
Understanding users’ language
behind cloud architecture

Harmonizing Service
Terminology

Erin Gannon Spencer Sugarman Gerianne BartocciTheresa Liberman Yann Riche

December 2018

Contact: ergannon@google.com

Background

2

Purpose
“Service” is an overloaded term used in a variety of ways across products, which
could be confusing to users. This study is the first in a two-phase effort to:

● Expand on previous naming research to learn how users understand and use
the term ‘service’ and other overloaded terms when referring to architecture

● Establish greater clarity in our use of ‘service’ across products by aligning the
term with user expectations

Research questions:

● How do users apply the term ‘service’ in the context of our products, if at all?
● How do users conceptualize the term ‘service’ outside a specific

architecture?
● Are there better words or qualifiers for the way we currently use, and intend to

use, ‘service’ in our products? If so, what are they?

3

https://github.com/knative/serving/issues/412#issuecomment-377058905

Method
Two data collection approaches:

● Five in-person focus groups (2-4 people) were conducted to understand
what ‘service’ means to our potential users, and how it relates to specific
concepts (e.g., Kubernetes service, Knative service, etc.)

● UserTesting.com fielded 3 additional unmoderated responses to get
more targeted data

19 external participants [details]:

● 4 primarily use Google Cloud Platform (GCP), 10 primarily use another
cloud provider, 5 primarily on-prem

● Mix of Kubernetes experience
● Mix of operator and developer roles

4

Study structure

5

2

“What is a service?”
discussion

3 41

Sketch their own
architecture

Freely label
generic diagrams

Label again with
word list

6

[Group discussion
followed each step]

2

“What is a service?”
discussion

3 41

Sketch their own
architecture

Freely label generic
diagrams

Label again with
word list

Participants were asked to
sketch a diagram of their own

software architecture and label
the pieces

7

2

“What is a service?”
discussion

3 41

Sketch their own
architecture

Freely label generic
diagrams

Label again with
word list

This software architecture topology
diagram was presented piece by piece, and

participants could use any word they
choose for the first round of labeling

After the full diagram was labeled and the
group discussed their decisions,

participants could revise their terms if they
changed their mind

See the Appendix for details on what each
piece of the diagram represents

Frontend

Frontend
2.12

Frontend
2.12

Frontend
2.13

Cart 3.12 Cart 3.12

Frontend
2.13

User

Products

ProductsDB

Products
DB

Products
DB

Products
DB

Products
DB

Products
DB

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Cart

PayPal

API

Another team’s
component

API

8

2

“What is a service?”
discussion

3 41

Sketch their own
architecture

Freely label generic
diagrams

Label again with
word list

The same diagram was labeled
again using only words from this list

9

2

“What is a service?”
discussion

3 41

Sketch their own
architecture

Freely label generic
diagrams

Label again with
word list

Finally, participants had a group
discussion about what ‘service’
means to them and their team

10

Key findings

11

Users perceive
‘services’ to be
independent and
opaque to the
consumer
Services independently provide value without
consumers knowing the inner-workings

“A service is an endpoint that does
something for you and then returns data.
You don’t really know the internals of the

service, you just let it do its thing and then
it comes back to you. It has defined inputs
and outputs so that you know exactly what
you need to give it and then what you get

back.”

“I don’t have to worry about
configuring that service - based on
contracts you do what you need to
do and you shouldn’t have to tell it
how to do its job. It’ll just do it and

come back to you.”

12

Users expect
services to
perform a
defined business
function
Services handle multiple responsibilities to
achieve a specific business goal

“A service is a collection of
functions with a very defined

scope. So a cart service better
not be doing transactions. A

transaction service should be its
own thing.”

“Services execute a
collection of

tasks/functions within a
defined scope.”

13

Users’
understanding of
terminology is
highly variable
Users’ preferred nomenclature depends on their
team, product experience, and cloud provider

When I need clarity I try to
avoid using the term service

but if I’m just speaking
generally I will use it.

"It depends on who you're
talking to. You create your own
language for something within

your team. If you own it and
you call it product service, I'll

call it that too."

14

User
perceptions
challenge the
Kubernetes use
of “service”
Participants’ use of “service” aligns more with
the Knative concept of “service,” while the
Kubernetes concept was consistently labeled
a load balancer

15

Cart 3.12 Cart 3.12

Products

ProductsD
B

Products
DB

Products
DB

Products
DB

Products
DB

Products
DB

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Cart

PayPal

API

Another team’s
component

API

Detailed findings

16

What is a service?

2

Diagram
labels

1

Cart 3.12

Diagram labels

1 2

Cart 3.12

Cart

17

Red cart box

When representing a logical separation, instance was the most common
term; shard or node may be a better term for a physical separation

This construct was likened to pods in Kubernetes

18

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Allows us to validate our Cloud Services Platform object model by
understanding how users refer to one copy of the code they’re running

Cart 3.12 Cart 3.12

Cart

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11.1 Products 1.11.1 Products 1.11.1 Products 1.11.1

PayPal

Another Team’s Component

Cart

Shard
Master
Deploy

Machine
Process

(single mention)

(single mention)

Red cart - revised free label

Red cart - word list

19

DETAILED FINDINGS > DIAGRAM LABELS

Package
Replica

Replica set

(single mention)

Red cart - list

Green bounding boxes

Several terms were used interchangeably, but the most precise word depends on the
magnitude of the change between 2.12 and 2.13

● From smallest to largest, the pattern seems to be: patches/hotfix < versions < releases
● Release implies more mature code that is ready for end-users

These could also be referred to as blue/green or A/B if there are only two; version and
release are more flexible terms

Some participants described these as ‘prod’/’live’ and ‘canary’ deployments

‘Build’ was also considered, but was determined to be too broad since it could incorporate
staging environments

Frontend 2.12 Frontend 2.12 Frontend 2.13 Frontend 2.13

20

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Releasing a new version of software is a common CUJ, so we need to
know what to call these different groups in the UI

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11.1 Products 1.11.1 Products 1.11.1 Products 1.11.1

PayPal

Another Team’s Component

Cart

Sets
Endpoints

Components
Containers
Blue/Green

ASG

21

DETAILED FINDINGS > DIAGRAM LABELS

Replicas
Packages

Components
Builds

Yellow products box

Participants associate the task of routing traffic with load balancers, not services - this
means we need to be specific in UI contexts when Kubernetes services converge with
Knative services

This concept was also named ‘load balancer’ by Kubernetes users in a follow-up study

Load balancer was considered more precise than a term like ‘dispatcher’ because traffic
goes to multiple copies of the same thing; ‘gateway’ was considered but has security
connotations that may not apply to this example

22

“A service is not database, it’s not
the web server… I suppose it’s not
a load balancer either. I wouldn’t

consider a load balancer a
service.”

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Represents a Kubernetes service, and a key distinction between
Kubernetes and Knative ‘service’ concepts

Products

Products 1.11 Products 1.11 Products 1.11 Products 1.11

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

Dispatcher
Endpoint

NOTE: ‘load balancer’
was not in the word list
at the time of the pilot

23

DETAILED FINDINGS > DIAGRAM LABELS

Domain
Router

Caching server
Gateway

Deployment group

Blue bounding box

Participants generally did not have a name for this concept

Replica set makes sense because it houses replicas of the same ‘products 1.11’
copies, especially to Kubernetes users - though a couple participants noted that
replica has “database connotations” and they wouldn’t actually use it for this
“compute concept”

For the same reason, instance group works more generically since it is a group of
instances

This instance group “is not a service because it doesn’t do anything for me
without the load balancer”

Products 1.11 Products 1.11 Products 1.11 Products 1.11

Products

24

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Helps us understand how to term the workloads behind a service

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

Release
Service

Set
Node

Component

25

DETAILED FINDINGS > DIAGRAM LABELS

ASG
Package
Version

Deployment
Group

Purple bounding box

Participants narrowly chose ‘service’ more than other terms, but it was not top-of-mind;
however, this concept maps well to participants’ definitions of what services include - a
load balancer and instance group

For some, the presence of the load balancer distinguished it from terms like ‘nodes’ and
made it a ‘complete service’

Products

Products
1.11

Products
1.11

Products
1.11

Products
1.11

26

“I called it a service because it
includes the load balancer and
instances, making it a complete

service.”

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Represents a Knative service, and a key conceptual difference between
Knative and Kubernetes, referencing the work of a single service operator/developer

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

Module
Node

Worker
Model

Package

27

DETAILED FINDINGS > DIAGRAM LABELS

Deployment
Container

Model
Module

Node

Orange bounding box

The orange box was interpreted as the backend because it includes
the databases and everything the ‘products’ items rely on

Others referred to this concept as a service, likening it to the PayPal
API from the perspective of the frontend

28

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Represents a distinction from the purple box to
understand whether users have a name for their [purple box] and its
dependencies, and helps us distinguish the producer view from the
consumer view of a service

Products

ProductsDB

ProductsD
B

ProductsD
B

ProductsD
B

ProductsD
B

ProductsD
B

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Another Team’s
Component

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

Backend
Orchestrator

Endpoint
Environment

Solution

29

DETAILED FINDINGS > DIAGRAM LABELS

Stack
Application

Group
Component

Engine

Black PayPal API

Although participants were encouraged to use a different term when naming this
item, ‘API’ was their strongest inclination

Qualifiers like ‘external,’ ‘vendor,’ ‘third party,’ or ‘partner’ were common

‘Service’ was chosen here because the PayPal API:
● Is opaque
● Provides a specific business value
● Provides information via HTTP request (distinction from ‘library’ or

‘dependency’)

PayPal

API

“We’re not thinking about how
they support their system. We

just think about the API we use” 30

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Understand how users refer to ‘black-box’ concepts they rely on, but are
outside their organization

Frontend

Cart 3.12 Cart 3.12

User

Cart

Integration
Processor

Library
Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13 Frontend 2.13

User

PayPal

API

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11.1 Products 1.11.1 Products 1.11.1 Products 1.11.1

Another Team’s Component

31

DETAILED FINDINGS > DIAGRAM LABELS

Module
Proxy

Solution

Grey internal API

‘Internal’ was used to distinguish from a third-party/external service

Some thought ‘external’ was still most appropriate for anything outside their team, which
could be a source of confusion with the black-box PayPal concept

This grey box could be considered a dependency if it is required for the ‘products’ pieces
to function - if not, ‘service’ is a better fit

To be most precise, this can also be referred to as the ‘[team that owns it] API/service’

“If the app needs to use it then it’s more of a
dependency. But if it can go forward without it then it’s

just getting an assist, and I would call that a service.” 32

Another team’s
component

API

DETAILED FINDINGS > DIAGRAM LABELS

Significance: Understand whether a black-box concept would be named differently if it
was internal to the organization

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Cart

Another team’s
component

API

Package
Endpoint

Component
Module

33

DETAILED FINDINGS > DIAGRAM LABELS

Utility class
Processor

Client

Significance: Understand how users refer to the entire product
they work on

As the person working on this product, ‘application’ makes the most sense; to
end-users, ‘website’ was a better choice

Shortening to ‘app’ may sound too specific to mobile

‘Product’ is all-encompassing, so could also make sense if the diagram refers to
every feature of the thing this person works on

“I really would just call it an application. That's
because it comprises everything from

frontend to backend as well as any external
services. To call it anything but application

would be really difficult.” 34

Frontend

Cart
3.12

Cart
3.12

Products

Products
DB

Product
s 1.11

Product
s 1.11

Product
s 1.11

Product
s 1.11

Cart

Frontend
2.12

Frontend
2.12

Frontend
2.13

Frontend
2.13

PayPal

API

Another team’s
component

AP
I

Everything together

DETAILED FINDINGS > DIAGRAM LABELS

Frontend

Cart
3.12

Cart
3.12

User

Products

ProductsD
B

Products
DB

Products
DB

Products
DB

Products
DB

Products
DB

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Cart

Frontend
2.12

Frontend
2.12

Frontend
2.13

Frontend
2.13

PayPal

API

Another team’s
component

Service
Microservice

API

Service
Web service

Checkout page
Experience

Solution

35

DETAILED FINDINGS > DIAGRAM LABELS

The term ‘service’ was most
applicable to the PayPal API
‘Service’ seems to be less popular for constructs that are granular and
transparent [diagram for reference]

19/41

14/42 14/41

9/44

36

DETAILED FINDINGS > DIAGRAM LABELS

What is a service?

1 2

37

Services independently
provide value

A service is self-sufficient and performs a valuable business function

Theoretically, a service could continue to functioning even if the
database goes down

A service can be thought of as the “source of truth” for the
information it provides, typically within a defined scope

38

“Services provide a
complete, useful interaction.

The components of a
service are not useful in

isolation.”

“A service is an entity which
provides or does a useful

piece of work, usually
through a request-response

cycle.”

DETAILED FINDINGS > WHAT IS A SERVICE?

Services are strictly defined and
error-resistant

Services receive requests and send responses with defined rules -
users know what input the service needs and can anticipate what
they’ll get back

Services are resilient to failure (multiple instances running) and syntax
errors (sending raw SQL doesn’t feel like a service because SQL takes
free form input instead of defined rules)

39

“When I think of a service, it’s
something that has a distinct set

of rules. There’s a list of things
that I need to give it in order to

get something in return.”

“I think a well defined service
doesn’t let you make syntax

errors.It should be as resilient
as possible to people making

mistakes whether they’re
accurate or not.”

DETAILED FINDINGS > WHAT IS A SERVICE?

Services are the sum of
many parts

Rather than specializing in a single task, services handle multiple
responsibilities

There can be services within services - e.g., a large backend service could
have a smaller logging service and runtime configuration service inside it

The “size” of a service matters - small, singular tasks and calculations may
not be considered a service

40

“Services are broken up into
small microservice

components. An app has
many services talking to

each other.”

“Services are not a
single elementary

component.”

DETAILED FINDINGS > WHAT IS A SERVICE?

Services are usually opaque

Participants referred to ‘service’ most consistently as entities which
are outside the realm of what they personally work on

Users often don’t know the internal mechanics of a service; it is
expected that a service will respond to requests reliably without any
manual configuration on their part

41

“A service is an endpoint that does
something for you and then returns data.
You don’t really know the internals of the

service, you just let it do its thing and then
it comes back to you. It has defined inputs

and outputs so that you know exactly
what you need to give it and then what

you get back.”

“I don’t have to worry about
configuring that service - based on
contracts you do what you need to
do and you shouldn’t have to tell it
how to do its job. It’ll just do it and

come back to you.”

DETAILED FINDINGS > WHAT IS A SERVICE?

The scope of a service is not
entirely agreed upon

Participants generally agreed that a service consists of a load balancer,
a compute component, and can include a database

Views were split on whether services are typically considered internal or
external - some thought the term ‘service’ implied internal unless
specified, while others considered ‘service’ only outside the scope of
their work (e.g., calling through SQL is not a service because that’s
internal; service is usually called externally through an API)

42

“A service is something we need
that’s outside of our control.

External service means not built by
the current team, so definitely

applies to the black box and maybe
the grey box too.”

“Service is something that
belongs to us. API or

endpoint are older terms for
other people’s stuff.”

DETAILED FINDINGS > WHAT IS A SERVICE?

Service vs. microservice

Participants were divided on whether a meaningful difference exists
between ‘service’ and ‘microservice’

A service often signified a broader “collection” of tasks that sends back
something of value; a few distinctions for ‘microservice’ may be:
● Microservices are considered smaller subsets a service
● Microservices complete simpler, more specialized tasks (e.g., lambdas)
● Microservice refers to a methodology rather than a piece of

architecture

43

DETAILED FINDINGS > WHAT IS A SERVICE?

“Microservice refers to the idea of
breaking up your monolithic codebases
into services, but a monolithic codebase
could be a service. You might just not call

it microservice.”

"If it had just one small task
like shipping cost calculation,

that I would rather call
microservice compared to

just service."

General findings on nomenclature

Users acquire terminology through their team definitions, the products
they use, and their cloud provider

Qualifiers are very common, and often necessary for understanding - given
the potential for confusion, people might avoid ‘service’ altogether and opt
for more specific terms where possible (e.g., cart service, PayPal service)

Due to the overloading of generic terms, users have to clarify and
“translate” the meaning of words like ‘service’ in conversation - without
context, differences can be difficult to interpret in UIs and documentation

44

DETAILED FINDINGS > WHAT IS A SERVICE?

Follow-up research

45

Additional findings with
Kubernetes users

Data collection was extended to gain more participants (n = 18)
with moderate or advanced Kubernetes proficiency.

In summary:

● Kubernetes users also referred to the Kubernetes ‘service’
concept as a load balancer

● ‘Service’ was the most common label for the Knative ‘service’
concept

● When asked to give a name to the “thing I work on,” half of
participants reported “service” as the best term

46

Appendix

47

Participant details

48

49

Participant demographics
APPENDIX > Participant details

Organization

50

APPENDIX > Participant details

Non-GCP Cloud GCP On prem

AWS Azure Other

7 1 2 4 5

Kubernetes experience # of participants
Never heard of it 1
Heard of it 6
Understand basic concepts, but never used 5
I've tried it/played around 3
Could complete basic tasks with minimal
guidance 1
Advanced user 3
Expert 0

51

Product experience
APPENDIX > Participant details

Labeling summary

52

Consistent terms

Products

Products 1.11 Products 1.11 Products 1.11 Products 1.11

10/19 labels

Frontend
2.12

Frontend
2.12

Frontend 2.13 Frontend
2.13

PayPal

API

11/22 labels

*From revised free labels of external participants; some participants used multiple terms

Load balancer

External service

53

≥ 50% agreement

APPENDIX > Labeling summary

Cart 3.12 Cart 3.12

Cart

10/23 labels*

Products

Products
DB

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Another Team’s
Component

Less consistent terms
Products 1.11 Products 1.11 Products 1.11 Products 1.11

Another team’s
component

API

Frontend

Cart
3.12

Cart
3.12

Products

Product
sDB

Produc
tsDB

Produc
tsDB

Produc
tsDB

Produc
tsDB

Produc
tsDB

Product
s 1.11

Product
s 1.11

Product
s 1.11

Product
s 1.11

Cart

Fronten
d 2.12

Fronten
d 2.12

Frontend
2.13

Fronten
d 2.13

PayPal

AP
I

Another team’s
component

AP
I

App: 9/21 labels

Service: 8/21 labels*
Dependency: 6/21 labels

Internal service

Internal
dependency

Service: 8/22 labels
Backend: 8/22 labels

Backend

Service

App

54*From revised free labels of external participants; some participants used multiple terms

Instances

33% - 49% agreement

APPENDIX > Labeling summary

Products

Products 1.11 Products 1.11 Products 1.11 Products 1.11

Frontend

Frontend
2.12

Frontend
2.12 Frontend 2.13 Frontend

2.13

User

Least consistent terms

*From revised free labels; some participants used multiple terms

Instances/instance group: 6/21 labels

Service: 5/23 labels* Versions: 6/19 labels
Releases: 5/19 labels

Products

ProductsD
B

Products
DB

Products
DB

Products
DB

Products
DB

Products
DB

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Another Team’s
Component

?

?

?

55

< 33% agreement

APPENDIX > Labeling summary

Diagram implications

56

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11.1 Products 1.11.1 Products 1.11.1 Products 1.11.1

PayPal

Another Team’s Component

Cart

● Why this is important: Allows us to validate our Cloud
Services Platform object model by understanding how
users refer to one copy of the code they’re running

57

APPENDIX > Diagram implications

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13

Cart 3.12 Cart 3.12

Frontend 2.13

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11.1 Products 1.11.1 Products 1.11.1 Products 1.11.1

PayPal

Another Team’s Component

Cart

58

● Why this is important: releasing a new version of
software is a common user journey, so we need to know
how to call these different groups in the UI

APPENDIX > Diagram implications

Frontend 2.12 Frontend 2.12

Cart 3.12 Cart 3.12

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

59

● Why this is important: represents a Kubernetes service
and a key distinction between Kubernetes and Knative
‘service’ concepts

Frontend 2.13

Frontend

Frontend 2.13
end 2.13

User

APPENDIX > Diagram implications

Frontend 2.12 Frontend 2.12

Cart 3.12 Cart 3.12

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

60

● Why this is important: helps us understand how to term
the workloads behind a service

Frontend 2.13

Frontend

Frontend 2.13
end 2.13

User

APPENDIX > Diagram implications

Frontend 2.13

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13
end 2.13

Cart 3.12 Cart 3.12

User

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

61

● Why this is important: represents a Knative service, and a
key conceptual difference between Knative and
Kubernetes, referencing the work of a single service
operator/developer

APPENDIX > Diagram implications

Frontend 2.12 Frontend 2.12

Cart 3.12 Cart 3.12

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Another Team’s Component

Cart

62

Frontend 2.13

Frontend

Frontend 2.13
end 2.13

User

● Why this is important: distinction from the purple box to
understand whether users have a name for their [purple
box] and its dependencies; this also allows us to distinguish
from the producer view and consumer view of a service

APPENDIX > Diagram implications

Frontend

Cart 3.12 Cart 3.12

User

Cart

Frontend

Frontend 2.12 Frontend 2.12 Frontend 2.13 Frontend 2.13

User

PayPal

API

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11.1 Products 1.11.1 Products 1.11.1 Products 1.11.1

Another Team’s Component

63

● Why this is important: understand how users refer to
‘black-box’ concepts they rely on, but are outside their
organization

APPENDIX > Diagram implications

Frontend 2.12 Frontend 2.12

Cart 3.12 Cart 3.12

Products

ProductsDB

ProductsDB ProductsDB ProductsDB ProductsDB ProductsDB

Products 1.11 Products 1.11 Products 1.11 Products 1.11

PayPal

Cart

Another team’s
component

API

64

Frontend 2.13

Frontend

Frontend 2.13
end 2.13

User

● Why this is important: understand whether a black-box
concept would be named differently if it was internal to the
organization

APPENDIX > Diagram implications

Frontend

Cart
3.12

Cart
3.12

User

Products

ProductsD
B

Products
DB

Products
DB

Products
DB

Products
DB

Products
DB

Products
1.11

Products
1.11

Products
1.11

Products
1.11

Cart

Frontend
2.12

Frontend
2.12

Frontend
2.13

Frontend
2.13

PayPal

API

Another team’s
component

API

65

● Why this is important: understand how users refer to the
entire product they work on

APPENDIX > Diagram implications

