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What is software architecture? The answer is multitiered. At the highest level, there 
are the architecture patterns that define the overall shape and structure of software 
applications1. Down a level is the architecture that is specifically related to the pur-
pose of the software application. Yet another level down resides the architecture of 
the modules and their interconnections. This is the domain of design patterns2, pack-
akges, components, and classes. It is this level that we will concern ourselves with in 
this chapter.

Our scope in this chapter is quite limitted. There is much more to be said about the 
principles and patterns that are exposed here. Interested readers are referred to 
[Martin99].

Architecture and Dependencies

What goes wrong with software? The design of many software applications begins as 
a vital image in the minds of its designers. At this stage it is clean, elegant, and com-
pelling. It has a simple beauty that makes the designers and implementers itch to see it 
working. Some of these applications manage to maintain this purity of design through 
the initial development and into the first release. 

But then something begins to happen. The software starts to rot. At first it isn’t so 
bad. An ugly wart here, a clumsy hack there, but the beauty of the design still shows 
through. Yet, over time as the rotting continues, the ugly festering sores and boils 
accumulate until they dominate the design of the application. The program becomes a 
festering mass of code that the developers find increasingly hard to maintain. Eventu-

1. [Shaw96]

2. [GOF96]
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ally the sheer effort required to make even the simplest of changes to the application 
becomes so high that the engineers and front line managers cry for a redesign project.

Such redesigns rarely succeed. Though the designers start out with good intentions, 
they find that they are shooting at a moving target. The old system continues to 
evolve and change, and the new design must keep up. The warts and ulcers accumu-
late in the new design before it ever makes it to its first release. On that fateful day, 
usually much later than planned, the morass of problems in the new design may be so 
bad that the designers are already crying for another redesign.

Symptoms of Rotting Design

There are four primary symptoms that tell us that our designs are rotting. They are not 
orthogonal, but are related to each other in ways that will become obvious. they are: 
rigidity, fragility, immobility, and viscosity.

Rigidity.     Rigidity is the tendency for software to be difficult to change, even in 
simple ways. Every change causes a cascade of subsequent changes in dependent 
modules. What begins as a simple two day change to one module grows into a multi-
week marathon of change in module after module as the engineers chase the thread of 
the change through the application.

When software behaves this way, managers fear to allow engineers to fix non-critical 
problems. This reluctance derives from the fact that they don’t know, with any reli-
ability, when the engineers will be finished. If the managers turn the engineers loose 
on such problems, they may disappear for long periods of time. The software design 
begins to take on some characteristics of a roach motel -- engineers check in, but they 
don’t check out.

When the manager’s fears become so acute that they refuse to allow changes to soft-
ware, official rigidity sets in. Thus, what starts as a design deficiency, winds up being 
adverse management policy.

Fragility.     Closely related to rigidity is fragility. Fragility is the tendency of the 
software to break in many places every time it is changed. Often the breakage occurs 
in areas that have no conceptual relationship with the area that was changed. Such 
errors fill the hearts of managers with foreboding. Every time they authorize a fix, 
they fear that the software will break in some unexpected way.

As the fragility becomes worse, the probability of breakage increases with time, 
asymptotically approaching 1. Such software is impossible to maintain. Every fix 
makes it worse, introducing more problems than are solved.
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Such software causes managers and customers to suspect that the developers have lost 
control of their software. Distrust reigns, and credibility is lost.

Immobility.     Immobility is the inability to reuse software from other projects or 
from parts of the same project. It often happens that one engineer will discover that he 
needs a module that is similar to one that another engineer wrote. However, it also 
often happens that the module in question has too much baggage that it depends upon. 
After much work, the engineers discover that the work and risk required to separate 
the desirable parts of the software from the undesirable parts are too great to tolerate. 
And so the software is simply rewritten instead of reused.

Viscosity.     Viscosity comes in two forms: viscosity of the design, and viscosity of 
the environment. When faced with a change, engineers usually find more than one 
way to make the change. Some of the ways preserve the design, others do not (i.e. 
they are hacks.) When the design preserving methods are harder to employ than the 
hacks, then the viscosity of the design is high. It is easy to do the wrong thing, but 
hard to do the right thing. 

Viscosity of environment comes about when the development environment is slow 
and inefficient. For example, if compile times are very long, engineers will be 
tempted to make changes that don’t force large recompiles, even though those 
changes are not optiimal from a design point of view. If the source code control sys-
tem requires hours to check in just a few files, then engineers will be tempted to make 
changes that require as few check-ins as possible, regardless of whether the design is 
preserved.

These four symptoms are the tell-tale signs of poor architecture. Any application that 
exhibits them is suffering from a design that is rotting from the inside out. But what 
causes that rot to take place?

Changing Requirements

The immediate cause of the degradation of the design is well understood. The require-
ments have been changing in ways that the initial design did not anticipate. Often 
these changes need to be made quickly, and may be made by engineers who are not 
familiar with the original design philosophy. So, though the change to the design 
works, it somehow violates the original design. Bit by bit, as the changes continue to 
pour in, these violations accumulate until malignancy sets in. 

However, we cannot blame the drifting of the requirements for the degradation of the 
design. We, as software engineers, know full well that requirements change. Indeed, 
most of us realize that the requirements document is the most volatile document in the 
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project. If our designs are failing due to the constant rain of changing requirements, it 
is our designs that are at fault. We must somehow find a way to make our designs 
resilient to such changes and protect them from rotting.

Dependency Management

What kind of changes cause designs to rot? Changes that introduce new and 
unplanned for dependencies. Each of the four symptoms mentioned above is either 
directly, or indirectly caused by improper dependencies between the modules of the 
software. It is the dependency architecture that is degrading, and with it the ability of 
the software to be maintained.

In order to forestall the degradation of the dependency architecture, the dependencies 
between modules in an application must be managed. This management consists of 
the creation of dependency firewalls. Accross such firewalls, dependencies do not 
propogate.

Object Oriented Design is replete with principles and techniques for building such 
firewalls, and for managing module dependencies. It is these principles and tech-
niques that will be discussed in the remainder of this chapter. First we will examine 
the principles, and then the techniques, or design patterns, that help maintain the 
dependency architecture of an application.

Principles of Object Oriented Class Design

The Open Closed Principle (OCP)1

A module should be open for extension but closed for modification.

Of all the principles of object oriented design, this is the most important. It originated 
from the work of Bertrand Meyer2. It means simply this: We should write our mod-
ules so that they can be extended, without requiring them to be modified. In other 
words, we want to be able to change what the modules do, without changing the 
source code of the modules.

1. [OCP97]

2. [OOSC98]
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This may sound contradictory, but there are several techniques for achieving the OCP 
on a large scale. All of these techniques are based upon abstraction. Indeed, abstrac-
tion is the key to the OCP. Several of these techniques are described below.

Dynamic Polymorphism. Consider Listing 2-1. the LogOn function must be 
changed every time a new kind of modem is added to the software. Worse, since each 
different type of modem depends upon the Modem::Type enumeration, each 
modem must be recompiled every time a new kind of modem is added.

Listing 2-1
Logon, must be modified to be extended.
struct Modem 
{

enum Type {hayes, courrier, ernie) type;
};

struct Hayes
{

Modem::Type type;
// Hayes related stuff

};

struct Courrier
{

Modem::Type type;
// Courrier related stuff

};

struct Ernie
{

Modem::Type type;
// Ernie related stuff

};

void LogOn(Modem& m, 
string& pno, string& user, string& pw)

{
if (m.type == Modem::hayes)

DialHayes((Hayes&)m, pno);
else if (m.type == Modem::courrier)

DialCourrier((Courrier&)m, pno);
else if (m.type == Modem::ernie)

DialErnie((Ernie&)m, pno)
// ...you get the idea

}
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Of course this is not the worst attribute of this kind of design. Programs that are 
designed this way tend to be littered with similar if/else or switch statement. Every 
time anything needs to be done to the modem, a switch statement if/else chain will 
need to select the proper functions to use. When new modems are added, or modem 
policy changes, the code must be scanned for all these selection statements, and each 
must be appropriately modified.

Worse, programmers may use local optimizations that hide the structure of the selec-
tion statements. For example, it might be that the function is exactly the same for 
Hayes and Courrier modems. Thus we might see code like this:

if (modem.type == Modem::ernie)
SendErnie((Ernie&)modem, c);

else
SendHayes((Hayes&)modem, c);

Clearly, such structures make the system much harder to maintain, and are very prone 
to error.

As an example of the OCP, consider Figure 2-13. Here the LogOn function depends 
only upon the Modem interface. Additional modems will not cause the LogOn func-
tion to change. Thus, we have created a module that can be extended, with new 
modems, without requiring modification. See Listing 2-2.

Figure 2-13

Listing 2-2
LogOn has been closed for modification
class Modem
{
public:

+ Dial(pno)
+ Send(char)
+ Recv() : char
+ Hangup()

Modem
«interface»

LogOn

Courrier
Modem

Hayes
Modem

Ernie's
Modem

«function»
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Static Polymorphism.     Another technique for conforming to the OCP is through 
the use of templates or generics. Listing 2-3 shows how this is done. The LogOn func-
tion can be extended with many different types of modems without requiring modifi-
cation.

Architectural Goals of the OCP.     By using these techniques to conform to the 
OCP, we can create modules that are extensible, without being changed. This means 
that, with a little forethought, we can add new features to existing code, without 
changing the existing code and by only adding new code. This is an ideal that can be 
difficult to achieve, but you will see it achieved, several times, in the case studies later 
on in this book. 

Even if the OCP cannot be fully achieved, even partial OCP compliance can make 
dramatic improvements in the structure of an application. It is always better if 
changes do not propogate into existing code that already works. If you don’t have to 
change working code, you aren’t likely to break it.

virtual void Dial(const string& pno) = 0;
virtual void Send(char) = 0;
virtual char Recv() = 0;
virtual void Hangup() = 0;

};

void LogOn(Modem& m, 
string& pno, string& user, string& pw)

{
m.Dial(pno);
// you get the idea.

}

Listing 2-3
Logon is closed for modification through static polymorphism
template <typename MODEM>
void LogOn(MODEM& m,

string& pno, string& user, string& pw)
{

m.Dial(pno);
// you get the idea.

}

Listing 2-2
LogOn has been closed for modification



Robert C. Martin Copyright (c) 2000 by Robert C. Martin. All Rights Reserved.

www.objectmentor.com 8

The Liskov Substitution Principle (LSP)1

Subclasses should be substitutable for their base classes.

This principle was coined by Barbar Liskov2 in her work regarding data abstraction 
and type theory. It also derives from the concept of Design by Contract (DBC) by 
Bertrand Meyer3. 

The concept, as stated above, is depicted in Figure 2-14. Derived classes should be 
substitutable for their base classes. That is, a user of a base class should continue to 
function properly if a derivative of that base class is passed to it.

In other words, if some function User takes an argument ot type Base, then as 
shown in Listing 2-4, it should be legal to pass in an instance of Derived to that 
function.

This may seem obvious, but there are subtleties that need to be considered. The 
canonical example is the Circle/Ellipse dilemma.

1. [LSP97]

2. [Liksov88]

3. [OOSC98]

Figure 2-14
LSP schema.

Listing 2-4
User, Based, Derived, example.
void User(Base& b);

Derived d;
User(d);

User Base

Derived
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The Circle/Ellipse Dilemma.     Most of us learn, in high school math, that a circle 
is just a degenerate form of an ellipse. All circles are ellipses with coincident foci. 
This is-a relationship tempts us to model circles and ellipses using inheritance as 
shown in Figure 2-15.

While this satisfies our conceptual model, there are certain difficulties. A closer look 
at the declaration of Ellipse in Figure 2-16 begins to expose them. Notice that 
Ellipse has three data elements. The first two are the foci, and the last is the length 
of the major axis. If Circle inherits from Ellipse, then it will inherit these data 
variables. This is unfortunate since Circle really only needs two data elements, a 
center point and a radius.

Figure 2-15
Circle / Ellipse Dilemma

Figure 2-16
Declaration of Ellipse

Ellipse

Circle

+ Circumference() : double
+ Area() : double
+ GetFocusA() : Point
+ GetFocusB() : Point
+ GetMajorAxis() : double
+ GetMinorAxis() : double
+ SetFoci(a:Point, b:Point)
+ SetMajorAxis(double)

- itsFocusA : Point
- itsFocusB : Point
- itsMajorAxis : double

Ellipse
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Still, if we ignore the slight overhead in space, we can make Circle behave prop-
erly by overriding its SetFoci method to ensure that both foci are kept at the same 
value. See Listing 2-5. Thus, either focus will act as the center of the circle, and the 
major axis will be its diameter.

Clients Ruin Everything.     Certainly the model we have created is self consis-
tent. An instance of Circle will obeys all the rules of a circle. There is nothing you 
can do to it to make it violate those rules. So too for Ellipse. The two classes form 
a nicely consistent model, even if Circle has one too many data elements.

However, Circle and Ellipse do not live alone in a universe by themselves. 
They cohabit that universe with many other entities, and provide their public inter-
faces to those entities. Those interfaces imply a contract. The contract may not be 
explicitly stated, but it is there nonetheless. For example, users of Ellipse have the 
right to expect the following code fragment to succeed:

void f(Ellipse& e)
{

Point a(-1,0);
Point b(1,0);
e.SetFoci(a,b);
e.SetMajorAxis(3);
assert(e.GetFocusA() == a);
assert(e.GetFocusB() == b);
assert(e.GetMajorAxis() == 3);

}

In this case the function expects to be working with an Ellipse. As such, it expects 
to be able to set the foci, and major axis, and then verify that they have been properly 
set. If we pass an instance of Ellipse into this function, it will be quite happy. 
However, if we pass an instance of Circle into the function, it will fail rather badly.

If we were to make the contract of Ellipse explicit, we would see a postcondition 
on the SetFoci that guaranteed that the input values got copied to the member vari-
ables, and that the major axis variable was left unchanged. Clearly Circle violates 
this guarantee because it ignores the second input variable of SetFoci. 

Design by Contract.     Restating the LSP, we can say that, in order to be substitut-
able, the contract of the base class must be honored by the derived class. Since 

Listing 2-5
Keeping the Circle Foci coincident.
void Circle::SetFoci(const Point& a, const Point& b)
{

itsFocusA = a;
itsFocusB = a;

}
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Circle does not honor the implied contract of Ellipse, it is not substitutable and 
violates the LSP.

Making the contract explicit is an avenue of research followed by Bertrand Meyer. He 
has invented a language named Eiffel in which contracts are explicitly stated for each 
method, and explicitly checked at each invocation. Those of us who are not using 
Eiffel, have to make do with simple assertions and comments. 

To state the contract of a method, we declare what must be true before the method is 
called. This is called the precondition. If the precondition fails, the results of the 
method are undefined, and the method ought not be called. We also declare what the 
method guarantees will be true once it has completed. This is called the postcondition. 
A method that fails its postcondition should not return.

Restating the LSP once again, this time in terms of the contracts, a derived class is 
substitutable for its base class if:

1. Its preconditions are no stronger than the base class method.

2. Its postconditions are no weaker than the base class method.

Or, in other words, derived methods should expect no more and provide no less.

Repercussions of LSP Violation.     Unfortunately, LSP violations are difficult 
to detect until it is too late. In the Circle/Ellipse case, everything worked fine until 
some client came along and discovered that the implicit contract had been violated.

If the design is heavily used, the cost of repairing the LSP violation may be too great 
to bear. It might not be economical to go back and change the design, and then rebuild 
and retest all the existing clients. Therefore the solution will likely be to put into an if/
else statement in the client that discovered the violation. This if/else statement checks 
to be sure that the Ellipse is actually an Ellipse and not a Circle. See Listing 
2-6. 

Listing 2-6
Ugly fix for LSP violation
void f(Ellipse& e)
{

if (typeid(e) == typeid(Ellipse))
{

Point a(-1,0);
Point b(1,0);
e.SetFoci(a,b);
e.SetMajorAxis(3);
assert(e.GetFocusA() == a);
assert(e.GetFocusB() == b);
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Careful examination of Listing 2-6 will show it to be a violation of the OCP. Now, 
whenever some new derivative of Ellipse is created, this function will have to be 
checked to see if it should be allowed to operate upon it. Thus, violations of LSP are 
latent violations of OCP.

The Dependency Inversion Principle (DIP)1

Depend upon Abstractions. Do not depend upon concretions.

If the OCP states the goal of OO architecture, the DIP states the primary mechanism. 
Dependency Inversion is the strategy of depending upon interfaces or abstract func-
tions and classes, rather than upon concrete functions and classes. This principle is the 
enabling force behind component design, COM, CORBA, EJB, etc. 

Procedural designs exhibit a particular kind of dependency structure. As Figure 2-17 
shows, this structure starts at the top and points down towards details. High level 
modules depend upon lower level modules, which depend upon yet lower level mod-
ules, etc.. 

A little thought should expose this dependency structure as intrinsically weak. The 
high level modules deal with the high level policies of the application. These policies 
generally care little about the details that implement them. Why then, must these high 
level modules directly depend upon those implementation modules?

An object oriented architecture shows a very different dependency structure, one in 
which the majority of dependencies point towards abstractions. Morevoer, the mod-
ules that contain detailed implementation are no longer depended upon, rather they 
depend themselves upon abstractions. Thus the dependency upon them has been 
inverted. See Figure 2-18.

Depending upon Abstractions.     The implication of this principle is quite sim-
ple. Every dependency in the design should target an interface, or an abstract class. 
No dependency should target a concrete class.

assert(e.GetMajorAxis() == 3);
}
else

throw NotAnEllipse(e);
}

1. [DIP97]

Listing 2-6
Ugly fix for LSP violation
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Clearly such a restriction is draconian, and there are mitigating circumstatnces that 
we will explore momentarily. But, as much as is feasible, the principle should be fol-
lowed. The reason is simple, concrete things change alot, abstract things change much 
less frequently. Morevoer, abstractions are “hinge points”, they represent the places 
where the design can bend or be extended, without themselves being modified (OCP).

Figure 2-17
Dependency Structure of a Procedural Architecture

Figure 2-18
Dependency Structure of an Object Oriented Architecture

main

mid 1 Mid 2 Mid 3

Detail Detail Detail Detail

High level
Policy

Abstract
Interface

Abstract
Interface

Abstract
Interface

Detailed
Implementation

Detailed
Implementation

Detailed
Implementation
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Substrates such as COM enforce this principle, at least between components. The 
only visible part of a COM component is its abstract interface. Thus, in COM, there is 
little escape from the DIP.

Mitigating Forces.     One motivation behind the DIP is to prevent you from 
depending upon volatile modules. The DIP makes the assumption that anything con-
crete is volatile. While this is frequently so, especially in early development, there are 
exceptions. For example, the string.h standard C library is very concrete, but is 
not at all volatile. Depending upon it in an ANSI string environment is not harmful. 
Likewise, if you have tried and true modules that are concrete, but not volatile, 
depending upon them is not so bad. Since they are not likely to change, they are not 
likely to inject volatility into your design. 

Take care however. A dependency upon string.h could turn very ugly when the 
requirements for the project forced you to change to UNICODE characters. Non-vol-
atility is not a replacement for the substitutability of an abstract interface. 

Object Creation.     One of the most common places that designs depend upon con-
crete classes is when those designs create instances. By definition, you cannot create 
instances of abstract classes. Thus, to create an instance, you must depend upon a 
concrete class.

Creation of instances can happen all through the architecture of the design. Thus, it 
might seem that there is no escape and that the entire architecture will be littered with 
dependencies upon concrete classes. However, there is an elegant solution to this 
problem named ABSTRACTFACTORY1 -- a design pattern that we’ll be examining in 
more detail towards the end of this chapter.

The Interface Segregation Principle (ISP)2

Many client specific interfaces are better than one general purpose interface

The ISP is another one of the enabling technologies supporting component substrates 
such as COM. Without it, components and classes would be much less useful and por-
table.

The essence of the principle is quite simple. If you have a class that has several cli-
ents, rather than loading the class with all the methods that the clients need, create 
specific interfaces for each client and multiply inherit them into the class.

1. [GOF96] p??

2. [ISP97]
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Figure 2-19 shows a class with many clients, and one large interface to serve them all. 
Note that whenever a change is made to one of the methods that ClientA calls, 
ClientB and ClientC may be affected. It may be necessary to recompile and 
redeploy them. This is unfortunate.

A better technique is shown in Figure 2-20. The methods needed by each client are 
placed in special interfaces that are specific to that client. Those interfaces are multi-
ply inherited by the Service class, and implemented there.

If the interface for ClientA needs to change, ClientB and ClientC will remain 
unaffected. They will not have to be recompiled or redeployed.

What does Client Specific Mean?     The ISP does not recommend that every 
class that uses a service have its own special interface class that the service must 
inherit from. If that were the case, the service would depend upon each and every cli-
ent in a bizarre and unhealthy way. Rather, clients should be categorized by their 
type, and interfaces for each type of client should be created.

If two or more different client types need the same method, the method should be 
added to both of their interfaces. This is neither harmful nor confusing to the client.

Changing Interfaces.     When object oriented applications are maintained, the 
interfaces to existing classes and components often change. There are times when 
these changes have a huge impact and force the recompilation and redeployment of a 
very large part of the design. This impact can be mitigated by adding new interfaces 
to existing objects, rather than changing the existing interface. Clients of the old inter-

Figure 2-19
Fat Service with Integrated Interfaces

«client A Methods»
+ ...
«client B methods»
+ ...
«client C methods»
+ ...

Service

Client A

Client B

Client C
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face that wish to access methods of the new interface, can query the object for that 
interface as shown in the following code.

void Client(Service* s)
{

if (NewService* ns = dynamic_cast<NewService*>(s))
{

// use the new service interface
}

}

As with all principles, care must be taken not to overdo it. The specter of a class with 
hundreds of different interfaces, some segregated by client and other segregated by 
version, would be frightening indeed.

Principles of Package Architecture

Classes are a necessary, but insufficient, means of organizing a design. The larger 
granularity of packages are needed to help bring order. But how do we choose which 
classes belong in which packages. Below are three principles known as the Package 
Cohesion Principles, that attempt to help the software architect.

Figure 2-20
Segregated Interfaces

«client A Methods»
+ ...
«client B methods»
+ ...
«client C methods»
+ ...

Service

Client A

Client B

Client C

«client A Methods»
+ ...

Service A
«interface»

«client B Methods»
+ ...

Service B
«interface»

«client C Methods»
+ ...

Service C
«interface»


