You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First of all thanks, for the great work!
My question, could these models be adapted to the task of Layout Analysis, so that we could use them in datasets like Publaynet?
In this sense, the models would need to output the probabilities of each pixel belonging to a given class, instead of the possible tags for each token.
The text was updated successfully, but these errors were encountered:
Hi,
since LiLT does not introduce image information yet, it cannot directly output the probabilities of each pixel. However, maybe you can first use the OCR engine to get the OCR result and then classify each token into the categories of pixels contained in its corresponding box. In this way, it can assist the traditional visual model in dealing with layout analysis tasks.
First of all thanks, for the great work!
My question, could these models be adapted to the task of Layout Analysis, so that we could use them in datasets like Publaynet?
In this sense, the models would need to output the probabilities of each pixel belonging to a given class, instead of the possible tags for each token.
The text was updated successfully, but these errors were encountered: