forked from TheAlgorithms/C-Sharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Kosaraju.cs
126 lines (111 loc) · 4.3 KB
/
Kosaraju.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
using System.Collections.Generic;
using System.Linq;
using DataStructures.Graph;
namespace Algorithms.Graph;
/// <summary>
/// Implementation of Kosaraju-Sharir's algorithm (also known as Kosaraju's algorithm) to find the
/// strongly connected components (SCC) of a directed graph.
/// See https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm.
/// </summary>
/// <typeparam name="T">Vertex data type.</typeparam>
public static class Kosaraju<T>
{
/// <summary>
/// First DFS for Kosaraju algorithm: traverse the graph creating a reverse order explore list <paramref name="reversed"/>.
/// </summary>
/// <param name="v">Vertex to explore.</param>
/// <param name="graph">Graph instance.</param>
/// <param name="visited">List of already visited vertex.</param>
/// <param name="reversed">Reversed list of vertex for the second DFS.</param>
public static void Visit(Vertex<T> v, IDirectedWeightedGraph<T> graph, HashSet<Vertex<T>> visited, Stack<Vertex<T>> reversed)
{
if (visited.Contains(v))
{
return;
}
// Set v as visited
visited.Add(v);
// Push v in the stack.
// This can also be done with a List, inserting v at the begining of the list
// after visit the neighbors.
reversed.Push(v);
// Visit neighbors
foreach (var u in graph.GetNeighbors(v))
{
Visit(u!, graph, visited, reversed);
}
}
/// <summary>
/// Second DFS for Kosaraju algorithm. Traverse the graph in reversed order
/// assigning a root vertex for every vertex that belong to the same SCC.
/// </summary>
/// <param name="v">Vertex to assign.</param>
/// <param name="root">Root vertext, representative of the SCC.</param>
/// <param name="graph">Graph with vertex and edges.</param>
/// <param name="roots">
/// Dictionary that assigns to each vertex the root of the SCC to which it corresponds.
/// </param>
public static void Assign(Vertex<T> v, Vertex<T> root, IDirectedWeightedGraph<T> graph, Dictionary<Vertex<T>, Vertex<T>> roots)
{
// If v already has a representative vertex (root) already assigned, do nothing.
if (roots.ContainsKey(v))
{
return;
}
// Assign the root to the vertex.
roots.Add(v, root);
// Assign the current root vertex to v neighbors.
foreach (var u in graph.GetNeighbors(v))
{
Assign(u!, root, graph, roots);
}
}
/// <summary>
/// Find the representative vertex of the SCC for each vertex on the graph.
/// </summary>
/// <param name="graph">Graph to explore.</param>
/// <returns>A dictionary that assigns to each vertex a root vertex of the SCC they belong. </returns>
public static Dictionary<Vertex<T>, Vertex<T>> GetRepresentatives(IDirectedWeightedGraph<T> graph)
{
HashSet<Vertex<T>> visited = new HashSet<Vertex<T>>();
Stack<Vertex<T>> reversedL = new Stack<Vertex<T>>();
Dictionary<Vertex<T>, Vertex<T>> representatives = new Dictionary<Vertex<T>, Vertex<T>>();
foreach (var v in graph.Vertices)
{
if (v != null)
{
Visit(v, graph, visited, reversedL);
}
}
visited.Clear();
while (reversedL.Count > 0)
{
Vertex<T> v = reversedL.Pop();
Assign(v, v, graph, representatives);
}
return representatives;
}
/// <summary>
/// Get the Strongly Connected Components for the graph.
/// </summary>
/// <param name="graph">Graph to explore.</param>
/// <returns>An array of SCC.</returns>
public static IEnumerable<Vertex<T>>[] GetScc(IDirectedWeightedGraph<T> graph)
{
var representatives = GetRepresentatives(graph);
Dictionary<Vertex<T>, List<Vertex<T>>> scc = new Dictionary<Vertex<T>, List<Vertex<T>>>();
foreach (var kv in representatives)
{
// Assign all vertex (key) that have the seem root (value) to a single list.
if (scc.ContainsKey(kv.Value))
{
scc[kv.Value].Add(kv.Key);
}
else
{
scc.Add(kv.Value, new List<Vertex<T>> { kv.Key });
}
}
return scc.Values.ToArray();
}
}