This is the official PyTorch implementation of the ACL 2022 paper: "LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding".
LiLT is pre-trained on the visually-rich documents of a single language (English) and can be directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. We hope the public availability of this work can help document intelligence researches.
For CUDA 11.X:
conda create -n liltfinetune python=3.7
conda activate liltfinetune
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0 -c pytorch
python -m pip install detectron2==0.5 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html
git clone https://github.com/jpWang/LiLT
cd LiLT
pip install -r requirements.txt
pip install -e .
Or check Detectron2/PyTorch versions and modify the command lines accordingly.
In this repository, we provide the fine-tuning codes for FUNSD and XFUND.
You can download our pre-processed data (~1.2GB) from here, and put the unzipped xfund&funsd/
under LiLT/
.
Model | Language | Size | Download |
---|---|---|---|
lilt-roberta-en-base |
EN | 293MB | OneDrive |
lilt-infoxlm-base |
MUL | 846MB | OneDrive |
lilt-only-base |
None | 21MB | OneDrive |
If you want to combine the pre-trained LiLT with the RoBERTas of other languages, please download lilt-only-base
and use gen_weight_roberta_like.py
to generate your own pre-trained weight.
For example, combine lilt-only-base
with English roberta-base
:
mkdir roberta-en-base
wget https://huggingface.co/roberta-base/resolve/main/config.json -O roberta-en-base/config.json
wget https://huggingface.co/roberta-base/resolve/main/pytorch_model.bin -O roberta-en-base/pytorch_model.bin
python gen_weight_roberta_like.py \
--lilt lilt-only-base/pytorch_model.bin \
--text roberta-en-base/pytorch_model.bin \
--config roberta-en-base/config.json \
--out lilt-roberta-en-base
Or combine lilt-only-base
with microsoft/infoxlm-base
:
mkdir infoxlm-base
wget https://huggingface.co/microsoft/infoxlm-base/resolve/main/config.json -O infoxlm-base/config.json
wget https://huggingface.co/microsoft/infoxlm-base/resolve/main/pytorch_model.bin -O infoxlm-base/pytorch_model.bin
python gen_weight_roberta_like.py \
--lilt lilt-only-base/pytorch_model.bin \
--text infoxlm-base/pytorch_model.bin \
--config infoxlm-base/config.json \
--out lilt-infoxlm-base
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 examples/run_funsd.py \
--model_name_or_path lilt-roberta-en-base \
--tokenizer_name roberta-base \
--output_dir ser_funsd_lilt-roberta-en-base \
--do_train \
--do_predict \
--max_steps 2000 \
--per_device_train_batch_size 8 \
--warmup_ratio 0.1 \
--fp16
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 examples/run_xfun_ser.py \
--model_name_or_path lilt-infoxlm-base \
--tokenizer_name xlm-roberta-base \
--output_dir ls_ser_xfund_lilt-infoxlm-base \
--do_train \
--do_eval \
--lang zh \
--max_steps 2000 \
--per_device_train_batch_size 16 \
--warmup_ratio 0.1 \
--fp16
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 examples/run_xfun_re.py \
--model_name_or_path lilt-infoxlm-base \
--tokenizer_name xlm-roberta-base \
--output_dir ls_re_xfund_lilt-infoxlm-base \
--do_train \
--do_eval \
--lang zh \
--max_steps 20000 \
--per_device_train_batch_size 2 \
--warmup_ratio 0.1 \
--fp16
The repository benefits greatly from unilm/layoutlmft. Thanks a lot for their excellent work.
If our paper helps your research, please cite it in your publication(s):
@inproceedings{wang2022LiLT,
title={LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding},
author={Wang, Jiapeng and Jin, Lianwen and Ding, Kai},
booktitle={ACL},
year={2022}
}
Suggestions and discussions are greatly welcome. Please contact the authors by sending email to [email protected]
.