-
Notifications
You must be signed in to change notification settings - Fork 1
/
hmm.py
585 lines (539 loc) · 22.2 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import os
import shutil
import tempfile
import time
import numpy as np
import tensorflow as tf
from kesmarag.ml.utils import DataSet
from sklearn.cluster import KMeans
from tensorflow.contrib.distributions import MultivariateNormalFullCovariance
# disable the tensorflow's warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class HMM(object):
"""A Hidden Markov Model class on top of the Tensorflow library.
At the moment, the class supports only Gaussian emission distributions.
The class will also support discrete multivariate and Gaussian Mixture Models
as emission distributions.
The class is licensed under the MIT License.
"""
def __init__(self, num_states, data_dim, hmm_type='fully-connected'):
"""Init method of the HMM class.
Args:
num_states: Number of the hidden states.
data_dim: Dimensionality of the observed data.
hmm_type: Type of HMM (fully-connected, left-to-right, cyclic).
"""
self._dir = tempfile.mkdtemp()
self._epoch = 0
self._graph = tf.Graph()
self._num_states = num_states
self._data_dim = data_dim
self._hmm_type = hmm_type
self._em_probs = self._emission_probs_family()
# numpy variables
self._p0, self._tp = self._init_p0_tp()
self._mu = np.random.rand(self._num_states, self._data_dim)
self._sigma = np.array(
[np.identity(self._data_dim, dtype=np.float64)] * self._num_states)
# creation of the computation graph
self._create_the_computational_graph()
def __del__(self):
# delete the tmp directory
shutil.rmtree(self._dir)
def __str__(self):
frame_len = 35
s = '-' * frame_len
s += '\n' + '-' * frame_len + '\n'
s += ' - kesmarag.ml.hmm.HMM'
s += '\n' + '-' * frame_len + '\n'
s += ' - number of states: ' + str(self._num_states) + '\n'
s += ' - observation length: ' + str(self._data_dim) + '\n'
s += ' - training epoch: ' + str(self._epoch)
if self._epoch > 0:
s += '\n' + '-' * frame_len + '\n'
s += ' - initial probabilities'
s += '\n' + '-' * frame_len + '\n'
s += str(self._p0)
s += '\n' + '-' * frame_len + '\n'
s += ' - transition probabilities'
s += '\n' + '-' * frame_len + '\n'
s += str(self._tp)
s += '\n' + '-' * frame_len + '\n'
s += ' - mean values'
s += '\n' + '-' * frame_len + '\n'
s += str(self._mu)
s += '\n' + '-' * frame_len + '\n'
s += ' - covariances'
s += '\n' + '-' * frame_len + '\n'
s += str(self._sigma)
s += '\n' + '-' * frame_len
s += '\n' + '-' * frame_len + '\n'
return s
def posterior(self, data):
"""Runs the forward-backward algorithm in order to calculate
the log-scale posterior probabilities.
Args:
data: A numpy array with rank two or three.
Returns:
A numpy array that contains the log-scale posterior probabilities of
each time serie in data.
"""
dataset = DataSet(data, shuffle=False)
with tf.Session(graph=self._graph) as sess:
sess.run(tf.global_variables_initializer())
feed_dict = {
self._dataset_tf: dataset.data, self._p0_tf: self._p0,
self._tp_tf: self._tp, self._mu_tf: self._mu,
self._sigma_tf: self._sigma}
return np.squeeze(sess.run(self._posterior, feed_dict=feed_dict))
def fit(self, data, max_steps=100, batch_size=None, TOL=0.01, min_var=0.1,
num_runs=1):
"""Implements the Baum-Welch fitting algorithm.
Args:
data: A numpy array with rank two or three.
max_steps: Maximum number of steps.
batch_size: None or the number of batch size.
TOL: The tolerance for stoping the training process.
min_var: Minimum variance
num_runs: Number of training realizations.
The best of all model is to be kept.
Returns:
True if converged, False otherwise.
"""
post_max = -1000000000
tic = time.time()
dataset = DataSet(data)
KMEANS_NUM = 100
kmeans_batch = np.concatenate(dataset.get_batch(
min(KMEANS_NUM, dataset.num_examples)), axis=0)
if self._hmm_type == 'left-to-right':
N = kmeans_batch.shape[-2] // (self._num_states + 1)
centers = []
sigmas = []
for k in range(self._num_states):
centers.append(np.mean(kmeans_batch[range(k * N, (k + 1) * N)], axis=-2))
sigmas.append(np.mean(kmeans_batch[range(k * N, (k + 1) * N)]**2, axis=-2) - centers[k]**2)
# print(sigmas)
self._sigma = np.array(
[np.identity(self._data_dim, dtype=np.float64)] * self._num_states)
for i in range(self._num_states):
self._sigma[i] = np.diag(sigmas[i] * (1.0 + 0.3 * np.abs(np.random.randn(len(sigmas[i]),))) )
else:
kmeans = KMeans(n_clusters=self._num_states)
for r in range(num_runs):
converged = False
if self._hmm_type == 'left-to-right':
for i in range(self._num_states):
centers[i] = np.multiply(centers[i], 1.0 + 0.05 * (np.random.randn(self._data_dim,)))
self._mu = np.array(centers)
else:
kmeans = KMeans(
n_clusters=self._num_states, random_state=r).fit(kmeans_batch)
self._mu = kmeans.cluster_centers_
self._p0, self._tp = self._init_p0_tp()
if self._hmm_type != 'left-to-right':
self._sigma = np.array(
[np.identity(self._data_dim, dtype=np.float64)] * self._num_states)
with tf.Session(graph=self._graph) as sess:
sess.run(tf.global_variables_initializer())
for step in range(max_steps):
if batch_size is None:
feed_dict = {
self._dataset_tf: dataset.data, self._p0_tf: self._p0,
self._tp_tf: self._tp, self._mu_tf: self._mu,
self._sigma_tf: self._sigma, self._min_var_tf: min_var}
else:
batch = dataset.get_batch(batch_size)
feed_dict = {
self._dataset_tf: batch, self._p0_tf: self._p0,
self._tp_tf: self._tp, self._mu_tf: self._mu,
self._sigma_tf: self._sigma, self._min_var_tf: min_var}
if step == 0:
p0_prev = np.zeros((self._num_states,))
tp_prev = np.zeros((self._num_states, self._num_states))
mu_prev = np.zeros((self._num_states, self._data_dim,))
sigma_prev = np.zeros((
self._num_states, self._data_dim, self._data_dim))
else:
p0_prev = self._p0
tp_prev = self._tp
mu_prev = self._mu
sigma_prev = self._sigma
self._p0, self._tp, self._mu, self._sigma = sess.run(
[self._p0_tf_new, self._tp_tf_new,
self._mu_tf_new, self._sigma_tf_new],
feed_dict=feed_dict)
# check if the sigma is positive definite
for k in range(self._num_states):
j = 0
while not self._is_pos_def(self._sigma[k]):
j += 1
# print('.. not positive definite ..')
self._sigma[k] = self._sigma[k] + 0.05 * np.array(
[np.identity(self._data_dim, dtype=np.float64)])*self._sigma[k]
post = np.mean(
np.squeeze(sess.run(
self._posterior, feed_dict={
self._dataset_tf: dataset.data, self._p0_tf: self._p0,
self._tp_tf: self._tp, self._mu_tf: self._mu,
self._sigma_tf: self._sigma})))
if post > post_max:
p0_max = self._p0
tp_max = self._tp
mu_max = self._mu
sigma_max = self._sigma
ch_p0 = np.max(np.abs(self._p0 - p0_prev))
ch_tp = np.max(np.abs(self._tp - tp_prev))
ch_mu = np.max(np.abs(self._mu - mu_prev))
ch_sigma = np.max(np.abs(self._sigma - sigma_prev))
# print('step = ', step, ' ', post)
if ch_p0 < TOL and ch_tp < TOL and ch_mu < TOL and ch_sigma < TOL:
converged = True
break
# print('steps = ', step, ' ', post)
self._p0 = p0_max
self._tp = tp_max
self._mu = mu_max
self._sigma = sigma_max
self._epoch += 1
toc = time.time()
# print('training time : ', toc-tic, ' seconds.')
return converged
def run_viterbi(self, data):
"""Implements the viterbi decoding algorithm.
Args:
data: A numpy array of rank two or three represents the observed data.
Returns:
A numpy array contains he most probable hidden state paths.
"""
dataset = DataSet(data)
tic = time.time()
with tf.Session(graph=self._graph) as sess:
sess.run(tf.global_variables_initializer())
feed_dict = feed_dict = {
self._dataset_tf: dataset.data, self._p0_tf: self._p0,
self._tp_tf: self._tp, self._mu_tf: self._mu,
self._sigma_tf: self._sigma}
toc = time.time()
# print('inference time : ', toc-tic, ' seconds.')
w, am = sess.run([self._w, self._am], feed_dict=feed_dict)
w = (w[:, -1, :])
argmax_w = np.argmax(w, axis=1)
psi = np.concatenate((am[range(len(w)), 1::, argmax_w], np.expand_dims(argmax_w, 1)), -1)
dec = []
for i, p in enumerate(am):
dec_p = [argmax_w[i]]
c = p[::-1, :]
l = argmax_w[i]
for j in range(len(c) - 1):
# print(c[j][l])
dec_p.insert(0, c[j][l])
l = c[j][l]
dec_p.insert(0, l)
dec.append(dec_p)
return np.squeeze(np.array(dec, dtype='int16'))
def generate(self, num_samples):
"""Generate simulated data from the model.
Args:
num_samples: The number of samples of the generated data.
Returns:
The numpy array of the generated sequence of observations.
"""
with tf.Session(graph=self._graph) as sess:
sess.run(tf.global_variables_initializer())
feed_dict = {
self._p0_tf: self._p0,
self._tp_tf: self._tp, self._mu_tf: self._mu,
self._sigma_tf: self._sigma, self._num_samples_tf: num_samples}
states, samples = sess.run(
[self._states, self._samples], feed_dict=feed_dict)
return samples, states
def save_model(self, filename):
"""Saves the model parameters to a numpy file
Args:
filename: The path to a numppy .npz file where the model parameters will be saved.
"""
if self._epoch > 0:
np.savez(filename, p0 = self._p0, tp = self._tp, mu = self._mu, sigma = self._sigma)
else:
print('Nothing to do. The model must have been trained first in order to run this method')
def load_model(self, filename):
"""Loads the model parameters from a numpy file
Args:
filename: The path to a numpy .npz file where the model parameters have been stored.
"""
if self._epoch == 0:
z = np.load(filename)
self._p0 = z['p0']
self._tp = z['tp']
self._mu = z['mu']
self._sigma = z['sigma']
self._epoch = 1
else:
print('ERROR: The model parameters did not load properly')
@property
def p0(self):
return np.squeeze(self._p0)
@property
def tp(self):
return self._tp
@property
def mu(self):
return self._mu
@property
def sigma(self):
return self._sigma
def _create_the_computational_graph(self):
with self._graph.as_default():
self._dataset_tf = tf.placeholder(
'float64', shape=[None, None, self._data_dim])
self._num_samples_tf = tf.placeholder('int32')
self._min_var_tf = tf.placeholder('float64')
self._p0_tf = tf.placeholder(tf.float64, shape=[1, self._num_states])
self._tp_tf = tf.placeholder(
tf.float64, shape=[self._num_states, self._num_states])
self._emissions_eval()
self._forward()
self._backward()
self._expectation()
self._maximization()
self._simulate()
self._viterbi()
self._saver = tf.train.Saver()
def _emission_probs_family(self):
with self._graph.as_default():
self._mu_tf = tf.placeholder(
tf.float64, shape=[self._num_states, self._data_dim])
self._sigma_tf = tf.placeholder(
tf.float64, shape=[self._num_states, self._data_dim, self._data_dim])
return MultivariateNormalFullCovariance(loc=self._mu_tf,
covariance_matrix=self._sigma_tf)
def _emissions_eval(self):
with tf.variable_scope('emissions_eval'):
dataset_expanded = tf.expand_dims(self._dataset_tf, -2)
self._emissions = self._em_probs.prob(dataset_expanded)
def _forward_step(self, n, alpha, c):
# calculate alpha[n-1] tp
alpha_tp = tf.matmul(alpha[n - 1], self._tp_tf)
# calculate p(x|z) \sum_z alpha[n-1] tp
a_n_tmp = tf.multiply(tf.squeeze(self._emissions[:, n, :]), alpha_tp)
c_n_tmp = tf.expand_dims(tf.reduce_sum(a_n_tmp, axis=-1), -1)
return [n + 1, tf.concat([alpha, tf.expand_dims(a_n_tmp / c_n_tmp, 0)], 0),
tf.concat([c, tf.expand_dims(c_n_tmp, 0)], 0)]
def _backward_step(self, n, betta, b_p):
b_p_tmp = tf.multiply(betta[0],
tf.squeeze(self._emissions[:, -n, :]))
b_n_tmp = tf.matmul(b_p_tmp, self._tp_tf, transpose_b=True) / self._c[-n]
return [n + 1, tf.concat([tf.expand_dims(b_n_tmp, 0), betta], 0),
tf.concat([tf.expand_dims(b_p_tmp, 0), b_p], 0)]
def _simulate_step(self, n, states, samples):
state = tf.expand_dims(
tf.where(
tf.squeeze(
self._cum_tp_tf[
tf.cast(states[n - 1, 0], dtype='int32')] > self._rand[n]))[0], 0)
sample = tf.expand_dims(self._em_probs.sample()[tf.cast(
state[0, 0], dtype='int32')], 0)
return [n + 1, tf.concat(
[states, state], 0), tf.concat([samples, sample], 0)]
def _forward(self):
with tf.variable_scope('forward'):
n = tf.shape(self._dataset_tf)[1]
# alpha shape : (N, I, states)
# c shape : (N, I, 1)
a_0_tmp = tf.expand_dims(
tf.multiply(self._emissions[:, 0, :], tf.squeeze(self._p0_tf)), 0)
c_0 = tf.expand_dims(tf.reduce_sum(a_0_tmp, axis=-1), -1)
alpha_0 = a_0_tmp / c_0
i0 = tf.constant(1)
condition_forward = lambda i, alpha, c: tf.less(i, n)
_, self._alpha, self._c = \
tf.while_loop(
condition_forward,
self._forward_step,
[i0, alpha_0, c_0],
shape_invariants=[
i0.get_shape(),
tf.TensorShape(
[None, None, self._num_states]),
tf.TensorShape([None, None, 1])])
self._posterior = tf.reduce_sum(tf.log(self._c), axis=0)
def _backward(self):
with tf.variable_scope('backward'):
n = tf.shape(self._dataset_tf)[1]
shape = tf.shape(self._dataset_tf)[0]
dims = tf.stack([shape, self._num_states])
b_tmp_ = tf.fill(dims, 1.0)
betta_0 = tf.expand_dims(tf.ones_like(b_tmp_, dtype=tf.float64), 0)
b_p_0 = tf.expand_dims(tf.ones_like(b_tmp_, dtype=tf.float64), 0)
i0 = tf.constant(1)
condition_backward = lambda i, betta, b_p: tf.less(i, n)
_, self._betta, b_p_tmp = \
tf.while_loop(
condition_backward,
self._backward_step,
[i0, betta_0, b_p_0],
shape_invariants=[
i0.get_shape(),
tf.TensorShape([None, None, self._num_states]),
tf.TensorShape([None, None, self._num_states])])
self._b_p = b_p_tmp[:-1, :, :]
def _simulate(self):
with self._graph.as_default():
self._rand = tf.random_uniform(
[self._num_samples_tf, 1], maxval=1.0, dtype='float64')
self._cum_p0_tf = tf.cumsum(self._p0_tf, axis=1)
self._cum_tp_tf = tf.cumsum(self._tp_tf, axis=1)
# initial sample
_init_sample_state = tf.expand_dims(
tf.where(tf.squeeze(self._cum_p0_tf > self._rand[0]))[0], 0)
_init_sample = tf.expand_dims(self._em_probs.sample()[tf.cast(
_init_sample_state[0, 0], dtype='int32')], 0)
i0 = tf.constant(1, dtype='int32')
condition_sim = lambda i, states, samples: tf.less(
i, self._num_samples_tf)
_, self._states, self._samples = tf.while_loop(
condition_sim, self._simulate_step,
[i0, _init_sample_state, _init_sample],
shape_invariants=[
i0.get_shape(), tf.TensorShape(
[None, 1]), tf.TensorShape([None, self._data_dim])])
def _xi_calc(self, n, xi):
a_b_p = tf.matmul(
tf.expand_dims(self._alpha[n - 1] / self._c[n], -1),
tf.expand_dims(self._b_p[n - 1], -1), transpose_b=True)
xi_n_tmp = tf.multiply(a_b_p, self._tp_tf)
return [n + 1, tf.concat([xi, tf.expand_dims(xi_n_tmp, 0)], 0)]
def _expectation(self):
with tf.variable_scope('expectation'):
# gamma shape : (N, I, states)
self._gamma = tf.multiply(self._alpha, self._betta, name='gamma')
n = tf.shape(self._dataset_tf)[1]
shape = tf.shape(self._dataset_tf)[0]
dims = tf.stack([shape, self._num_states, self._num_states])
xi_tmp_ = tf.fill(dims, 1.0)
xi_0 = tf.expand_dims(tf.ones_like(xi_tmp_, dtype=tf.float64), 0)
i0 = tf.constant(1)
condition_xi = lambda i, xi: tf.less(i, n)
_, xi_tmp = tf.while_loop(
condition_xi, self._xi_calc, [i0, xi_0],
shape_invariants=[i0.get_shape(), tf.TensorShape(
[None, None, self._num_states, self._num_states])])
self._xi = xi_tmp[1:, :, :]
def _maximization(self):
with tf.variable_scope('maximization'):
max_var = 20.0
gamma_mv = tf.reduce_mean(self._gamma, axis=1, name='gamma_mv')
# self._gamma_mv = gamma_mv
# print('gamma_mv shape : ', gamma_mv.get_shape())
xi_mv = tf.reduce_mean(self._xi, axis=1, name='xi_mv')
# update the initial state probabilities
self._p0_tf_new = tf.transpose(tf.expand_dims(gamma_mv[0], -1))
# update the transition matrix
# first calculate sum_n=2^{N} xi_mean[n-1,k , n,l]
sum_xi_mean = tf.squeeze(tf.reduce_sum(xi_mv, axis=0))
self._tp_tf_new = sum_xi_mean / (tf.reduce_sum(sum_xi_mean,
axis=1,
keepdims=True))
# emissions update
x_t = tf.transpose(self._dataset_tf, perm=[1, 0, 2], name='x_transpose')
gamma_x = tf.matmul(tf.expand_dims(self._gamma, -1),
tf.expand_dims(x_t, -1), transpose_b=True)
sum_gamma_x = tf.reduce_sum(gamma_x, axis=[0, 1])
mu_tmp_t = tf.transpose(sum_gamma_x) / tf.reduce_sum(
self._gamma,
axis=[0, 1])
self._mu_tf_new = tf.transpose(mu_tmp_t)
# update the covariances
# gamma shape : (N, I, states)
# x shape : (I, N, dim)
# mu shape : (states, dim)
x_expanded = tf.expand_dims(self._dataset_tf, -2)
# calculate (x - mu) tensor : expected shape (I, N, states, dim)
x_m_mu = tf.subtract(x_expanded, self._mu_tf)
# calculate (x - mu)(x - mu)^T : expected shape (I, N, states, dim, dim)
x_m_mu_2 = tf.matmul(tf.expand_dims(x_m_mu, -1),
tf.expand_dims(x_m_mu, -2))
gamma_r = tf.transpose(self._gamma, perm=[1, 0, 2])
gamma_x_m_mu_2 = tf.multiply(
x_m_mu_2,
tf.expand_dims(tf.expand_dims(gamma_r, -1), -1))
_new_cov_tmp = tf.reduce_sum(
gamma_x_m_mu_2,
axis=[0, 1]) / tf.expand_dims(
tf.expand_dims(
tf.reduce_sum(
gamma_r,
axis=[0, 1]), -1), -1)
lowest_var = (0.5 * max_var + self._min_var_tf) * \
tf.tile(
tf.expand_dims(
tf.Variable(
initial_value=np.identity(
self._data_dim,
dtype=np.float64),
dtype=tf.float64), 0),
[self._num_states, 1, 1])
lowest_cov = -0.5 * max_var * tf.ones(
[self._num_states, self._data_dim, self._data_dim], dtype=tf.float64)
lowest_c = tf.add(lowest_cov, lowest_var)
highest_var = (-0.5 * max_var + max_var) * \
tf.tile(
tf.expand_dims(
tf.Variable(
initial_value=np.identity(
self._data_dim,
dtype=np.float64),
dtype=tf.float64), 0),
[self._num_states, 1, 1])
highest_cov = 0.5 * max_var * tf.ones(
[self._num_states, self._data_dim, self._data_dim], dtype=tf.float64)
highest_c = tf.add(highest_cov, highest_var)
_new_cov_tmp2 = tf.maximum(lowest_c, _new_cov_tmp)
self._sigma_tf_new = tf.minimum(highest_c, _new_cov_tmp2)
def _viterbi_step(self, n, w, am):
w_tmp = tf.expand_dims(tf.log(self._emissions[:, n]) + tf.reduce_max(
tf.expand_dims(w[:, n - 1], -1) + tf.expand_dims((tf.log(self._tp_tf)), 0) , axis=-2), 1)
am_tmp = tf.expand_dims(tf.argmax(tf.expand_dims(w[:, n - 1], -1) + tf.expand_dims((tf.log(self._tp_tf)), 0) , axis=-2), 1)
return [n + 1, tf.concat([w, w_tmp], 1), tf.concat([am, am_tmp], 1)]
def _viterbi(self):
with self._graph.as_default():
m = tf.shape(self._dataset_tf)[0]
n = tf.shape(self._dataset_tf)[1]
w1 = tf.expand_dims(
tf.log(self._p0_tf) + tf.log(self._emissions[:, 0]), 1)
am1 = tf.zeros_like(w1, dtype='int64')
i0 = tf.constant(1)
condition_viterbi = lambda i, w, am: tf.less(i, n)
_, self._w, self._am = tf.while_loop(
condition_viterbi, self._viterbi_step, [i0, w1, am1], shape_invariants=[
i0.get_shape(), tf.TensorShape([None, None, self._num_states]), tf.TensorShape([None, None, self._num_states])])
def _is_pos_def(self, sigma):
return np.all(np.linalg.eigvals(sigma) > 0.02)
def _init_p0_tp(self):
tp = np.ones([self._num_states, self._num_states], dtype=np.float64) / self._num_states
p0 = np.ones([1, self._num_states], dtype=np.float64) / self._num_states
if self._hmm_type == 'left-to-right' or self._hmm_type == 'cyclic':
p0[0, 0] = 1.0
for i in range(self._num_states):
p0[0, i] = 0.0
for j in range(i):
tp[i, j] = 0.0
if self._hmm_type == 'left-to-right':
tp[i, i] = 0.9
else:
tp[i, i] = 0.5
if i < self._num_states - 1:
if self._hmm_type == 'left-to-right':
tp[i, i + 1] = 0.1
else:
tp[i, i + 1] = 0.5
for j in range(i + 2, self._num_states):
tp[i, j] = 0.0
tp[-1, -1] = 1.0
p0[0, 0] = 1.0
if self._hmm_type == 'cyclic':
tp[-1, 0] = 0.5
tp[-1, -1] = 0.5
p0 = np.ones([1, self._num_states], dtype=np.float64) / self._num_states
return p0, tp