
Development of a Detection and Tracking of
Moving Vehicles system for 2D LIDAR sensors

Konstantinos Konstantinidis, Mohsen Alirezaei, Sergio Grammatico

Abstract—This paper presents the development and evaluation
of a Detection and Tracking of Moving Objects (DATMO)
system, used for tracking nearby vehicles from a moving car.
The developed system takes in raw 2D LIght Detection And
Ranging (LIDAR) measurements as input and detects objects
of interest by clustering them with the Adaptive Breakpoint
Detector algorithm. The resulting clusters are fitted with oriented
bounding boxes, by incorporating the Search-Based Rectangle
Fitting algorithm. The tracking part of the system receives,
extracted from the rectangles, L-shapes and associates them
with already tracked vehicles using the Global Nearest Neighbor
(GNN) algorithm. However, since LIDAR measures only the
distance to surfaces that face the sensor, vehicle appearances
change over time. In order to counteract tracking errors that
originate from these changes, an L-shape switching algorithm is
implemented. The kinematic poses of the tracked vehicles are
estimated with two different tracking filters, a Kalman Filter,
with a constant velocity model and an Unscented Kalman Filter
(KF), with a Coordinated Turn model. The proposed system was
evaluated in a simulation environment and the tests revealed that
it can reliably estimate the position, speed, heading angle and
dimensions of surrounding vehicles. Therefore, it can be reliably
used in other research platforms to expand their environment
perception capabilities.

Index Terms—Detection, Tracking, DATMO, 2D LIDAR, ROS,
Autonomous Vehicles.

I. INTRODUCTION

In recent years, a lot of researchers have focused their efforts
on providing solutions to the various problems that need to be
addressed before vehicles can reliably perceive their surround-
ing environment and have divided environmental perception
in three different tasks [1]. The first is localization, in which
the vehicle localizes itself in the environment by establishing
the spatial relationships between itself and stationary objects.
The second one is mapping, which builds a map of the
environment by establishing the spatial relationships between
surrounding static objects. And the last task and the one that
the developed system focuses on, is Detection and Tracking
of Moving Objects (DATMO), which establishes the spatial
and temporal relationships between the vehicle and moving
objects. Therefore the aim of the proposed system is, given as
input LIght Detection And Ranging (LIDAR) measurements
to detect the surrounding moving vehicles and estimate their
position (x, y), velocity (vx, vy), orientation (ψ), turn rate (ω)
and dimensions (Length, Width).

DATMO systems for LIDAR sensors are designed based
on three main approaches, the traditional, the model based
and the grid based one [2]. The traditional approach, first
divides the incoming sensor measurements into clusters and

then associates them with objects from previous time in-
stances. In more advanced systems, the clusters are fitted
with geometric shapes whose center is then tracked with a
parametric Bayesian filter [3], otherwise the geometric mean
of each cluster is tracked [4]. The model based approach
fits the sensor data directly onto geometric shape models by
utilizing particle filters, which also handle data association [5],
[6], [7]. Lastly, the grid based approach [8] is based around
the construction and use of an occupancy grid, which models
the space around the vehicle. The grid cells are then tracked
using a Bayesian filter and in some systems, additional object
level representations are fitted on top of the grid cells [9].
The development of the proposed system is based on the
traditional approach, since it is the most modular and less
computationally demanding of the three.

Fig. 1. The five measurements in an L-shape.

The operation of the system is based around extracting and
tracking L-shapes, which are used to represent the surrounding
vehicles (Fig. 1). L-shapes are defined based on five values,
the position of their corner (xcorner, ycorner), their orientation
(θ) and the lengths of their sides (L1, L2).

II. DETECTION OF MOVING OBJECTS

The main goal of the detection stage is to differentiate mov-
ing objects from the LIDAR sensor measurements. LIDAR
sensors calculate distance to neighboring objects by emitting a
laser beam, capturing its reflection and calculating the distance
by measuring the time of flight. The measurements of a
LIDAR sensor can be better understood by examining Fig. 2.
On the left, there is a screenshot from a simulation and on
the right the resulting LIDAR measurements from a sensor on
top of the ego vehicle. It should be noted, that this specific
time instance will be used throughout this paper to explain
and visualize the operation of the developed system.



(a) (b)

Fig. 2. Example of LIDAR data acquisition; (a) image of the simulation
environment, (b) visual representation of the LIDAR data acquired at the
same time instance.

The first step of the detection stage (Fig. 3) is a segmenta-
tion algorithm, which extracts clusters of LIDAR points from
the raw LIDAR measurements. These clusters are then passed
to a feature extraction algorithm, which extracts geometric
shapes from the clusters. Common extracted geometric shapes
are lines or rectangles for vehicles, circles for pedestrians
and ellipses for bicycles and bikes [10]. Since the focus of
the developed system is vehicle tracking, rectangles are fitted
onto the clusters. Lastly, L-shapes are derived from the closest
corner of every rectangle and those are passed to the tracking
stage of the system, which will be presented in the next
section.

Fig. 3. Flowchart of the vehicle detection stage of the developed system.

A. Segmentation

The segmentation process is responsible for separating the
raw LIDAR measurements (Fig. 2b) in groups that correspond
to moving objects of the real world that need to be tracked.
The algorithm used is the Adaptive Breakpoint Detector
Algorithm [11], which clusters the 2D LIDAR point cloud
of n points, X ∈ Rn×2, based on the euclidean distance
between consecutive points. Consecutive points pn and pn−1

are clustered together if their euclidean distance is lower than
a predefined threshold distance Dmax.

‖pn − pn−1‖ > Dmax (1)

Otherwise, in case that (1) holds, a new cluster is started
whose first point is pn. In Fig. 4, we can see the threshold
circle, which gets drawn around pn−1, with a radius that equals
to Dmax. In this diagram, the next point (pn) is within the
circle and the two points are clustered together. However, if
the threshold distance Dmax is fixed, the algorithm does not
account for the fact that LIDAR point clouds become sparser

Fig. 4. Visualization of the Adaptive Breakpoint Detector Algorithm [12].

as the distance from the sensor increases. A way to overcome
this limitation is by adapting the threshold distance (Dmax),
according to the range distance rn of the examined point. This
is accomplished by drawing a line through the range point
pn−1, which represents the worst case for an incidence angle
of a real world object that can be detected by the sensor. This
line creates an angle λ with respect to the scanning angle
φn−1. The maximum range distance rhn, for pn−1, is calculated
in the following way:

rn−1 · sin(λ) = rhn · sin(λ−∆φ) (2)

By reworking the equation above,
∥∥phn − pn−1

∥∥ is calculated,
which can be used as a threshold distance (Dmax) in (1).∥∥phn − pn−1

∥∥ = rn−1 ·
sin(∆φ)

sin(λ−∆φ)
(3)

Lastly, because the sensor noise is not taken into account,
problems can arise when the range distance is small. There-
fore, the sensor error variance σr is added to the max distance

Dmax =
∥∥phn − pn−1

∥∥+ σr. (4)

Fig. 5. Cluster segmentation with the Adaptive Breakpoint Detector algorithm.

In Fig. 5 the LIDAR points after the application of this
algorithm are visualized and are drawn with a different color
for every segmented cluster. We can observe that the algorithm
created four different clusters which correspond accurately to
the four surrounding vehicles of the simulation.



B. Feature Extraction
The purpose of the Feature Extraction process is to extract

geometric shapes from the clustered points, which in this case
are rectangles. The algorithm that was chosen and imple-
mented for rectangle extraction is the Search-Based Rectangle
Fitting algorithm [13], whose basic idea is to iterate through
all possible directions and at each one; find a rectangle that
contains all the LIDAR scan points. Afterwards, a performance
score is calculated for each rectangle and the rectangle with
the highest score is chosen as the best fitting rectangle.

The input of the algorithm is the n points of the examined
cluster, X ∈ Rn×2, while its output are the line representations
of the four edges of the fitted rectangle. The search space
for θ ranges from 0◦ to 90◦, because the two sides of a
rectangle are orthogonal, and therefore only one edge needs to
be calculated, since the other is θ+π/2. In Fig. 6 an example

Fig. 6. Operation of the Search-Based Rectangle Fitting Algorithm.

of the algorithm’s iterative nature is visualized, in which two
rectangles that differ between them by an angle δ are fitted on
the LIDAR range points. Although, both rectangles contain
all the measurement points, one rectangle is better than the
other at representing the vehicle that the points originated
from and this is calculated by the performance score. The
performance score used in this implementation is the point-to-
edges closeness maximization criterion, which calculates how
close the rectangle edges are to the LIDAR points.

Fig. 7. Rectangle fitting with the Search-Based Rectangle Fitting algorithm.

In Fig. 7 the results of rectangle fitting in the developed
system are visualized. It can be seen that the algorithm

estimates the shape of the vehicles close to the sensor with
high accuracy, but produces some error in the orientation
estimation of the truck (orange rectangle).

C. L-shape Extraction
After every cluster of LIDAR points is fitted with a rect-

angle, an L-shape feature is extracted from every rectangle,
mainly for two reasons. First, the information about the closest
corner of a neighboring vehicle is important for collision
avoidance systems and secondly by extracting L-shapes of the
closest sides of neighboring vehicles, their appearance changes
can be mitigated in later stages of the developed system.

L-shapes are extracted from the bounding rectangles by
choosing as L-shape corner point, the corner point that is
closest to the sensor. The two bounding box edges that connect
to the corner point are named L1 and L2, by following a
counterclockwise assignment convention, shown in Fig. 8.
The orientation angle (θ) of the L-shape is defined as the
orientation of L1.

Fig. 8. Conversion of a fitted rectangle to an L-shape feature.

Summarizing the above, the L-shape feature contains five
values that are extracted from the bounding box and which
will be used in later stages for vehicle tracking. The position
of the corner point (xcorner, ycorner), the lengths L1, L2 and
the orientation angle θ.

III. TRACKING OF MOVING VEHICLES

The objective of the vehicle tracking stage is to estimate
as accurately as possible the position, speed and dimensions
of all detected vehicles. A flowchart of this stage is given in
Fig. 9 and a brief explanation of its operation will be given
below.

Fig. 9. Flowchart of the vehicle tracking stage of the developed system.

At the left side of the flowchart is the input into the tracking
stage, which are the extracted by the detection subsystem L-
shapes. The first process of the tracking stage is Data Associa-
tion, in which the newly received L-shapes are associated with



tracked vehicles from previous timesteps. After the L-shapes
are associated with vehicles, it is investigated if the observed
corner of the vehicles changed and with it the direction of
the associated L-shape. If this is true, the three trackers are
updated to reflect the change. Lastly, the position of the L-
shape is used to update the two L-shape kinematic trackers
and its dimensions and orientation are used for updating the
shape tracker. The Kalman Filter (KF) kinematic tracker uses
a linear vehicle motion model and its aimed at systems with
low computational capabilities, while the Unscented Kalman
Filter (UKF) tracker uses a nonlinear motion model and it is
geared towards system with higher capabilities.

A. Data Association and Track Management

Data association is the process of associating detection
results with already tracked objects by working out which
observations were generated by which targets. Data association
in multiple vehicle tracking is complicated because of the
inherent uncertainty of sensor measurements and the fact that
the number of observations does not necessarily correspond
to the number of neighboring objects. Furthermore, the true
number of surrounding vehicles is difficult to estimate since
some vehicles might be temporarily occluded or unobserved.

Track management for multiple object tracking consists of
deducing the number of surrounding objects and identifying
if each observation corresponds to an already known object,
to a new object in the scene or to a false measurement.

1) Data Association: In the proposed system the data as-
sociation method used is the Global Nearest Neighbor (GNN)
filter, which associates clusters with objects based on euclidean
distance, while ensuring that each cluster is assigned to at most
one object.

Fig. 10. Data association in the developed system.

Fig. 10 visualizes several consecutive time instances (t, t−
1, t−2, t−n) from the simulation and the correct association
of new measurements to already tracked vehicles can be ob-
served. In case that there was an error, not all four object would
have retained the same color throughout the time window, but
there would be a color changes at the time instance of the
association error.

2) Track Management: Tracks is the name given to objects
that are tracked by a DATMO system and track management
is the process of managing the list of tracks. The main goal of

track management is to reduce the amount of tracked objects,
both for reducing the amount of computations performed at
each timestep but also for preventing false data associations.
The track management system that is used is simple in
its design and operates in the following way. After every
measurement update and clustering step, all the clusters not
associated with any already tracked object are used to initiate
new tracks. The tracks that are associated with newly detected
clusters are unaffected, while the not associated tracks are
immediately deleted.

B. L-shape Tracker
In order to track the position of the L-shape corner, the

proposed system implements two solutions. The first one uses
a Kalman Filter for tracking the corner of the L-shape, while
the second one uses an Unscented Kalman Filter (UKF). The
first approach is based on the work presented in [14], while the
second one is novel. The system implements two solutions for
two main reasons: the first being for comparing the accuracy
of the Kalman Filter and the UKF in this particular application.
And the second one is, providing the users of the system
with options, so they can make a choice depending on the
accuracy demanded by their application and the available
computational resources of their platform. The dimensions
(L1, L2), orientation (θ) and turn rate (ω) of the L-shape
are tracked by a separate Kalman Filter.

1) Kalman Filter Kinematic Tracker: The Kalman Filter
used for tracking the motion of the corner point uses a Con-
stant Velocity (CV) model to estimate position and velocities,
with the following state vector xCV .

xCV =
[
xcorner ycorner vx vy

]T
(5)

The kinematic model ACV that is used to track the position

Fig. 11. The kinematic model models the motion of the corner point.

(xcorner, ycorner) and velocities vx, vy of the corner point, as
show in Fig. 11, is the following:

ACV =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (6)

where T is the sampling time. Given that only the position of
the corner point is measured, the measurement vector is:

zCV =
[
xcorner ycorner

]T
(7)



and consequently the measurement model is the following:

HCV =

[
1 0 0 0
0 1 0 0

]
. (8)

2) UKF Kinematic Tracker: The kinematic tracker that
uses a UKF has one main advantage over the one presented
before and that is that nonlinear motion models can be used.
The implemented one uses as kinematic function fCTM , a
Coordinated Turn Model (CTM) [15], which in addition to the
position and speed tracks also the turn rate (ω). Therefore, the
state vector xCTM is:

xCTM =
[
x y vx vy ω

]T
(9)

And its kinematic function fCTM is the following:

fCTM =


x+ vx

ω sin(ωT )− vy
ω (1− cos(ωT ))

y + vx
ω (1− cos(ωT )) +

vy
ω sin(ωT )

vx cos(ωT )− vy sin(ωT )
vx sin(ωT ) + vy cos(ωT )

ω

 . (10)

The measurement vector and matrices are similar to the ones
used in the Kalman Filter, since the available measurements
are the same.

zCTM =
[
xcorner ycorner

]T
HCTM =

[
1 0 0 0 0
0 1 0 0 0

]
.

(11)

3) Shape Tracker: The shape of the target vehicle is tracked
using a Kalman Filter and a state vector composed of line
lengths (L1, L2), the orientation of L1(θ) and the turn rate
(ω). Those states are visualized in Fig. 12 and are contained
in vector xs.

xS =
[
L1 L2 θ ω

]T
(12)

Fig. 12. The shape filter estimates the orientation, turn rate and size of the
L-shape.

For estimating the vehicle’s shape, a static model is applied
to the line lengths (L1, L2) based on the assumption that
the vehicle size does not change over time. For estimating
the L-shape’s yaw, and since the yaw rate does not change

particularly fast, a constant turn rate model is chosen. The
two above models are combined in a single process matrix:

AS =


1 0 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , (13)

where T the sampling time and AS is the process matrix
containing the static model for the line lengths and the constant
turn rate model for the orientation and the yaw rate.

Among the states of the shape model, only the yaw rate is
not contained in the L-shape and therefore the measurement
vector and model are the following:

zS =
[
L1 L2 θ

]T
HS =

 1 0 0 0
0 1 0 0
0 0 1 0

 . (14)

4) Corner Point Switching: The designed system is tracking
L-shapes, which represent the closest corner of observed
vehicles. However, while the ego vehicle and the observed
ones are moving, it is expected that the closest corners of the
other vehicles will be periodically changing and therefore the
extracted L-shapes should also be changing. All the possible
extracted L-shapes from a vehicle are drawn in Figure 13 and
are marked by values C1 to C4.

Fig. 13. Visualization of all the corner points of a vehicle (C1-C4) and of
the clockwise and counter clockwise changes between them (black arrows).

An example of a corner change occurrence can be observed
in Figure 14, in which two instances from the simulation are
given side by side. In the first time instance (t), the overtaking
vehicle at the left of the ego-vehicle is tracked by its front-right
corner (C3). As it moves ahead in the second time instance
(t+ 1), the closest corner changes to the one at the vehicle’s
rear-right corner (C4).

In the proposed system, corner point changes were detected
based on the Mahalanobis distances of the new measurement
to the already tracked corner point and the two neighboring
ones. If for example, the already tracked corner point is C3,
with state vector (c3), then the state vectors of corner points
C2 (c2) and C4 (c4) are calculated and their values are com-
pared with the state vector of the new L-shape measurement
(m), via the Mahalanobis distance. The Mahalanobis distance



(a) (b)

Fig. 14. Clockwise change of closest corner point, from corner C3 to corner
C4.

(DM ), which is a multivariate distance metric, is calculated
based on the following formula:

D2
M = (c−m)T · P−1 · (c−m)

c = [xcorner, ycorner, θ, L1, L2, ]
T

m = [xcorner, ycorner, θ, L1, L2, ]
T

(15)

where P is the covariance matrix of the already tracked corner
point.

If the shortest Mahalanobis distance is between the measure-
ment vector m and the previously tracked corner vector, for
example c3, then no corner switch took place. However, if the
shortest distance is with c4, a clockwise switch took place and
if it is with c2, a counter clockwise switch took place. In the
example of Figure 14, we can observe that a clockwise corner
switch between corners C3 and C4 occurred. In such cases, the
filters that track the L-shape cannot be immediately updated
because the new L-shape measurement corresponds to another
corner than the one that the filter states are tracking. Therefore,
the filter states should be altered, so that the represent the same
corner with the new measurement.

In case that a clockwise switch is detected, the filter states
are changed in the following way:

xCj
corner =xCi

corner + LCi
1 cos θCi

yCj
corner =yCi

corner + LCi
1 sin θCi

vCj
x =vCi

x + LCi
1 ω sin θCi

vCj
y =vCi

y + LCi
1 ω cos θCi

θCj =θCi − π/2
LCj
1 =LCi

2

LCj
2 =LCi

1

where
{
j = i+ 1, i < 4
j = 1, i = 4

(16)

where the superscripts Ci and Cj represents the corner
number before and after the model change.

In case that a counter clockwise switch is detected the

kinematic and shape states are changed in the following way:

xCj
corner =xCi

corner + LCi
2 sin θCi

yCj
corner =yCi

corner + LCi
2 cos θCi

vCj
x =vCi

x + LCi
2 ω cos θCi

vCj
y =vCi

y + LCi
2 ω sin θCi

θCj =θCi + π/2

LCj
1 =LCi

2

LCj
2 =LCi

1

where
{
j = i− 1, i > 1
j = 4, i = 1

(17)

5) L-shape to Box Model Conversion: In the L-shape to
box model conversion stage the kinematic state is changed
from corner point motion to vehicle motion. The position of
the center of the box model can be calculated by using the
geometric information of the shape model

xcenter = xcorner + εx, where εx = (L1 cos θ + L2 sin θ) /2
ycenter = ycorner + εy, where εy = (L1 sin θ − L2 cos θ) /2.

(18)
Since the velocity of the corner point is the sum of the
target velocity and the tangential velocity, the rotational motion
of the corner point includes both translational velocity and
rotational velocity. The rotational motion is assumed as a
uniform circular motion, since a constant turn rate model
for the shape model has already been assumed. Therefore,
an equation for tangential velocity can be derived by using
the distance from the center as the radius (r) of the circular
motion.

vx,center =vx,corner − rω cosα

vy,center =vy,corner − rω sinα

where α = tan−1 (εy/εx)− π/2.
(19)

A vehicle’s yaw (ψ) is typically difficult to estimate from an
L-shape because of the ambiguities, since it is hard to judge
which is the front part and which is the rear part of the vehicle.
Therefore, it would be reasonable to keep the following four
hypotheses:

ψi = atan 2 (n2, n1) + i
π

2
, i ∈ {0, 1, 2, 3} (20)

where ψi represents the yaw angle of the vehicle [16]. Next,
for calculating the yaw of the vehicle, these four angles are
compared with the angle of the vehicle’s speed and the one
with the least absolute difference from the speed’s orientation
is chosen as the vehicle yaw. The turn rate of the box model
is taken equal to the turn rate (ω) of the tracked L-shape.

In Fig. 15 the box models calculated by the system are
visualized, while arrows are used to represent the estimated
velocities of the surrounding vehicles. The starting point of
those arrows are the estimated centers of the surrounding
vehicles.

It can additionally be observed, that the dimensions of the
box models are bigger than the extracted rectangles, since they



Fig. 15. Visualization of the estimated box models.

are based on the estimations of the shape filter and that the
estimated orientation of the truck at the top right corner is
closer to the true value, than the one estimated by the rectangle
fitting algorithm (Fig. 7).

IV. EXPERIMENTAL EVALUATION

In this section, a simulation experiment1 that was used to
test and evaluate the proposed system will be presented and
the evaluation results will be explained. During this simula-
tion experiment the output of the system and the reference
measurements are both recorded and they are later analyzed
to assess the accuracy of the proposed system. The reference
measurements provided by the simulation environment are
very accurate and with sufficiently higher frequency (100 Hz)
than the estimations of the system (12 Hz) and therefore they
are used as ground truth data. For evaluating the tracking
performance, the system’s estimates for the position (x, y),
velocities (vx, vy), orientation (ψ), turn rate (ω) and dimen-
sions (Length, Width) of the box models are plotted against
the ground truth data, which also refer to the center of the
vehicles.

In Fig. 2a, which is a snapshot of the simulation environ-
ment during this experiment, we can observe that there a total
of five vehicles, from which the three at the bottom lanes are
controlled via joystick input, while the bus and truck at the top
lanes are following straight paths. The ego vehicle is the Prius
in the middle lane and during this experiment it overtakes the
car that drives on the emergency lane. At the same time, the
third car which also starts in the middle lane, changes to the
left lane, overtakes the ego-vehicle and then merges back in
the middle lane in front of it.

The estimations of the system are plotted against the ground
truth data on Fig. 16 for the car at the emergency lane and at
Fig. 17 for the car at the left lane. At the first two rows of the
figures there are graphs for the position (x, y) and velocities
(vx, vy) of the tracked cars center, which are estimated by
the kinematic filters. At the bottom two rows there are graphs
of the orientation (ψ), turn rate (ω) and dimensions of the
vehicles, which are estimated by the shape Kalman Filter.

In Fig. 16, we can observe that both filters produce identical
estimates for the position (x, y) of the car in the emergency

1A video of the experiment can be found at: https://youtu.be/JrbJjmIv730

lane. However, the velocities estimated by the two filters are
different, with the KF overshooting the reference and the
UKF undershooting it. This can be explained, by the different
process models that the filters employ. The orientation of the
vehicle is estimated with high accuracy by the shape filter,
after the vehicle starts moving. The turn rate however is not be
estimated accurately since its abrupt changes were not tracked
correctly by the filter. Lastly, it is evident that the accuracy
of length and width estimation, depends on which side the
incoming measurements represent. Therefore, when the length
is measured the length estimation is accurate and when the
width is measured its estimation is more accurate. The two
spikes at the beginning of those diagrams can be explained by
the fact that, the orientation of the vehicle can not estimated
when the vehicles are stationary.

The results for the overtaking car are drawn in Fig. 17,
where it can be observed that the system has generally similar
performance. However, in the (vy) graph, a spike can be
seen, which is attributed to two rapid corner switches that
occur while the vehicles are almost stationary. In both cases,
it is evident that the UKF offers no significant benefits to
the KF, and that is probably due to the motion of the two
vehicles, which is generally straight, while the model of the
UKF estimates the kinematics of constant turns.

V. CONCLUSION

The DATMO system presented in this paper, encompasses
the complete process of multi-object tracking; it receives 2D
LIDAR measurements as input and estimates the kinematic
state and dimensions of surrounding vehicles. The detection
part of the system differentiates objects in the LIDAR mea-
surements using the Adaptive Breakpoint Detector algorithm
and calculates rectangles around the detected objects with the
Search-Based Rectangle Fitting algorithm. The tracking part of
the system receives L-shapes and associates them with already
tracked vehicles, using the Global Nearest Neighbor algorithm.
It estimates kinematic poses with two different tracking filters,
a Kalman filter, with a constant velocity model and a UKF,
with a nonlinear constant turn kinematic model.

The proposed system was evaluated in a simulation experi-
ment and it was shown that it can reliably estimate the position,
speed, heading angle, turn rate and dimensions of surrounding
vehicles and that it successfully mitigates appearance changes.
Since the system is able to run in a real-time manner, it is ex-
pected to be applicable for a variety of algorithm development
projects using low-cost platforms.

REFERENCES

[1] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,
“Simultaneous localization, mapping and moving object tracking,” The
International Journal of Robotics Research, vol. 26, no. 9, pp. 889–916,
2007.

[2] A. Petrovskaya, M. Perrollaz, L. Oliveira, L. Spinello, R. Triebel,
A. Makris, J.-D. Yoder, C. Laugier, U. Nunes, and P. Bessiere, “Aware-
ness of road scene participants for autonomous driving,” in Handbook
of Intelligent Vehicles. Springer, 2012, pp. 1383–1432.

https://youtu.be/JrbJjmIv730


0 2 4 6 8 10 12

Time (s)

−30

−20

−10

0

10

x
(m

)

0 2 4 6 8 10 12

Time (s)

−12

−11

−10

y
(m

)
0 2 4 6 8 10 12

Time (s)

0

2

4

6

v x
(m

/s
)

0 2 4 6 8 10 12

Time (s)

−0.5

0.0

0.5

1.0

1.5

v y
(m

/s
)

0 2 4 6 8 10 12

Time (s)

0

50

100

150

ψ
(d

eg
re

es
)

0 2 4 6 8 10 12

Time (s)

−20

0

20

ω
(d

eg
re

es
/s

)

0 2 4 6 8 10 12

Time (s)

1

2

3

Le
ng

th
(m

)

0 2 4 6 8 10 12

Time (s)

1.0

1.5

2.0

2.5

3.0

W
id

th
(m

)

KF UKF Shape KF Reference

Fig. 16. Estimated states by the developed system against the simulation ground truth, for the car at the left of the ego-vehicle.



0 2 4 6 8 10 12

Time (s)

−40

−20

0

20

40

x
(m

)

0 2 4 6 8 10 12

Time (s)

−9

−8

−7

−6

y
(m

)
0 2 4 6 8 10 12

Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

v x
(m

/s
)

0 2 4 6 8 10 12

Time (s)

−3

−2

−1

0

1

2

v y
(m

/s
)

0 2 4 6 8 10 12

Time (s)

−150

−100

−50

0

50

100

ψ
(d

eg
re

es
)

0 2 4 6 8 10 12

Time (s)

−20

−10

0

10

20

ω
(d

eg
re

es
/s

)

0 2 4 6 8 10 12

Time (s)

1

2

3

Le
ng

th
(m

)

0 2 4 6 8 10 12

Time (s)

0.8

1.0

1.2

1.4

1.6

1.8

W
id

th
(m

)

KF UKF Shape KF Reference

Fig. 17. Estimated states by the developed system against the simulation ground truth, for the car at the left of the ego-vehicle.



[3] J. Choi, S. Ulbrich, B. Lichte, and M. Maurer, “Multi-target tracking
using a 3d-lidar sensor for autonomous vehicles,” in 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
IEEE, 2013, pp. 881–886.

[4] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” Journal of Field Robotics, vol. 25,
no. 10, pp. 727–774, 2008.

[5] A. Petrovskaya and S. Thrun, “Model based vehicle tracking for
autonomous driving in urban environments,” Proceedings of Robotics:
Science and Systems IV, Zurich, Switzerland, vol. 34, 2008.

[6] T. Chen, R. Wang, B. Dai, D. Liu, and J. Song, “Likelihood-field-model-
based dynamic vehicle detection and tracking for self-driving,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp.
3142–3158, 2016.

[7] K. Granstrom, M. Baum, and S. Reuter, “Extended object tracking: Intro-
duction, overview and applications,” arXiv preprint arXiv:1604.00970,
2016.

[8] T.-D. Vu, J. Burlet, and O. Aycard, “Grid-based localization and lo-
cal mapping with moving object detection and tracking,” Information
Fusion, vol. 12, no. 1, pp. 58–69, 2011.

[9] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking
the driving environment with a particle-based occupancy grid,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp.
1331–1342, 2011.

[10] N. Kaempchen, M. Buehler, and K. Dietmayer, “Feature-level fusion for
free-form object tracking using laserscanner and video,” in Intelligent
vehicles symposium, 2005. Proceedings. IEEE. IEEE, 2005, pp. 453–
458.

[11] G. A. Borges and M.-J. Aldon, “Line extraction in 2d range images for
mobile robotics,” Journal of intelligent and Robotic Systems, vol. 40,
no. 3, pp. 267–297, 2004.

[12] T. Johansson and O. Wellenstam, “Lidar clustering and shape extraction
for automotive applications,” Master’s thesis, Chalmers University of
Technology, 2017.

[13] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient l-shape fitting
for vehicle detection using laser scanners,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2017, pp. 54–59.

[14] D. Kim, K. Jo, M. Lee, and M. Sunwoo, “L-shape model switching-
based precise motion tracking of moving vehicles using laser scanners,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 2,
pp. 598–612, 2018.

[15] M. Roth, G. Hendeby, and F. Gustafsson, “Ekf/ukf maneuvering target
tracking using coordinated turn models with polar/cartesian velocity,” in
17th International Conference on Information Fusion (FUSION). IEEE,
2014, pp. 1–8.

[16] X. Shen, S. Pendleton, and M. H. Ang, “Efficient l-shape fitting of laser
scanner data for vehicle pose estimation,” in 2015 IEEE 7th International
Conference on Cybernetics and Intelligent Systems (CIS) and IEEE
Conference on Robotics, Automation and Mechatronics (RAM). IEEE,
2015, pp. 173–178.


	Introduction
	Detection of Moving Objects
	Segmentation
	Feature Extraction
	L-shape Extraction

	Tracking of Moving Vehicles
	Data Association and Track Management
	Data Association
	Track Management

	L-shape Tracker
	Kalman Filter Kinematic Tracker
	UKF Kinematic Tracker
	Shape Tracker
	Corner Point Switching
	L-shape to Box Model Conversion


	Experimental Evaluation
	Conclusion
	References

