvarIdNew]

theorem test_faq_have : True := by

custom_let n : Nat := 5

custom_have h : n = n := rfl

-- n : Nat := 5
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-- h : n = n

-- ⊢ True

trivial

“Getting” and “Setting” the list of goals

To illustrate these, let’s build a tactic that can reverse the list of goals. We can use

Lean.Elab.Tactic.getGoals and Lean.Elab.Tactic.setGoals:

elab "reverse_goals" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goals : List Lean.MVarId ← Lean.Elab.Tactic.getGoals

Lean.Elab.Tactic.setGoals goals.reverse

theorem test_reverse_goals : (1 = 2 ∧ 3 = 4) ∧ 5 = 6 := by

constructor

constructor

-- case left.left

-- ⊢ 1 = 2

-- case left.right

-- ⊢ 3 = 4

-- case right

-- ⊢ 5 = 6

reverse_goals

-- case right

-- ⊢ 5 = 6

-- case left.right

-- ⊢ 3 = 4

-- case left.left

-- ⊢ 1 = 2

all_goals sorry

FAQ

In this section, we collect common patterns that are used during writing tactics, to

make it easy to find common patterns.

Q: How do I use goals?

A: Goals are represented as metavariables. The module Lean.Elab.Tactic.Basic

has many functions to add new goals, switch goals, etc.

Q: How do I get the main goal?
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A: Use Lean.Elab.Tactic.getMainGoal.

elab "faq_main_goal" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goal ← Lean.Elab.Tactic.getMainGoal

dbg_trace f!"goal: {goal.name}"

example : 1 = 1 := by

faq_main_goal

-- goal: _uniq.9298

rfl

Q: How do I get the list of goals?

A: Use getGoals.

elab "faq_get_goals" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goals ← Lean.Elab.Tactic.getGoals

goals.forM $ fun goal => do

let goalType ← goal.getType

dbg_trace f!"goal: {goal.name} | type: {goalType}"

example (b : Bool) : b = true := by

cases b

faq_get_goals

-- goal: _uniq.10067 | type: Eq.{1} Bool Bool.false Bool.true

-- goal: _uniq.10078 | type: Eq.{1} Bool Bool.true Bool.true

sorry

rfl

Q: How do I get the current hypotheses for a goal?

A: Use Lean.MonadLCtx.getLCtx which provides the local context, and then iterate

on the LocalDeclarations of the LocalContext with accessors such as foldlM and

forM.

elab "faq_get_hypotheses" : tactic =>

Lean.Elab.Tactic.withMainContext do

let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.

ctx.forM (fun (decl : Lean.LocalDecl) => do

let declExpr := decl.toExpr -- Find the expression of the declaration.

let declType := decl.type -- Find the type of the declaration.

let declName := decl.userName -- Find the name of the declaration.

dbg_trace f!" local decl: name: {declName} | expr: {declExpr} | type: {declType}"

)

example (H1 : 1 = 1) (H2 : 2 = 2): 3 = 3 := by
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faq_get_hypotheses

-- local decl: name: _example | expr: _uniq.10814 | type: ...

-- local decl: name: H1 | expr: _uniq.10815 | type: ...

-- local decl: name: H2 | expr: _uniq.10816 | type: ...

rfl

Q: How do I evaluate a tactic?

A: Use Lean.Elab.Tactic.evalTactic: Syntax → TacticM Unit which evaluates a

given tactic syntax. One can create tactic syntax using the macro `(tactic| ⋯).

For example, one could call try rfl with the piece of code:

Lean.Elab.Tactic.evalTactic (← `(tactic| try rfl))

Q: How do I check if two expressions are equal?

A: Use Lean.Meta.isExprDefEq <expr-1> <expr-2>.

#check Lean.Meta.isExprDefEq

-- Lean.Meta.isExprDefEq : Lean.Expr → Lean.Expr → Lean.MetaM Bool

Q: How do I throw an error from a tactic?

A: Use throwTacticEx <tactic-name> <goal-mvar> <error>.

elab "faq_throw_error" : tactic =>

Lean.Elab.Tactic.withMainContext do

let goal ← Lean.Elab.Tactic.getMainGoal

Lean.Meta.throwTacticEx `faq_throw_error goal "throwing an error at the current

goal"↪

#check_failure (by faq_throw_error : (b : Bool) → b = true)

-- tactic 'faq_throw_error' failed, throwing an error at the current goal

-- ⊢ ∀ (b : Bool), b = true

Q:What is the difference between Lean.Elab.Tactic.* and Lean.Meta.Tactic.*?

A: Lean.Meta.Tactic.* contains low level code that uses the Meta monad to imple-

ment basic features such as rewriting. Lean.Elab.Tactic.* contains high-level code

that connects the low level development in Lean.Meta to the tactic infrastructure

and the parsing front-end.

Exercises

1. Consider the theorem p ∧ q ↔ q ∧ p. We could either write its proof as a proof

term, or construct it using the tactics. When we are writing the proof of this
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theorem as a proof term, we’re gradually filling up _s with certain expressions,

step by step. Each such step corresponds to a tactic.

There are many combinations of steps in which we could write this proof

term - but consider the sequence of steps we wrote below. Please write each

step as a tactic. The tactic step_1 is filled in, please do the same for the

remaining tactics (for the sake of the exercise, try to use lower-level apis, such

as mkFreshExprMVar, mvarId.assign and modify fun _ => { goals := ~).

-- [this is the initial goal]

example : p ∧ q ↔ q ∧ p :=

_

-- step_1

example : p ∧ q ↔ q ∧ p :=

Iff.intro _ _

-- step_2

example : p ∧ q ↔ q ∧ p :=

Iff.intro

(

fun hA =>

_

)

(

fun hB =>

(And.intro hB.right hB.left)

)

-- step_3

example : p ∧ q ↔ q ∧ p :=

Iff.intro

(

fun hA =>

(And.intro _ _)

)

(

fun hB =>

(And.intro hB.right hB.left)

)

-- step_4

example : p ∧ q ↔ q ∧ p :=

Iff.intro

(

fun hA =>
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(And.intro hA.right hA.left)

)

(

fun hB =>

(And.intro hB.right hB.left)

)

elab "step_1" : tactic => do

let mvarId ← getMainGoal

let goalType ← getMainTarget

let Expr.app (Expr.app (Expr.const `Iff _) a) b := goalType | throwError "Goal

type is not of the form `a ↔ b`"↪

-- 1. Create new `_`s with appropriate types.

let mvarId1 ← mkFreshExprMVar (Expr.forallE `xxx a b .default) (userName :=

"red")↪

let mvarId2 ← mkFreshExprMVar (Expr.forallE `yyy b a .default) (userName :=

"blue")↪

-- 2. Assign the main goal to the expression `Iff.intro _ _`.

mvarId.assign (mkAppN (Expr.const `Iff.intro []) #[a, b, mvarId1, mvarId2])

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [mvarId1.mvarId!, mvarId2.mvarId!] }

theorem gradual (p q : Prop) : p ∧ q ↔ q ∧ p := by

step_1

step_2

step_3

step_4

2. In the first exercise, we used lower-level modify api to update our goals.

liftMetaTactic, setGoals, appendGoals, replaceMainGoal, closeMainGoal,

etc. are all syntax sugars on top of modify fun s : State => { s with goals

:= myMvarIds }. Please rewrite the forker tactic with:

a) liftMetaTactic b) setGoals c) replaceMainGoal

elab "forker" : tactic => do

let mvarId ← getMainGoal

let goalType ← getMainTarget

let (Expr.app (Expr.app (Expr.const `And _) p) q) := goalType |

Lean.Meta.throwTacticEx `forker mvarId (m!"Goal is not of the form P ∧ Q")↪

mvarId.withContext do
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let mvarIdP ← mkFreshExprMVar p (userName := "red")

let mvarIdQ ← mkFreshExprMVar q (userName := "blue")

let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, mvarIdQ]

mvarId.assign proofTerm

modify fun state => { goals := [mvarIdP.mvarId!, mvarIdQ.mvarId!] ++

state.goals.drop 1 }↪

example (A B C : Prop) : A → B → C → (A ∧ B) ∧ C := by

intro hA hB hC

forker

forker

assumption

assumption

assumption

3. In the first exercise, you created your own intro in step_2 (with a hardcoded

hypothesis name, but the basics are the same). When writing tactics, we usually

want to use functions such as intro, intro1, intro1P, introN or introNP.

For each of the points below, create a tactic introductor (one per each point),

that turns the goal (ab: a = b) → (bc: b = c) → (a = c):

a) into the goal (a = c) with hypotheses (ab✝: a = b) and (bc✝: b = c). b)

into the goal (bc: b = c) → (a = c) with hypothesis (ab: a = b). c) into the

goal (bc: b = c) → (a = c) with hypothesis (hello: a = b).

example (a b c : Nat) : (ab: a = b) → (bc: b = c) → (a = c) := by

introductor

sorry

Hint: “P” in intro1P and introNP stands for “Preserve”.
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Lean4 Cheat-sheet

Extracting information

• Extract the goal: Lean.Elab.Tactic.getMainGoal

Use as let goal ← Lean.Elab.Tactic.getMainGoal

• Extract the declaration out of a metavariable: mvarId.getDecl when mvarId

: Lean.MVarId is in context. For instance, mvarId could be the goal extracted

using getMainGoal

• Extract the type of a metavariable: mvarId.getType when mvarId :

Lean.MVarId is in context.

• Extract the type of the main goal: Lean.Elab.Tactic.getMainTarget

Use as let goal_type ← Lean.Elab.Tactic.getMainTarget

Achieves the same as

let goal ← Lean.Elab.Tactic.getMainGoal

let goal_type ← goal.getType

• Extract local context: Lean.MonadLCtx.getLCtx

Use as let lctx ← Lean.MonadLCtx.getLCtx

• Extract the name of a declaration: Lean.LocalDecl.userName ldecl when

ldecl : Lean.LocalDecl is in context

• Extract the type of an expression: Lean.Meta.inferType expr when expr :

Lean.Expr is an expression in context

Use as let expr_type ← Lean.Meta.inferType expr

Playing around with expressions

• Convert a declaration into an expression: Lean.LocalDecl.toExpr

105



Metaprogramming in Lean 4 .

Use as ldecl.toExpr, when ldecl : Lean.LocalDecl is in context

For instance, ldecl could be let ldecl ← Lean.MonadLCtx.getLCtx

• Check whether two expressions are definitionally equal: Lean.Meta.isDefEq

ex1 ex2 when ex1 ex2 : Lean.Expr are in context. Returns a Lean.MetaM

Bool

• Close a goal: Lean.Elab.Tactic.closeMainGoal expr when expr : Lean.Expr

is in context

Further commands

• meta-sorry: Lean.Elab.admitGoal goal, when goal : Lean.MVarId is the cur-

rent goal

Printing and errors

• Print a “permanent” message in normal usage:

Lean.logInfo f!"Hi, I will print\n{Syntax}"

• Print a message while debugging:

dbg_trace f!"1) goal: {Syntax_that_will_be_interpreted}".

• Throw an error: Lean.Meta.throwTacticEx name mvar message_data where

name : Lean.Name is the name of a tactic and mvar contains error data.

Use as Lean.Meta.throwTacticExtac goal (m¡‘unable to find matching hypothe-

sis of type ({goal_type})”)where them!formatting builds aMessageData‘ for

better printing of terms

TODO: Add? * Lean.LocalContext.forM * Lean.LocalContext.findDeclM?
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Extra: Options

Options are a way to communicate some special configuration to both your meta

programs and the Lean compiler itself. Basically it’s just a KVMap which is a simple

map from Name to a Lean.DataValue. Right now there are 6 kinds of data values: -

String - Bool - Name - Nat - Int - Syntax

Setting an option to tell the Lean compiler to do something different with your

program is quite simple with the set_option command:

import Lean

open Lean

#check 1 + 1 -- 1 + 1 : Nat

set_option pp.explicit true -- No custom syntax in pretty printing

#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

set_option pp.explicit false

You can furthermore limit an option value to just the next command or term:

set_option pp.explicit true in

#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

#check 1 + 1 -- 1 + 1 : Nat

#check set_option trace.Meta.synthInstance true in 1 + 1 -- the trace of the type class

synthesis for `OfNat` and `HAdd`↪

If you want to know which options are available out of the Box right now you can

simply write out the set_option command and move your cursor to where the name

is written, it should give you a list of them as auto completion suggestions. The

most useful group of options when you are debugging some meta thing is the trace.

one.
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Options in meta programming

Now that we know how to set options, let’s take a look at how a meta program can

get access to them. The most common way to do this is via the MonadOptions type

class, an extension to Monad that provides a function getOptions : m Options. As

of now, it is implemented by: - CoreM - CommandElabM - LevelElabM - all monads to

which you can lift operations of one of the above (e.g. MetaM from CoreM)

Once we have an Options object, we can query the information via Options.get. To

show this, let’s write a command that prints the value of pp.explicit.

elab "#getPPExplicit" : command => do

let opts ← getOptions

-- defValue = default value

logInfo s!"pp.explicit : {opts.get pp.explicit.name pp.explicit.defValue}"

#getPPExplicit -- pp.explicit : false

set_option pp.explicit true in

#getPPExplicit -- pp.explicit : true

Note that the real implementation of getting pp.explicit, Lean.getPPExplicit,

uses whether pp.all is set as a default value instead.

Making our own

Declaring our own option is quite easy as well. The Lean compiler provides a macro

register_option for this. Let’s see it in action:

register_option book.myGreeting : String := {

defValue := "Hello World"

group := "pp"

descr := "just a friendly greeting"

}

However, we cannot just use an option that we just declared in the same file it was

declared in because of initialization restrictions.
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Extra: Pretty Printing

The pretty printer is what Lean uses to present terms that have been elaborated

to the user. This is done by converting the Exprs back into Syntax and then even

higher level pretty printing datastructures. This means Lean does not actually

recall the Syntax it used to create some Expr: there has to be code that tells it how

to do that. In the big picture, the pretty printer consists of three parts run in the

order they are listed in:

• the delaborator this will be our main interest since we can easily extend it

with our own code. Its job is to turn Expr back into Syntax.

• the parenthesizer responsible for adding parenthesis into the Syntax tree,

where it thinks they would be useful

• the formatter responsible for turning the parenthesized Syntax tree into

a Format object that contains more pretty printing information like explicit

whitespaces

Delaboration

As its name suggests, the delaborator is in a sense the opposite of the elaborator.

The job of the delaborator is to take an Expr produced by the elaborator and turn

it back into a Syntax which, if elaborated, should produce an Expr that behaves

equally to the input one.

Delaborators have the type Lean.PrettyPrinter.Delaborator.Delab. This is an

alias for DelabM Syntax, where DelabM is the delaboration monad. All of this ma-

chinery is defined here. DelabM provides us with quite a lot of options you can look

up in the documentation (TODO: Docs link). We will merely highlight the most

relevant parts here.

• It has a MonadQuotation instance which allows us to declare Syntax objects

using the familiar quotation syntax.

• It can run MetaM code.
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• It has a MonadExcept instance for throwing errors.

• It can interact with pp options using functions like whenPPOption.

• You can obtain the current subexpression using SubExpr.getExpr. There is

also an entire API defined around this concept in the SubExpr module.

Making our own

Like so many things in metaprogramming the elaborator is based on an attribute, in

this case the delab one. delab expects a Name as an argument, this name has to start

with the name of an Expr constructor, most commonly const or app. This constructor

name is then followed by the name of the constant we want to delaborate. For

example, if we want to delaborate a function foo in a special way we would use

app.foo. Let’s see this in action:

import Lean

open Lean PrettyPrinter Delaborator SubExpr

def foo : Nat → Nat := fun x => 42

@[delab app.foo]

def delabFoo : Delab := do

`(1)

#check (foo) -- 1 : Nat → Nat

#check foo 13 -- 1 : Nat, full applications are also pretty printed this way

This is obviously not a good delaborator since reelaborating this Syntax will not

yield the same Expr. Like with many other metaprogramming attributes we can

also overload delaborators:

@[delab app.foo]

def delabfoo2 : Delab := do

`(2)

#check (foo) -- 2 : Nat → Nat

The mechanism for figuring out which one to use is the same as well. The de-

laborators are tried in order, in reverse order of registering, until one does not

throw an error, indicating that it “feels unresponsible for the Expr”. In the case of

delaborators, this is done using failure:

@[delab app.foo]

def delabfoo3 : Delab := do
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failure

`(3)

#check (foo) -- 2 : Nat → Nat, still 2 since 3 failed

In order to write a proper delaborator for foo, we will have to use some slightly

more advanced machinery though:

@[delab app.foo]

def delabfooFinal : Delab := do

let e ← getExpr

guard $ e.isAppOfArity' `foo 1 -- only delab full applications this way

let fn := mkIdent `fooSpecial

let arg ← withAppArg delab

`($fn $arg)

#check foo 42 -- fooSpecial 42 : Nat

#check (foo) -- 2 : Nat → Nat, still 2 since 3 failed

Can you extend delabFooFinal to also account for non full applications?

Unexpanders

While delaborators are obviously quite powerful it is quite often not necessary to

use them. If you look in the Lean compiler for @[delab or rather @[builtin_delab

(a special version of the delab attribute for compiler use, we don’t care about it),

you will see there are quite few occurrences of it. This is because the majority of

pretty printing is in fact done by so called unexpanders. Unlike delaborators they

are of type Lean.PrettyPrinter.Unexpander which in turn is an alias for Syntax →

Lean.PrettyPrinter.UnexpandM Syntax. As you can see, they are Syntax to Syntax

translations, quite similar to macros, except that they are supposed to be the inverse

of macros. The UnexpandM monad is quite a lot weaker than DelabM but it still has:

• MonadQuotation for syntax quotations

• The ability to throw errors, although not very informative ones: throw () is

the only valid one

Unexpanders are always specific to applications of one constant. They are registered

using the app_unexpander attribute, followed by the name of said constant. The

unexpander is passed the entire application of the constant after the Expr has been

delaborated, without implicit arguments. Let’s see this in action:
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def myid {α : Type} (x : α) := x

@[app_unexpander myid]

def unexpMyId : Unexpander

-- hygiene disabled so we can actually return `id` without macro scopes etc.

| `($_myid $arg) => set_option hygiene false in `(id $arg)

| `($_myid) => pure $ mkIdent `id

#check myid 12 -- id 12 : Nat

#check (myid) -- id : ?m.3870 → ?m.3870

For a few nice examples of unexpanders you can take a look at NotationExtra

Mini project

As per usual, we will tackle a little mini project at the end of the chapter. This time

we build our own unexpander for a mini programming language. Note that many

ways to define syntax already have generation of the required pretty printer code

built-in, e.g. infix, and notation (however not macro_rules). So, for easy syntax,

you will never have to do this yourself.

declare_syntax_cat lang

syntax num : lang

syntax ident : lang

syntax "let " ident " := " lang " in " lang: lang

syntax "[Lang| " lang "]" : term

inductive LangExpr

| numConst : Nat → LangExpr

| ident : String → LangExpr

| letE : String → LangExpr → LangExpr → LangExpr

macro_rules

| `([Lang| $x:num ]) => `(LangExpr.numConst $x)

| `([Lang| $x:ident]) => `(LangExpr.ident $(Lean.quote (toString x.getId)))

| `([Lang| let $x:ident := $v:lang in $b:lang]) => `(LangExpr.letE $(Lean.quote

(toString x.getId)) [Lang| $v] [Lang| $b])↪

instance : Coe NumLit (TSyntax `lang) where

coe s := ⟨s.raw⟩

instance : Coe Ident (TSyntax `lang) where

coe s := ⟨s.raw⟩

-- LangExpr.letE "foo" (LangExpr.numConst 12)
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-- (LangExpr.letE "bar" (LangExpr.ident "foo") (LangExpr.ident "foo")) : LangExpr

#check [Lang|

let foo := 12 in

let bar := foo in

foo

]

As you can see, the pretty printing output right now is rather ugly to look at. We

can do better with an unexpander:

@[app_unexpander LangExpr.numConst]

def unexpandNumConst : Unexpander

| `($_numConst $x:num) => `([Lang| $x])

| _ => throw ()

@[app_unexpander LangExpr.ident]

def unexpandIdent : Unexpander

| `($_ident $x:str) =>

let str := x.getString

let name := mkIdent $ Name.mkSimple str

`([Lang| $name])

| _ => throw ()

@[app_unexpander LangExpr.letE]

def unexpandLet : Unexpander

| `($_letE $x:str [Lang| $v:lang] [Lang| $b:lang]) =>

let str := x.getString

let name := mkIdent $ Name.mkSimple str

`([Lang| let $name := $v in $b])

| _ => throw ()

-- [Lang| let foo := 12 in foo] : LangExpr

#check [Lang|

let foo := 12 in foo

]

-- [Lang| let foo := 12 in let bar := foo in foo] : LangExpr

#check [Lang|

let foo := 12 in

let bar := foo in

foo

]

That’s much better! As always, we encourage you to extend the language yourself

with things like parenthesized expressions, more data values, quotations for term

or whatever else comes to your mind.
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import Lean

open Lean Meta
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Solutions

Expressions: Solutions

1.

def one : Expr :=

Expr.app (Expr.app (Expr.const `Nat.add []) (mkNatLit 1)) (mkNatLit 2)

elab "one" : term => return one

#check one -- Nat.add 1 2 : Nat

#reduce one -- 3

2.

def two : Expr :=

Lean.mkAppN (Expr.const `Nat.add []) #[mkNatLit 1, mkNatLit 2]

elab "two" : term => return two

#check two -- Nat.add 1 2 : Nat

#reduce two -- 3

3.

def three : Expr :=

Expr.lam `x (Expr.const `Nat [])

(Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, Expr.bvar 0])

BinderInfo.default

elab "three" : term => return three

#check three -- fun x => Nat.add 1 x : Nat → Nat

#reduce three 6 -- 7
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4.

def four : Expr :=

Expr.lam `a (Expr.const `Nat [])

(

Expr.lam `b (Expr.const `Nat [])

(

Expr.lam `c (Expr.const `Nat [])

(

Lean.mkAppN

(Expr.const `Nat.add [])

#[

(Lean.mkAppN (Expr.const `Nat.mul []) #[Expr.bvar 1, Expr.bvar 2]),

(Expr.bvar 0)

]

)

BinderInfo.default

)

BinderInfo.default

)

BinderInfo.default

elab "four" : term => return four

#check four -- fun a b c => Nat.add (Nat.mul b a) c : Nat → Nat → Nat → Nat

#reduce four 666 1 2 -- 668

5.

def five :=

Expr.lam `x (Expr.const `Nat [])

(

Expr.lam `y (Expr.const `Nat [])

(Lean.mkAppN (Expr.const `Nat.add []) #[Expr.bvar 1, Expr.bvar 0])

BinderInfo.default

)

BinderInfo.default

elab "five" : term => return five

#check five -- fun x y => Nat.add x y : Nat → Nat → Nat

#reduce five 4 5 -- 9
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6.

def six :=

Expr.lam `x (Expr.const `String [])

(Lean.mkAppN (Expr.const `String.append []) #[Lean.mkStrLit "Hello, ", Expr.bvar 0])

BinderInfo.default

elab "six" : term => return six

#check six -- fun x => String.append "Hello, " x : String → String

#eval six "world" -- "Hello, world"

7.

def seven : Expr :=

Expr.forallE `x (Expr.sort Lean.Level.zero)

(Expr.app (Expr.app (Expr.const `And []) (Expr.bvar 0)) (Expr.bvar 0))

BinderInfo.default

elab "seven" : term => return seven

#check seven -- ∀ (x : Prop), x ∧ x : Prop

#reduce seven -- ∀ (x : Prop), x ∧ x

8.

def eight : Expr :=

Expr.forallE `notUsed

(Expr.const `Nat []) (Expr.const `String [])

BinderInfo.default

elab "eight" : term => return eight

#check eight -- Nat → String : Type

#reduce eight -- Nat → String

9.

def nine : Expr :=

Expr.lam `p (Expr.sort Lean.Level.zero)

(

Expr.lam `hP (Expr.bvar 0)

(Expr.bvar 0)

BinderInfo.default

)

BinderInfo.default
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elab "nine" : term => return nine

#check nine -- fun p hP => hP : ∀ (p : Prop), p → p

#reduce nine -- fun p hP => hP

10.

def ten : Expr :=

Expr.sort (Nat.toLevel 7)

elab "ten" : term => return ten

#check ten -- Type 6 : Type 7

#reduce ten -- Type 6

import Lean

open Lean Meta

MetaM: Solutions

1.

#eval show MetaM Unit from do

let hi ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `hi)

IO.println s!"value in hi: {← instantiateMVars hi}" -- ?_uniq.1

hi.mvarId!.assign (Expr.app (Expr.const `Nat.succ []) (Expr.const ``Nat.zero []))

IO.println s!"value in hi: {← instantiateMVars hi}" -- Nat.succ Nat.zero

2.

-- It would output the same expression we gave it - there were no metavariables to

instantiate.↪

#eval show MetaM Unit from do

let instantiatedExpr ← instantiateMVars (Expr.lam `x (Expr.const `Nat []) (Expr.bvar

0) BinderInfo.default)↪

IO.println instantiatedExpr -- fun (x : Nat) => x

3.

#eval show MetaM Unit from do

let oneExpr := Expr.app (Expr.const `Nat.succ []) (Expr.const ``Nat.zero [])
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let twoExpr := Expr.app (Expr.const `Nat.succ []) oneExpr

-- Create `mvar1` with type `Nat`

let mvar1 ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `mvar1)

-- Create `mvar2` with type `Nat`

let mvar2 ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `mvar2)

-- Create `mvar3` with type `Nat`

let mvar3 ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `mvar3)

-- Assign `mvar1` to `2 + ?mvar2 + ?mvar3`

mvar1.mvarId!.assign (Lean.mkAppN (Expr.const `Nat.add []) #[(Lean.mkAppN (Expr.const

`Nat.add []) #[twoExpr, mvar2]), mvar3])↪

-- Assign `mvar3` to `1`

mvar3.mvarId!.assign oneExpr

-- Instantiate `mvar1`, which should result in expression `2 + ?mvar2 + 1`

let instantiatedMvar1 ← instantiateMVars mvar1

IO.println instantiatedMvar1 -- Nat.add (Nat.add 2 ?_uniq.2) 1

4.

elab "explore" : tactic => do

let mvarId : MVarId ← Lean.Elab.Tactic.getMainGoal

let metavarDecl : MetavarDecl ← mvarId.getDecl

IO.println "Our metavariable"

-- [anonymous] : 2 = 2

IO.println s!"\n{metavarDecl.userName} : {metavarDecl.type}"

IO.println "\nAll of its local declarations"

let localContext : LocalContext := metavarDecl.lctx

for (localDecl : LocalDecl) in localContext do

if localDecl.isImplementationDetail then

-- (implementation detail) red : 1 = 1 → 2 = 2 → 2 = 2

IO.println s!"\n(implementation detail) {localDecl.userName} : {localDecl.type}"

else

-- hA : 1 = 1

-- hB : 2 = 2

IO.println s!"\n{localDecl.userName} : {localDecl.type}"

theorem red (hA : 1 = 1) (hB : 2 = 2) : 2 = 2 := by

explore

sorry

Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Böving,

Jannis Limperg, Siddhartha Gadgil, Siddharth Bhat

119



Metaprogramming in Lean 4 .

5.

-- The type of our metavariable `2 + 2`. We want to find a `localDecl` that has the same

type, and `assign` our metavariable to that `localDecl`.↪

elab "solve" : tactic => do

let mvarId : MVarId ← Lean.Elab.Tactic.getMainGoal

let metavarDecl : MetavarDecl ← mvarId.getDecl

let localContext : LocalContext := metavarDecl.lctx

for (localDecl : LocalDecl) in localContext do

if ← Lean.Meta.isDefEq localDecl.type metavarDecl.type then

mvarId.assign localDecl.toExpr

theorem redSolved (hA : 1 = 1) (hB : 2 = 2) : 2 = 2 := by

solve

6.

def sixA : Bool → Bool := fun x => x

-- .lam `x (.const `Bool []) (.bvar 0) (Lean.BinderInfo.default)

#eval Lean.Meta.reduce (Expr.const `sixA [])

def sixB : Bool := (fun x => x) ((true && false) || true)

-- .const `Bool.true []

#eval Lean.Meta.reduce (Expr.const `sixB [])

def sixC : Nat := 800 + 2

-- .lit (Lean.Literal.natVal 802)

#eval Lean.Meta.reduce (Expr.const `sixC [])

7.

#eval show MetaM Unit from do

let litExpr := Expr.lit (Lean.Literal.natVal 1)

let standardExpr := Expr.app (Expr.const ``Nat.succ []) (Expr.const ``Nat.zero [])

let isEqual ← Lean.Meta.isDefEq litExpr standardExpr

IO.println isEqual -- true

8.

-- a) `5 =?= (fun x => 5) ((fun y : Nat → Nat => y) (fun z : Nat => z))`

-- Definitionally equal.
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def expr2 := (fun x => 5) ((fun y : Nat → Nat => y) (fun z : Nat => z))

#eval show MetaM Unit from do

let expr1 := Lean.mkNatLit 5

let expr2 := Expr.const `expr2 []

let isEqual ← Lean.Meta.isDefEq expr1 expr2

IO.println isEqual -- true

-- b) `2 + 1 =?= 1 + 2`

-- Definitionally equal.

#eval show MetaM Unit from do

let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, Lean.mkNatLit 1]

let expr2 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, Lean.mkNatLit 2]

let isEqual ← Lean.Meta.isDefEq expr1 expr2

IO.println isEqual -- true

-- c) `?a =?= 2`, where `?a` has a type `String`

-- Not definitionally equal.

#eval show MetaM Unit from do

let expr1 ← Lean.Meta.mkFreshExprMVar (Expr.const `String []) (userName := `expr1)

let expr2 := Lean.mkNatLit 2

let isEqual ← Lean.Meta.isDefEq expr1 expr2

IO.println isEqual -- false

-- d) `?a + Int =?= "hi" + ?b`, where `?a` and `?b` don't have a type

-- Definitionally equal.

-- `?a` is assigned to `"hi"`, `?b` is assigned to `Int`.

#eval show MetaM Unit from do

let a ← Lean.Meta.mkFreshExprMVar Option.none (userName := `a)

let b ← Lean.Meta.mkFreshExprMVar Option.none (userName := `b)

let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[a, Expr.const `Int []]

let expr2 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkStrLit "hi", b]

let isEqual ← Lean.Meta.isDefEq expr1 expr2

IO.println isEqual -- true

IO.println s!"a: {← instantiateMVars a}"

IO.println s!"b: {← instantiateMVars b}"

-- e) `2 + ?a =?= 3`

-- Not definitionally equal.

#eval show MetaM Unit from do

let a ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `a)

let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, a]

let expr2 := Lean.mkNatLit 3

let isEqual ← Lean.Meta.isDefEq expr1 expr2

IO.println isEqual -- false
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-- f) `2 + ?a =?= 2 + 1`

-- Definitionally equal.

-- `?a` is assigned to `1`.

#eval show MetaM Unit from do

let a ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `a)

let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, a]

let expr2 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, Lean.mkNatLit 1]

let isEqual ← Lean.Meta.isDefEq expr1 expr2

IO.println isEqual -- true

IO.println s!"a: {← instantiateMVars a}"

9.

@[reducible] def reducibleDef : Nat := 1 -- same as `abbrev`

@[instance] def instanceDef : Nat := 2 -- same as `instance`

def defaultDef : Nat := 3

@[irreducible] def irreducibleDef : Nat := 4

@[reducible] def sum := [reducibleDef, instanceDef, defaultDef, irreducibleDef]

#eval show MetaM Unit from do

let constantExpr := Expr.const `sum []

Meta.withTransparency Meta.TransparencyMode.reducible do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- [1, instanceDef, defaultDef, irreducibleDef]

Meta.withTransparency Meta.TransparencyMode.instances do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- [1, 2, defaultDef, irreducibleDef]

Meta.withTransparency Meta.TransparencyMode.default do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- [1, 2, 3, irreducibleDef]

Meta.withTransparency Meta.TransparencyMode.all do

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- [1, 2, 3, 4]

-- Note: if we don't set the transparency mode, we get a pretty strong

`TransparencyMode.default`.↪

let reducedExpr ← Meta.reduce constantExpr

dbg_trace (← ppExpr reducedExpr) -- [1, 2, 3, irreducibleDef]
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10.

-- Non-idiomatic: we can only use `Lean.mkAppN`.

def tenA : MetaM Expr := do

let body := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, Expr.bvar 0]

return Expr.lam `x (Expr.const `Nat []) body BinderInfo.default

-- Idiomatic: we can use both `Lean.mkAppN` and `Lean.Meta.mkAppM`.

def tenB : MetaM Expr := do

Lean.Meta.withLocalDecl `x .default (Expr.const `Nat []) (fun x => do

-- let body := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, x]

let body ← Lean.Meta.mkAppM `Nat.add #[Lean.mkNatLit 1, x]

Lean.Meta.mkLambdaFVars #[x] body

)

#eval show MetaM _ from do

ppExpr (← tenA) -- fun x => Nat.add 1 x

#eval show MetaM _ from do

ppExpr (← tenB) -- fun x => Nat.add 1 x

11.

def eleven : MetaM Expr :=

return Expr.forallE `yellow (Expr.const `Nat []) (Expr.bvar 0) BinderInfo.default

#eval show MetaM _ from do

dbg_trace (← eleven) -- forall (yellow : Nat), yellow

12.

-- Non-idiomatic: we can only use `Lean.mkApp3`.

def twelveA : MetaM Expr := do

let nPlusOne := Expr.app (Expr.app (Expr.const `Nat.add []) (Expr.bvar 0))

(Lean.mkNatLit 1)↪

let forAllBody := Lean.mkApp3 (Expr.const ``Eq []) (Expr.const `Nat []) (Expr.bvar 0)

nPlusOne↪

let forAll := Expr.forallE `n (Expr.const `Nat []) forAllBody BinderInfo.default

return forAll

-- Idiomatic: we can use both `Lean.mkApp3` and `Lean.Meta.mkEq`.

def twelveB : MetaM Expr := do

withLocalDecl `n BinderInfo.default (Expr.const `Nat []) (fun x => do

let nPlusOne := Expr.app (Expr.app (Expr.const `Nat.add []) x) (Lean.mkNatLit 1)
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-- let forAllBody := Lean.mkApp3 (Expr.const ``Eq []) (Expr.const `Nat []) x

nPlusOne↪

let forAllBody ← Lean.Meta.mkEq x nPlusOne

let forAll := mkForallFVars #[x] forAllBody

forAll

)

#eval show MetaM _ from do

ppExpr (← twelveA) -- (n : Nat) → Eq Nat n (Nat.add n 1)

#eval show MetaM _ from do

ppExpr (← twelveB) -- ∀ (n : Nat), n = Nat.add n 1

13.

def thirteen : MetaM Expr := do

withLocalDecl `f BinderInfo.default (Expr.forallE `a (Expr.const `Nat []) (Expr.const

`Nat []) .default) (fun y => do↪

let lamBody ← withLocalDecl `n BinderInfo.default (Expr.const `Nat []) (fun x => do

let fn := Expr.app y x

let fnPlusOne := Expr.app y (Expr.app (Expr.app (Expr.const `Nat.add []) (x))

(Lean.mkNatLit 1))↪

let forAllBody := mkApp3 (mkConst ``Eq []) (Expr.const `Nat []) fn fnPlusOne

let forAll := mkForallFVars #[x] forAllBody

forAll

)

let lam := mkLambdaFVars #[y] lamBody

lam

)

#eval show MetaM _ from do

ppExpr (← thirteen) -- fun f => (n : Nat) → Eq Nat (f n) (f (Nat.add n 1))

14.

#eval show Lean.Elab.Term.TermElabM _ from do

let stx : Syntax ← `(∀ (a : Prop) (b : Prop), a ∨ b → b → a ∧ a)

let expr ← Elab.Term.elabTermAndSynthesize stx none

let (_, _, conclusion) ← forallMetaTelescope expr

dbg_trace conclusion -- And ?_uniq.10 ?_uniq.10

let (_, _, conclusion) ← forallMetaBoundedTelescope expr 2

dbg_trace conclusion -- (Or ?_uniq.14 ?_uniq.15) -> ?_uniq.15 -> (And ?_uniq.14

?_uniq.14)↪
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let (_, _, conclusion) ← lambdaMetaTelescope expr

dbg_trace conclusion -- forall (a.1 : Prop) (b.1 : Prop), (Or a.1 b.1) -> b.1 -> (And

a.1 a.1)↪

15.

#eval show MetaM Unit from do

let a ← Lean.Meta.mkFreshExprMVar (Expr.const `String []) (userName := `a)

let b ← Lean.Meta.mkFreshExprMVar (Expr.sort (Nat.toLevel 1)) (userName := `b)

-- ?a + Int

let c := Lean.mkAppN (Expr.const `Nat.add []) #[a, Expr.const `Int []]

-- "hi" + ?b

let d := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkStrLit "hi", b]

IO.println s!"value in c: {← instantiateMVars c}" -- Nat.add ?_uniq.1 Int

IO.println s!"value in d: {← instantiateMVars d}" -- Nat.add String ?_uniq.2

let state : SavedState ← saveState

IO.println "\nSaved state\n"

if ← Lean.Meta.isDefEq c d then

IO.println true

IO.println s!"value in c: {← instantiateMVars c}"

IO.println s!"value in d: {← instantiateMVars d}"

restoreState state

IO.println "\nRestored state\n"

IO.println s!"value in c: {← instantiateMVars c}"

IO.println s!"value in d: {← instantiateMVars d}"

import Lean

import Lean.Parser.Syntax

import Batteries.Util.ExtendedBinder

open Lean Elab Command Term

Syntax: Solutions

1.

namespace a

scoped notation:71 lhs:50 " � " rhs:72 => lhs - rhs
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end a

namespace b

set_option quotPrecheck false

scoped infixl:71 " � " => fun lhs rhs => lhs - rhs

end b

namespace c

scoped syntax:71 term:50 " � " term:72 : term

scoped macro_rules | `($l:term � $r:term) => `($l - $r)

end c

open a

#eval 5 * 8 � 4 -- 20

#eval 8 � 6 � 1 -- 1

2.

syntax "good" "morning" : term

syntax "hello" : command

syntax "yellow" : tactic

-- Note: the following are highlighted in red, however that's just because we haven't

implemented the semantics ("elaboration function") yet - the syntax parsing stage

works.

↪

↪

#check_failure good morning -- the syntax parsing stage works

/-- error: elaboration function for 'commandHello' has not been implemented -/

hello -- the syntax parsing stage works

/-- error: tactic 'tacticYellow' has not been implemented -/

example : 2 + 2 = 4 := by

yellow -- the syntax parsing stage works

#check_failure yellow -- error: `unknown identifier 'yellow'`

3.

syntax (name := colors) (("blue"+) <|> ("red"+)) num : command

@[command_elab colors]

def elabColors : CommandElab := fun stx => Lean.logInfo "success!"
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blue blue 443

red red red 4

4.

syntax (name := help) "#better_help" "option" (ident)? : command

@[command_elab help]

def elabHelp : CommandElab := fun stx => Lean.logInfo "success!"

#better_help option

#better_help option pp.r

#better_help option some.other.name

5.

-- Note: Batteries has to be in dependencies of your project for this to work.

syntax (name := bigsumin) "∑ " Batteries.ExtendedBinder.extBinder "in " term "," term :

term↪

@[term_elab bigsumin]

def elabSum : TermElab := fun stx tp =>

return mkNatLit 666

#eval ∑ x in { 1, 2, 3 }, x^2

def hi := (∑ x in { "apple", "banana", "cherry" }, x.length) + 1

#eval hi

import Lean

open Lean Elab Command Term Meta

Elaboration: Solutions

1.

elab n:term "♥" a:"♥"? b:"♥"? : term => do

let nExpr : Expr ← elabTermEnsuringType n (mkConst `Nat)

if let some a := a then

if let some b := b then

return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 3)

else
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return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 2)

else

return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 1)

#eval 7 ♥ -- 8

#eval 7 ♥♥ -- 9

#eval 7 ♥♥♥ -- 10

2.

-- a) using `syntax` + `@[command_elab alias] def elabOurAlias : CommandElab`

syntax (name := aliasA) (docComment)? "aliasA " ident " ← " ident* : command

@[command_elab «aliasA»]

def elabOurAlias : CommandElab := λ stx =>

match stx with

| `(aliasA $x:ident ← $ys:ident*) =>

for y in ys do

Lean.logInfo y

| _ =>

throwUnsupportedSyntax

aliasA hi.hello ← d.d w.w nnn

-- b) using `syntax` + `elab_rules`.

syntax (name := aliasB) (docComment)? "aliasB " ident " ← " ident* : command

elab_rules : command

| `(command | aliasB $m:ident ← $ys:ident*) =>

for y in ys do

Lean.logInfo y

aliasB hi.hello ← d.d w.w nnn

-- c) using `elab`

elab "aliasC " x:ident " ← " ys:ident* : command =>

for y in ys do

Lean.logInfo y

aliasC hi.hello ← d.d w.w nnn
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3.

open Parser.Tactic

-- a) using `syntax` + `@[tactic nthRewrite] def elabNthRewrite :

Lean.Elab.Tactic.Tactic`.↪

syntax (name := nthRewriteA) "nth_rewriteA " (config)? num rwRuleSeq (ppSpace location)?

: tactic↪

@[tactic nthRewriteA] def elabNthRewrite : Lean.Elab.Tactic.Tactic := fun stx => do

match stx with

| `(tactic| nth_rewriteA $[$cfg]? $n $rules $_loc) =>

Lean.logInfo "rewrite location!"

| `(tactic| nth_rewriteA $[$cfg]? $n $rules) =>

Lean.logInfo "rewrite target!"

| _ =>

throwUnsupportedSyntax

-- b) using `syntax` + `elab_rules`.

syntax (name := nthRewriteB) "nth_rewriteB " (config)? num rwRuleSeq (ppSpace location)?

: tactic↪

elab_rules (kind := nthRewriteB) : tactic

| `(tactic| nth_rewriteB $[$cfg]? $n $rules $_loc) =>

Lean.logInfo "rewrite location!"

| `(tactic| nth_rewriteB $[$cfg]? $n $rules) =>

Lean.logInfo "rewrite target!"

-- c) using `elab`.

elab "nth_rewriteC " (config)? num rwRuleSeq loc:(ppSpace location)? : tactic =>

if let some loc := loc then

Lean.logInfo "rewrite location!"

else

Lean.logInfo "rewrite target!"

example : 2 + 2 = 4 := by

nth_rewriteC 2 [← add_zero] at h

nth_rewriteC 2 [← add_zero]

sorry

import Lean.Elab.Tactic

open Lean Elab Tactic Meta
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1.

elab "step_1" : tactic => do

let mvarId ← getMainGoal

let goalType ← getMainTarget

let Expr.app (Expr.app (Expr.const `Iff _) a) b := goalType | throwError "Goal type is

not of the form `a ↔ b`"↪

-- 1. Create new `_`s with appropriate types.

let mvarId1 ← mkFreshExprMVar (Expr.forallE `xxx a b .default) (userName := `red)

let mvarId2 ← mkFreshExprMVar (Expr.forallE `yyy b a .default) (userName := `blue)

-- 2. Assign the main goal to the expression `Iff.intro _ _`.

mvarId.assign (mkAppN (Expr.const `Iff.intro []) #[a, b, mvarId1, mvarId2])

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [mvarId1.mvarId!, mvarId2.mvarId!] }

elab "step_2" : tactic => do

let some redMvarId ← (← get).goals.findM? (fun mvarId => do

return (← mvarId.getDecl).userName == `red

) | throwError "No mvar with username `red`"

let some blueMvarId ← (← get).goals.findM? (fun mvarId => do

return (← mvarId.getDecl).userName == `blue

) | throwError "No mvar with username `blue`"

---- HANDLE `red` goal

let Expr.forallE _ redFrom redTo _ := (← redMvarId.getDecl).type | throwError "Goal

type is not of the form `a → b`"↪

let handyRedMvarId ← withLocalDecl `hA BinderInfo.default redFrom (fun fvar => do

-- 1. Create new `_`s with appropriate types.

let mvarId1 ← mkFreshExprMVar redTo MetavarKind.syntheticOpaque `red

-- 2. Assign the main goal to the expression `fun hA => _`.

redMvarId.assign (← mkLambdaFVars #[fvar] mvarId1)

-- just a handy way to return a handyRedMvarId for the next code

return mvarId1.mvarId!

)

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [handyRedMvarId, blueMvarId] }

---- HANDLE `blue` goal

let Expr.forallE _ blueFrom _ _ := (← blueMvarId.getDecl).type | throwError "Goal type

is not of the form `a → b`"↪

-- 1. Create new `_`s with appropriate types.

-- None needed!
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-- 2. Assign the main goal to the expression `fun hB : q ∧ p => (And.intro hB.right

hB.left)`.↪

Lean.Meta.withLocalDecl `hB .default blueFrom (fun hB => do

let body ← Lean.Meta.mkAppM `And.intro #[← Lean.Meta.mkAppM `And.right #[hB], ←

Lean.Meta.mkAppM `And.left #[hB]]↪

blueMvarId.assign (← Lean.Meta.mkLambdaFVars #[hB] body)

)

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [handyRedMvarId] }

elab "step_3" : tactic => do

let mvarId ← getMainGoal

let goalType ← getMainTarget

let mainDecl ← mvarId.getDecl

let Expr.app (Expr.app (Expr.const `And _) q) p := goalType | throwError "Goal type is

not of the form `And q p`"↪

-- 1. Create new `_`s with appropriate types.

let mvarId1 ← mkFreshExprMVarAt mainDecl.lctx mainDecl.localInstances q (userName :=

`red1)↪

let mvarId2 ← mkFreshExprMVarAt mainDecl.lctx mainDecl.localInstances p (userName :=

`red2)↪

-- 2. Assign the main goal to the expression `And.intro _ _`.

mvarId.assign (← mkAppM `And.intro #[mvarId1, mvarId2])

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [mvarId1.mvarId!, mvarId2.mvarId!] }

elab "step_4" : tactic => do

let some red1MvarId ← (← get).goals.findM? (fun mvarId => do

return (← mvarId.getDecl).userName == `red1

) | throwError "No mvar with username `red1`"

let some red2MvarId ← (← get).goals.findM? (fun mvarId => do

return (← mvarId.getDecl).userName == `red2

) | throwError "No mvar with username `red2`"

---- HANDLE `red1` goal

-- 1. Create new `_`s with appropriate types.

-- None needed!

-- 2. Assign the main goal to the expression `hA.right`.

let some hA := (← red1MvarId.getDecl).lctx.findFromUserName? `hA | throwError "No

hypothesis with name `hA` (in goal `red1`)"↪

red1MvarId.withContext do

red1MvarId.assign (← mkAppM `And.right #[hA.toExpr])

Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Böving,

Jannis Limperg, Siddhartha Gadgil, Siddharth Bhat

131



Metaprogramming in Lean 4 .

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [red2MvarId] }

---- HANDLE `red2` goal

-- 1. Create new `_`s with appropriate types.

-- None needed!

-- 2. Assign the main goal to the expression `hA.left`.

let some hA := (← red2MvarId.getDecl).lctx.findFromUserName? `hA | throwError "No

hypothesis with name `hA` (in goal `red2`)"↪

red2MvarId.withContext do

red2MvarId.assign (← mkAppM `And.left #[hA.toExpr])

-- 3. Report the new `_`s to Lean as the new goals.

modify fun _ => { goals := [] }

theorem gradual (p q : Prop) : p ∧ q ↔ q ∧ p := by

step_1

step_2

step_3

step_4

2.

elab "forker_a" : tactic => do

liftMetaTactic fun mvarId => do

let (Expr.app (Expr.app (Expr.const `And _) p) q) ← mvarId.getType |

Lean.Meta.throwTacticEx `forker mvarId ("Goal is not of the form P ∧ Q")↪

let mvarIdP ← mkFreshExprMVar p (userName := `red)

let mvarIdQ ← mkFreshExprMVar q (userName := `blue)

let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, mvarIdQ]

mvarId.assign proofTerm

return [mvarIdP.mvarId!, mvarIdQ.mvarId!]

elab "forker_b" : tactic => do

let mvarId ← getMainGoal

let goalType ← getMainTarget

let (Expr.app (Expr.app (Expr.const `And _) p) q) := goalType |

Lean.Meta.throwTacticEx `forker mvarId ("Goal is not of the form P ∧ Q")↪

mvarId.withContext do

let mvarIdP ← mkFreshExprMVar p (userName := `red)

let mvarIdQ ← mkFreshExprMVar q (userName := `blue)
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let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, mvarIdQ]

mvarId.assign proofTerm

setGoals ([mvarIdP.mvarId!, mvarIdQ.mvarId!] ++ (← getGoals).drop 1)

elab "forker_c" : tactic => do

let mvarId ← getMainGoal

let goalType ← getMainTarget

let (Expr.app (Expr.app (Expr.const `And _) p) q) := goalType |

Lean.Meta.throwTacticEx `forker mvarId ("Goal is not of the form P ∧ Q")↪

mvarId.withContext do

let mvarIdP ← mkFreshExprMVar p (userName := `red)

let mvarIdQ ← mkFreshExprMVar q (userName := `blue)

let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, mvarIdQ]

mvarId.assign proofTerm

replaceMainGoal [mvarIdP.mvarId!, mvarIdQ.mvarId!]

example (A B C : Prop) : A → B → C → (A ∧ B) ∧ C := by

intro hA hB hC

forker_a

forker_a

assumption

assumption

assumption

3.

elab "introductor_a" : tactic => do

withMainContext do

liftMetaTactic fun mvarId => do

let (_, mvarIdNew) ← mvarId.introN 2

return [mvarIdNew]

elab "introductor_b" : tactic => do

withMainContext do

liftMetaTactic fun mvarId => do

let (_, mvarIdNew) ← mvarId.intro1P

return [mvarIdNew]

elab "introductor_c" : tactic => do
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withMainContext do

liftMetaTactic fun mvarId => do

let (_, mvarIdNew) ← mvarId.intro `wow

return [mvarIdNew]

-- So:

-- `intro` - **intro**, specify the name manually

-- `intro1` - **intro**, make the name inacessible

-- `intro1P` - **intro**, preserve the original name

-- `introN` - **intro many**, specify the names manually

-- `introNP` - **intro many**, preserve the original names

example (a b c : Nat) : (ab: a = b) → (bc: b = c) → (a = c) := by

introductor_a

-- introductor_b

-- introductor_c

sorry
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