
 

Tomato Leaf Disease Detection Using CNN 
 

Köksal Kapucuoğlu 
Electronic Engineer Department 

Istanbul Technical University  
Istanbul/TURKEY 

kapucuoglu19@itu.edu.tr 

 

Abstract— In this report, we describe the process of creating 
a model in which we can classify various diseases on tomato 
leaves using a convolutional neural network. We examine the 
effect of hyperparameters and layers used in forming a 
convolutional neural network on model education. 

I. INTRODUCTION  

We are trying to automate high-accuracy processes in 
many areas, from high-level operations to our daily life, with 
studies on machine learning and computer vision. The 
agriculture and health sector is at the top of these fields. 

 

Automation is very important in the agricultural sector. 
Sometimes there is a period of 1 year between the cultivation 
process of a product and the collection process. During this 
period, processes such as irrigation and spraying should be 
done correctly. Sick leaves may need to be pruned. Different 
spraying may be required for different types of disease. Sick 
products and healthy products must be separated at the stage 
of collecting products. In order for these processes to be done 
quickly, the system that will perform this process expects to 
know all this information. Here we will have given this 
information to the system using a convolutional neural 
network. 

II. CNN OVERVIEW 

Today, CNN is a model that we can apply to solve every 
image related problem. There were methods used for image 
problems before, but the main advantage of CNN compared 
to the previous ones is that it automatically detects important 
features without any human surveillance. 

 
CNN is also advantageous in terms of calculation. It uses 

special convolution and pooling processes and performs 
parameter sharing. This makes CNN models work 
universally on any device, making it universally attractive. In 
this way, we will be able to use our model in automation 
systems. 

Fig. 1. Alexnet based architecture 

In this work , we use a CNN architecture that was created 
based on Alexnet to create the model. Then, for a few 
questions that we seek answers, we create a model using 
Vgg16 with CNN architecture. 

A. AlexNet 

Alexnet has 8 layers. These are 5 convolutional layer and 
3 fully connected layers. Input of Alexnet is 227x227x2 and 
output is 1000x1 so alexnet classify for 1000 classes. it has 
about 60 million parameters. 
 

Multiple convolutional kernels extract intresting features 
in an image. In a single convolutional layer, there ara usually 
many kernels of the same size. 

 
The first two convolutional layers are followed by the max 

poling layer. The third and fourth convolutional layers are 
connected directly. The fifth convolutional layer is followed 
by the max pooling layer. Then flatting is done. The second 
fully connected layer feeds into a softmax classifier for 1000 
class.  

 
ReLu nonlinearity is applied after all the convolutional and 

fully connected layers.  
 
Max pooling layers are usually used to downsample the 

width and height of the tensors, keeping the depth  same. At 
based Alexnet,  max pooling layers use after first 
convolutional layer, second convolutinal layer and fifth 
convolutional layer. In Alexnet paper, the authors used 
pooling windows of size 3×3 with a stride of 2 between the 
adjacent windows.  

 

B. VGG16 

The VGG16 architecture consists of twelve convolutional 
layers, some of which are followed by maximum pooling 
layers and then four fully connected layers and finally a 1000 
softmax classifier.  

The 16 in VGG16 refers to it has 16 layers that have 
weights. This network is a pretty large network and it has 
about 138 million parameters. 

III. PREPOCESSING 

At this stage, we make our data ready to train with the 
CNN model we created. We decide the operations we will 
perform according to the dataset used. 

A. Detect Dataset and Get Data 

There is a problem we have identified. Linearly, the better 
we can introduce this problem to the system, the better our 
results will be. So the quality of the dataset we will use is very 

 



important in this sense. This quality ensures both the size of 
the dataset and the variety of images for each class. 

Here we use a dataset about "tomato leaf disease". This 
dataset has 22.930 tomato leaf images in total. 18345 images 
are used for train and 4585 images are used for validation. We 
also evaluate healthy tomato making as a class. In this way, 
there are a total of 10 classes and about 1800 images for each 
class. Each image is a 256x256 size RGB picture. All of these 
images are in JPG format. 

First of all, in order to use these images, we have to import 
all the images as a array. It normalizes the values when taking 
images. The pixel values of the image are between 0 and 1. 
The reason we do this is related to numerical stability and 
convergence. 

Apart from this, since we want to use the Alexnet based 
architecture, we should take our images that are 256x256 as 
227x227. In addition, we will use 64/128/256 values as the 
batch size. Batch size is a hyperparameter that defines the 
number of samples to be worked on before updating internal 
model parameters. In this project 128 were used as batch size. 
In the training phase, instead of putting all the data into 
training one by one or all at once, we put it into training phase 
in smaller groups. In other words, the model trains 18345 
images in each batch of training, about 144 times from 
18345/128 operations in 128 batches. In addition to, it requires 
less memory. 

B. Data Augmentation 

I mentioned that the size of the data set and the variety of 
classes are required to get better results while training our 
model. We can use the "data augmentation" method when the 
opposite is a case, that is, when our data set gets little or if the 
images are very similar. Thus, we can expand our model data. 

 
The only feature I definitely use here is the data rescale 

feature I mentioned in the previous section. In addition, in 
some cases, we have to use data augmentation. For example, 
in case of overfitting, we make our model more generalizable 
by using data augmentation.  

 
The parameters and values that I use here; rescale = 

1./255, width_shift_range = 0.2, height_shift_range = 0.2, 
shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, 
fill_mode = 'nearest'.  
 

 Width Shifting: We can apply the width_shift_range 
technique to shift the image in the x direction. 

 Height Shifting: We can apply the height_shift_range 
technique to shift the image in the y-direction. 

 Shear Intensity: Here, we fix one axis and stretch the 
certain angle known as the shear angle. It stretches the 
image which is different than the rotation technique.  

 Zoom Range: We can zoom the picture according to 
the zoom value here. 

 Horizontal Flip: It flips the images horizontally by 
specifying the boolean value in the horizontal_flip 
parameter. By specifying true it flips them 
horizontally. 

 Fill Mode – Nearest: In this mode, the closest pixel 
value is selected for all null values. 

IV. TRAINING 

At this stage, we need first create our CNN model. We use 
architecture that is based on Alexnet architecture. We need the 
image as the input and 10 classes as the output. Since we use 
supervising learning, that is, our data is labeled data, weights 
will be updated in every step of the training and we will try to 
find the best weights. In this way, we will create our 
generalized model. 

A. Baseline Model 

Alexnet classifies for 1000 classes, but our neural network 
needs to classify for 10 classes. Therefore, we first change the 
last layer "1000 softmax" layer to "10 softmax". Finally 
baseline model has about 58 million parameters. Apart from 
that, we do not change the base Alexnet model. 

  

Fig. 2.  Baseline Model for Tomato Leaf Disease Classifier  

After creating the model, we proceed to the preprocessing 
process. At this stage, we set our entry image to 227x227 in 
accordance with the model entry. We also normalize the 
pictures when receiving. So we set the pixel values of the 
image are between 0 and 1. 

 
To begin with, we set the batch size to 128. So baseline 

model will work on 128 training samples before the model's 
internal parameters are updated. This way, an epoch will 
consist of 144 steps. The average training time of an epoch is 
45 seconds when a good GPU is used. With an average GPU, 
it is 240 seconds on average. Then we use my SGD and default 
SGD parameters as optimizers. Finally, to keep the total 
training time short, we initially set the number of epoch to 25. 

 
In this way, as a result of the training process , we achieve 

train accuracy of 98.50% and validation accuracy of 92.25%. 

 



Fig. 3. Train and Validation Accuracy for Baseline Model  

B. Optimization and Get Better Accuracy 

According to our initial training result, we achieved a 
98.50% train accuracy, while we achieved a lower validation 
accuracy of 92.25%. For a better train and validation 
accuracy, we can adjust hyperparameters and apply data 
augmentation to our data.  
 

1) Initializer 
In this project, we use the keras library for all these 

processes. In the Keras library, layers start with the “xavier 
initializer” by default. Xavier initializer is the weights 
initialization technique that tries to make the variance of the 
outputs of a layer to be equal to the variance of its inputs. 
Xavier initialization works better for layers 
with sigmoid activation. But we use ReLu activation 
function. In this case, it’s better to use “He-uniform” 
initializer”. He-uniform is known variance scaling initializer. 
He-uniform initialization works better for layers with ReLu 
activation.  

 
When we use he-uniform initializer, we achieve train 

accuracy of 99.86% and validation accuracy of 95.17%. 
 
2) Optimizer 
In the beginning we used SGD as an optimizer. SGD is a 

variant of gradient descent. Instead of performing 
computations on the whole dataset, which is redundant and 
inefficient, SGD only computes on a small subset or random 
selection of data examples. 

 
In the recent years, a number of new optimizers have been 

proposed to tackle complex training scenarios where gradient 
descent methods behave poorly. One of the most widely used 
and practical optimizers for training deep learning models is 
Adam.  

 
When i use adam optimizer , i achieve train accuracy of 

96.69% and validation accuracy of 92.07%. In this case, we 
see that i got a better result with SGD. 

 
3) Regularziton 
When we look at the trainings here, i reach 99.86% as 

train accuracy, but i reached the best 95% as validation 
accuracy. In this case, we need to look at other methods to get 
a better validation accuracy. The most important of these 
methods is the regularization process we will do to generalize 
the model. 

 
 

a) Dropout 
At each training iteration a dropout layer randomly 

removes some nodes in the network along with all of their 
incoming and outgoing connections. Dropout can be applied 
to hidden or input layer. The most commonly used dropout 
value is 0.5. That's why we chose 0.5 in the first training we 
used dropout. 

 
When i use dropout(0.5), i achieve train accuracy of 

92.32% and validation accuracy of 93.92%. In this case, i see 
that we got a better result without dropout(0.5).  

 

Fig. 4. Train and validation accuracy of different dropout configurations.  

b) L2 regularization 
L1 and L2 are the most common types of regularization. 
These update the general cost function by adding another 
term known as the regularization term. Due to the addition of 
this regularization term, the values of weight matrices 
decrease because it assumes that a neural network with 
smaller weight matrices leads to simpler models. 

Fig. 5. Train and validation accuracy of different l2 configurations.  

 
Here, lambda is the regularization parameter. It is the 
hyperparameter whose value is optimized for better results. 
L2 regularization is also known as weight decay as it forces 
the weights to decay towards zero (but not exactly zero). I try 
L2 regularization in different parameters. I  got the best result 
at 0.0001. 

 

 

 Dropout 
at fully 

connected 
layer 

Dropout 
at conv 
layer 

Train 
accuracy 

Validation 
accuracy 

Conf.1 0.5 - %92.30 %93.92 

Conf.2 0.5 0.2 %81.52 %77.07 

Conf.3 0.4 - %94.38 %91.43 

Conf.4 0.2 - %97.26 %94.95 

 

 

 L2 
regularization 

Train 
accuracy 

Validation 
accuracy 

Conf.1 0.1 %88.32 %90.37 

Conf.2 0.01 %98.90 %94.40 

Conf.3 0.05 %92.15 %90.66 

Conf.4 0.001 %100 %95.21 

Conf.5 0.0001 %99.9 %95.36 

 



 

Fig. 6. Train and validation accuracy of different l2 configurations 

c) Data Augmentation  
Although we use L2 or dropout, there is still much 

difference between train accuracy and validation accuracy. 
Although training accuracy is 1, validation accuracy is at 
95%. In this case, we can think that it is overfitting. 
 

The simplest way to reduce overfitting is to increase the 
size of the training data or assuming that the data is uniform, 
we can increase the diversity for the class by taking some 
actions such as rotating, flipping and zooming in the pictures 
while taking the pictures. In Keras, we can perform all of 
these transformations using ImageDataGenerator. 

 
When i use data augmantation, i achieve train accuracy of  

95.55% and validation accuracy of 93.58%. In this case, i 
achieved a worse train and validation accuracy, but overfitting 
reduced. Here i prefer to use the model with data augmentation 
as it reduce overfitting. 

 
4) Normaliztion 
Normalization methods normalize each feature so that 

they maintains the contribution of every feature, as some 
feature has higher numerical value than others. This way our 
network can be unbiased. 

 
a) Batch Normalization 

Batch normalization is a normalization method that 
normalizes activations in a network across the mini-batch. 
For each feature, batch normalization computes the mean and 
variance of that feature in the mini-batch. It then subtracts the 
mean and divides the feature by its mini-batch standard 
deviation. 

 
In the beginning, when I train using batch normalization 

and layer normalization, we did not use data augmentation. 
So we can see that the results are overfitting. 

 
When i use batch normalization, i achieve train accuracy 

of  99.99% and validation accuracy of 95.74%. 
 

b) Layer Normalization 
Batch normalization normalizes the input features across 

the batch dimension. The base feature of layer normalization 
is that it normalizes the inputs across the features. 

 
 
When we use batch normalization, i achieve train 

accuracy of 100% and validation accuracy of 95.05%. 

 
5) Epoch 
Up to this point, 25 epoches have been used in all of the 

trainings, but we may not have achieved the convergence we 
wanted in 25 epoch. Now let's train our model for 50 epoch 
and 100 epoch and look at the results. 

Fig. 7. Train and validation accuracy of different epoch and data 
augmantation configurations 

When i use 100 epoch in the configuration i use data 
augmentation, we achieve train accuracy of  98.63% and 
validation accuracy of 97.78%. 

If we i 0.2 dropouts for the same configuration instead of 
l2 regularization, i achieve train accuracy of  97.76% and 
validation accuracy of 97.98%.  

 
Fig. 8. Train and validation accuracy of final model. 

V. OTHER OPTIMIZATION METHOD 

During training, we can use pre-trained models instead of 
training from scratch. Since pre-trained models are trained on 
their big data, it is better to learn discriminatory features than 
from scratch training. 
 
I can only use the convolutional layers as a feature extractor 
or change the currently trained convolutional layers to suit 
our problem at hand. The first approach is known as 
“Transfer Learning”, the second is “Fine tuning”. 
 

A. Transfer Learning 

To implement the transfer learnig method, we need a 
model with a larger data trained using our alexnet 
architecture. For this, i use the model trained with a dataset 
related to plant leaves disease in Kaggle. The output of this 
model predicts for 38 classes. It contains 70295 images for 
Dataset traning and 17572 images for validation. 

 
Here, after creating the model and loading the pre-trained 

weights, i remove last dense layer that classify 38 class and 
add the dense layer to classify it for 10 classes. When i do this 
and train the model again, i reach 97.75 as validation 
accuracy. 
 

Epoch Data 
Augmentation 

Train 
Accuracy 

Validation 
Accuraccy 

50 - %100 %95.21 

50 + %96.32 %95.51 

100 + %98.63 %97.78 

 



B. Fine Tunning 

We can simply divide the layers in our model into two as 
feature extractors and classifiers. Training the model in a 
small dataset greatly affects the model's ability to generalize. 
For this reason, we can take trained weights in larger datasets 
and fine tune them. Here i  only retrain fully connected layers, 
especially without touching extractive layers. 

 
When i use batch normalization, i achieve train accuracy 

of 97.50% and validation accuracy of 97.84%. 
 

C. Vgg ile transfer learning 

Up to this stage, i have done all your operations on the 
Alexnet-based architecture. In order to get more efficiency 
from fine tunning process, it is necessary to take the pre-
trained weights in datasets such as Imagenet containing 1.2M 
data. 

 
We could not reach weights trained in such a large dataset 

for Aalexnet architecture. That's why we use the VGG16, 
where we can reach the weights of the model, which are both 
widely used and trained on Imagenet. 
 

In the first stage, it is necessary to apply preprocess 
operations. I both apply data augmentation to the images and 
take the images in 224x224 size. I use 128 as batch size. In 
other words, 128 input samples will be used in each step and 
will be updated later by weight. After creating the layers of 
the VGG model, i load the trained weights at Imagenet. 

 
When i train Vgg16 and pre-trained weight,  i achieve 

train accuracy of 98.53% and validation accuracy of 98.55%. 

VI. CONCLUSION 

As a result, with the model i created, i reached a validation 
accuracy of 97.98%. We use 62,388,354 parameters in total. 

 

 
Fig. 9. Layer of final model. 

 
 

 
Fig. 10. Train and validation accuracy for final model. 

 

 
Fig. 11. Train and validation loss for final model. 

 

VII. WHAT I HAVE LEARNED AND CONTRİBUTED 

First of all, the most important factor in a model education 
is data. It is very important that we have a large number of 
data and a large variety of data. For example, while training 
a model from scratch, we get a validation accuracy of around 
95%, while we can achieve 98% validation accuracy in the 
model trained with about 88 thousand data. In order to 
achieve the same validation accuracy, we should use 100 
epoch in the model we train from scratch. This increases the 
training cost. 

 
 
Hyperparameters need to determine correctly. A lot of 

testing should be done for this. According to the test results, 
the behavior of the data should be examined and the correct 
hyperparameter values should be given. 
 

 

REFERENCES 

 
[1] https://www.tensorflow.org/api_docs/python/tf/keras/initializers/he_u

niform 

[2] https://www.dlology.com/blog/quick-notes-on-how-to-choose-
optimizer-in-keras/ 

[3] https://machinelearningmastery.com/learning-rate-for-deep-learning-
neural-networks/ 

[4] https://mlexplained.com/2018/01/13/weight-normalization-and-layer-
normalization-explained-normalization-in-deep-learning-part-2/ 

[5] https://towardsdatascience.com/backpropagation-and-batch-
normalization-in-feedforward-neural-networks-explained-
901fd6e5393e 

[6] https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0 

[7] https://www.machinecurve.com/index.php/2019/12/18/how-to-use-
dropout-with-keras/ 

[8] https://flyyufelix.github.io/2016/10/03/fine-tuning-in-keras-part1.html 

[9] https://www.learnopencv.com/keras-tutorial-transfer-learning-using-
pre-trained-models/ 


