
React Render Tracker v0.6

Overview & Instructions

react-render-tracker

Revision November 23, 2021

https://github.com/lahmatiy/react-render-tracker

Why React Render Tracker?

Filling the gap in React's tooling
• React Devtools shows current state of components tree and

components themselves, doesn't track unmounted components,
lacks details on update reasons and changes in components, etc.

• Why Did You Render is focused on updates triggered by props
changes only, limited in provided information (due to no access to
internals), mostly a message log in a console (no UI), etc.

• <Profile> allows to collect timings for a subtree, no details for
update reasons and lifecycle events, etc.

3

React Render Tracker (RRT) – a tool to discover
performance issues related to unintentional updates  
in React apps.

It presents component’s tree state over the time, with detailed
information related to a selected component like props
and state updates, as well as reasons for an update, changes in
memo hooks, used contexts etc.

 It's not a replacement for React Devtools, but a compliment to it with a focus on exploration
changes in the app's component tree (like mounts, updates and unmounts) and their causes.

Inside of RRT

– Navigation over selected fibers history
– Search for a fiber by display name

– Toggle hierarchy mode: owner-based (default) or parent-based
– Toggle displaying of unmounted fibers

– Toggle displaying timings
– Reset loaded events– Fiber's (component) tree

 Statusbar with overall statistics

 Pin fiber's subtree

Navigation over instances of selected
fiiber type

 Event's log

– Details on selected fiber

Fiber vs. Component

7

• Render root

• Host component (doesn't handle by RRT for now)

• Class component

• Function component

• Memo

• ForwardRef

• Context.Provider

• Context.Consumer

• Suspense

• Suspense list

• Profiler

• Unknown (anything else)

React Fiber is a reimplementation of React's core
algorithm (reconciliation) introduced in React 16.

A fiber is an object (internal instance) to represent  
a "unit of work" including instances of components. 
A tree is built from fibers (fiber's tree), separate for each
render root which is creating by ReactDOM.render() or
ReactDOM.createRoot(). Tools like React Devtools or
React Render Tracker are displaying the state of fiber's
tree.

A component usually stands for a class or a function
component, the things that are carrying a unit of app's
logic and are defined by developers. That's fine to use
component instead of fiber in most cases.

React Render Tracker is distinguish
the following types of fiber:

Tree hierarchy types

8

function Header({ avatar }) {
 if (avatar.loading) {
 return (
 <Loader>
 <AvatarPlaceholder />
 </Loader>
);
 }

 return <Avatar avatar={avatar} />
}

Owner-based hierarchy (by default)

Parent-based hierarchy

Owner-based hierarchy (or owner-
ownee relationship) is more useful for
understanding which components will
be updated on owner's update (if no
update bailout will take place).

An owner is the component that sets
the props of other components. In other
words, an owner is a component that
creates other components on its render
which become its ownees.

Parent-based hierarchy (or parent-child
relationship) is the way how
components are composed and effects
like context or suspense take place.

A parent is responsible for which child
components will be mounted into fiber's
tree.

Fiber's tree

9

– Component's display name

– Fiber's unique ID across session

– Number of updates

– High Order Component

– Value of key prop

– Number of update bailouts

– Number of used contexts
Component's update related indicators

Unmounted components

React component lifecycle

10

Mount UnmountUpdate

time

render()
render()

...

render()

In case a state is changed during render()
call, additional calls of render take place (so
called re-renders) until no changes on state
during rendering

Component's instance is
created right before the first
render and fiber's tree mount

Component's instance is
destroyed right after

unmount from fiber's tree

Mount/update is at least a single render() call

Update...

Updating fiber's tree

11

A component update can be initiated for one of the
reasons, in most cases because of state change.

Such reasons can be called fire starters, as they lead to
an update of the fiber tree (a reconciliation).

Updating fiber's tree

12

A component update usually results in nested
components being updated because of props or context
value change. Such effect reasons can be called
continuators, since each updated component results in
child components being updated until the end of the
subtree is reached. It looks like a wave of updates.

A component update can be initiated for one of the
reasons, in most cases because of state change.

Such reasons can be called fire starters, as they lead to
an update of the fiber tree (a reconciliation).

Updating fiber's tree

13

A component update usually results in nested
components being updated because of props or context
value change. Such effect reasons can be called
continuators, since each updated component results in
child components being updated until the end of the
subtree is reached. It looks like a wave of updates.

A component update can be initiated for one of the
reasons, in most cases because of state change.

Such reasons can be called fire starters, as they lead to
an update of the fiber tree (a reconciliation).

On update wave some components might be mounted
or unmounted

Updating fiber's tree

14

A component update usually results in nested
components being updated because of props or context
value change. Such effect reasons can be called
continuators, since each updated component results in
child components being updated until the end of the
subtree is reached. It looks like a wave of updates.

A component update can be initiated for one of the
reasons, in most cases because of state change.

Such reasons can be called fire starters, as they lead to
an update of the fiber tree (a reconciliation).

A component can avoid its own update as well as its
subtree (update bailout), e.g. by using React.memo()

On update wave some components might be mounted
or unmounted

Reasons for update
State changed 
Component#setState() or useState() / useReducer() hooks callback

Component#forceUpdate()

Root render, e.g. ReactDOM.render() call

Suspense / React.lazy()

Props changed by component's owner

Used context provider's value prop changed

15
Supported by React Render Tracker v0.6

Fire starters
Triggers for fiber's tree reconciliation.
Can be batched.

Continuators
Reasons which are expanding update
area of fiber's tree on reconciliation.

Reasons for update bailout
React.memo()

Component#shouldComponentUpdate()

PureComponent has predefined shouldComponentUpdate()
method which shallow compares prev/next props and state

No state changes 
when queued/batched updates is applied on render

Same type & props

16
Supported by React Render Tracker v0.6

Event log

17

A commit is followed by a reconciliation pass
A fire starter update (a trigger) for a reconciliation

Component was updated, because of owner update

Component is fire starter itself, because it changed its state

Requested to update but bailout The reason for an update bailout

Changes summary

(what's was changed)

Component was mounted

Change details

18

A click on the change summary badge will show
a block with details of a change. Only changed
things are displaying in this block.

Change details

19

"Shallow equal" means that all entries of objects or all
elements of arrays are equal, but objects or arrays are
different by references. In most cases it means that we
can avoid the change (if it makes sense)

A click on the change summary badge will show
a block with details of a change. Only changed
things are displaying in this block.

Change details

20

A stack trace to place where React.useState()
hook is used and a location where its setState
callback was invoked.

RRT could open known locations right in a editor
(additional configuration is needed, see below)

A click on the change summary badge will show
a block with details of a change. Only changed
things are displaying in this block.

"Shallow equal" means that all entries of objects or all
elements of arrays are equal, but objects or arrays are
different by references. In most cases it means that we
can avoid the change (if it makes sense)

Warnings

21

React Render Tracker indicates potential problem places with an exclamation mark icon

For now (v0.6.0) only two types of warning are implemented:

• Shallow equal change on state

• Shallow equal change on Provider's value prop

Suggest a new warnings

https://github.com/lahmatiy/react-render-tracker

Props updates section

22

How often props are changing and which ones.

Answers the questions:

• Does it make sense to add  

React.memo() / shouldComponentUpdate()?

• How effective React.memo() / shouldComponentUpdate() is?

• Is it possible to avoid props change to increase effectiveness of

React.memo() / shouldComponentUpdate()?

Value of a prop has been changed

Prev and next value of a prop are shallow equal

Memo hooks section

23

Value of a prop has been changed

Prev and next value of a prop are shallow equal

Usage of useMemo() and useCallback() hooks

Answers the questions:

• How many memo hooks are used and where?

• How often memo hooks recompute and why?

• Is it possible to avoid deps change to increase effectiveness of

a memo hook usage?

Used context section

24

Usage of contexts on a component

Answers the questions:

• Which contexts are used by a component and where their

value are read?

• Is it possible to get rid of using a context? (It might be used in

several custom hooks)

• Are all context providers in place?

Event diffings

25

When events are reset on  
a component, it becomes dimmed
in the tree. All event-based
statistics vanish as well.

Click on button with trash bin icon
to reset loaded events. 
This will also remove any
unmounted components.

This allows to spotlight new
events, i.e. changes in the app

Need to know what's changing in the app on
some actions like a click on a button

1 2 3

Problem Solution
Reset loaded events, do actions, see new
events (changes)

Timings

26

– Total time

– Self time

– Total time

– Self time

– Toggle displaying timings

Self time is a time to mount a
component to the tree or to
update a component

Total time is a sum of self time
and the time of all descendant
fibers (parent-based) being
updated or mounted during a
reconciliation

Timings on the tree is a sum of all
the mount and update events on a
component

How to use RRT?

28

<html>
 ...
 <script src="path/to/react-render-tracker.js"></script>
 <script src="./react-app.js"></script>
 ...

Add a single <script> to the HTML page before React app script.

<!-- jsDelivr -->
<script src="https://cdn.jsdelivr.net/npm/react-render-tracker"></script>
<!-- unpkg -->
<script src="https://unpkg.com/react-render-tracker"></script>

You can use a CDN service to include script with no installation:

React Render Tracker will attach to React and start collecting data.

The next step is to open UI in one of the ways that works best for your case.

Open UI right in the page
<script
 src="https://cdn.jsdelivr.net/npm/react-render-tracker"
 data-config="inpage:true"
></script>

Open UI in browser's devtools
Install Rempl extension for a browser:

Chrome, Edge or Firefox

Open browser's devtools and choose Rempl tab to see React Render Tracker UI

1

2

https://github.com/rempl/host-browser-extension
https://chrome.google.com/webstore/detail/rempl/hcikjlholajopgbgfmmlbmifdfbkijdj
https://chrome.google.com/webstore/detail/rempl/hcikjlholajopgbgfmmlbmifdfbkijdj
https://addons.mozilla.org/en-US/firefox/addon/rempl/

Open UI in any webview
Install and launch Rempl server

> npm install --global rempl-cli
> rempl
Init standalone version of rempl
Server run at http://localhost:8177

1 Add <meta> with a server host to the HTML page2

<meta name="rempl:server"
 content="localhost:8177" />

Open server's host and select a connected
instance of React Render Tracker

3

Setup "open in editor" feature
Add a configuration to React Render Tracker to specify dev server endpoint to open file in a editor

<script
 src="https://cdn.jsdelivr.net/npm/react-render-tracker"
 data-config="
 openSourceLoc: {
 pattern: '//localhost/open-file?file=[file]',
 projectRoot: '/abspath/to/git/project-name'
 }
 "
></script>

1

2 Configure your dev server to provide an endpoint to open file in a editor using one of solutions:

• express-open-in-editor (based on open-in-editor, supports express/webpack-dev-server)

• launch-editor-middleware (based on launch-editor, supports express/connect/webpack-dev-server)

See more details  
in README

https://github.com/lahmatiy/express-open-in-editor
http://www.apple.com/uk
https://github.com/yyx990803/launch-editor
https://github.com/yyx990803/launch-editor
https://github.com/lahmatiy/react-render-tracker/#opensourceloc

Setup "open in editor" feature
For VS Code no server is needed just use pattern vscode://file/[file]

<script
 src="https://cdn.jsdelivr.net/npm/react-render-tracker"
 data-config="
 openSourceLoc: {
 pattern: 'vscode://file/[file]',
 projectRoot: '/abspath/to/git/project-name'
 }
 "
></script>

React Render Tracker
react-render-tracker

Releases

Roadmap (todo list)

https://github.com/lahmatiy/react-render-tracker
https://github.com/lahmatiy/react-render-tracker/releases
https://github.com/lahmatiy/react-render-tracker/issues/6

