
F# WORKSHOP 1

F# Workshop
Exercises Guide

V4.0 Sep-2018
SSeasdfad

F# WORKSHOP 2

Introduction

Do you want to learn F# and Functional Programming? Well, you better start coding! Learning a new programming
language is not easy, on top of reading a lot you need to practice even more.

This workshop is designed to teach you some of the basics of F# and Functional Programming by combining theory
and practice. The course is split into 4 modules, each of them contains a presentation (theory) and one exercise
(practice). You can find exercises for each module in this document, for the presentation and source code, refer to
the section “Source Code, Additional Material and Updates”.

Pre-requisites
• NET Core SDK
• Visual Studio Code
• Ionide package
• Mono (Mac or Linux only)

Go to http://fsharpworkshop.com/#pre-requisites to access the pre-requisites links.

The workshop also requires internet connection to download its dependencies.

Source Code, Additional Material and Updates
http://fsharpworkshop.com/

https://github.com/jorgef/fsharpworkshop

Author
Jorge Fioranelli (@jorgefioranelli) - Licensed under the Apache License, Version 2.0

F# WORKSHOP 3

Before we start

Make sure you have the pre-requisites installed (see Pre-Requisites section in the previous page).

Please follow these steps to double check your environment is working:

1. Get the source code from https://github.com/jorgef/fsharpworkshop
2. Open Visual Studio Code
3. Open the root folder (File -> Open Folder)
4. Open the terminal (Terminal -> New Terminal)
5. Run “dotnet test Completed/Module1/Tests”
6. Double check it finishes without errors
7. Open the F# Interactive (View -> Command Palette -> FSI: Start)
8. Write “let a = 1;;” in the terminal window and press enter
9. Double check you see “val a : int = 1”

F# WORKSHOP 4

Module 1

• Bindings
• Functions
• Tuples
• Records

Duration: 15-25 minutes

Step 1: Create a Customer type

1.1. Go to the Module1/Application, open Types.fs and create a record type called “Customer” with the following
fields:

• Id: int
• IsVip: bool
• Credit: decimal

1.2. Highlight the entire customer type (do not include the “module Types” line) and run View -> Command Palette
-> FSI: Send Selection. You should see the following output in the terminal window (F# Interactive):

type Customer =

 {Id: int;

 IsVip: bool;

 Credit: decimal;}

1.3. Open Module1/Application/Try.fsx, create a new Customer called customer, and send it in the F# Interactive
(View -> Command Palette -> FSI: Send Selection). Use the following values:

• Id = 1
• IsVip = false
• Credit = 10M

Note that you only need to send that line to the F# interactive, ignore the rest of the content of the file.

type Customer = {

 Id: int
 IsVip: bool
 Credit: decimal
 }

let customer = { Id = 1; IsVip = false; Credit = 10M }

Do not copy and paste the code, you must type each exercise in, manually.

F# WORKSHOP 5

This should be the result:

val customer : Customer = {Id = 1;

 IsVip = false;

 Credit = 10M;}

1.4. Open Module1/Tests/Tests.fs, uncomment the test 1-1 by selecting the lines 8 to 12 and running View ->
Command Palette -> Remove Line Comment. Save all the files (File -> Save All), go to the Terminal, select the
command terminal (bash, cmd or powershell) and run “dotnet test Module1/Tests”.

Step 2: Create a tryPromoteToVip function

2.1. Open the file Module1/Application/Functions.fs and add a function called “tryPromoteToVip” that

• Receives a tuple with the customer and his/her purchases: (customer, purchases)
• Returns the customer with Vip = true only if the purchases are greater than 100M

2.2. Highlight the function (without including “module Functions” and “open Types” lines) and send to the F#
Interactive. You should see this output:

val tryPromoteToVip : Customer * decimal -> Customer

Note that the function receives a single tuple parameter containing the customer and purchases. In F# commas
separate elements of a tuple while spaces separate parameters.

2.3. Save all the files and open Module1/Application/Try.fsx, invoke the tryPromoteToVip function with the values
“(customer, 101M)” and assign the result to a value called vipCustomer. Then send it to the F# Interactive.

let tryPromoteToVip purchases =
 let customer, amount = purchases
 if amount > 100M then { customer with IsVip = true }
 else customer

let purchases = (customer, 101M)
let vipCustomer = tryPromoteToVip purchases

F# WORKSHOP 6

You should see this output:

val vipCustomer : Customer = {Id = 1;

 IsVip = true;

 Credit = 10M;}

2.4. Open Module1/Tests/Tests.fs, uncomment tests 1-2 and 1-3, save all the files and run “dotnet test
Module1/Tests” in the command terminal.

Step 3: Create a getPurchases function

3.1. Add a function called “getPurchases” to Module1/Application/Functions.fs that

• Receives a customer as parameter
• Returns a tuple with the customer and his/her purchases, following these rules:

o If customer.Id is divisible by 2, return purchases = 120M
o If customer.Id is not divisible by 2, return purchases = 80M

3.2. Send getPurchases to the F# Interactive. You should see this output:

val getPurchases : customer:Customer -> Customer * decimal

3.3. Open Module1/Application/Try.fsx and call getPurchases with the customer and execute it in the F#
interactive.

You should see this output:

val calculatedPurchases : Customer * decimal = ({Id = 1;

 IsVip = false;

 Credit = 10M;}, 80M)

3.3. Open Module1/Tests/Tests.fs, uncomment tests 1-4 and 1-5, save all the files and run “dotnet test
Module1/Tests” in the command terminal.

let getPurchases customer =
 if customer.Id % 2 = 0 then (customer, 120M)
 else (customer, 80M)

let calculatedPurchases = getPurchases customer

F# WORKSHOP 7

Module 2

• High order functions
• Pipelining
• Partial application
• Composition

Duration: 15-20 minutes

Step 1: Create an increaseCredit function

1.1. Add a function called “increaseCredit” to Module2/Application/Functions.fs that

• Receives the condition (function) to evaluate as first parameter
• Receives the customer as second parameter
• Returns a customer with extra credit, following these rules

o If the result of evaluating the condition with the customer is true, return an additional 100M of
credit

o If the result of the condition evaluation is false, return an additional 50M of credit

1.2. Create a function called “increaseCreditUsingVip” in Module2/Application/Functions.fs by partially applying
the “(fun c -> c.IsVip)” lambda as condition to the increaseCredit function:

Note that by partially applying the condition you get as result a function that now expects only the customer as
parameter.

1.3. Send both functions (increaseCredit and increaseCreditUsingVip) to the F# Interactive and test the latter in
Module2/Application/Try.fsx using the existing customer.

You should see this output:

val customerWithMoreCredit : Customer = {Id = 1;

 IsVip = false;

 Credit = 60M;}

let increaseCredit condition customer =
 if condition customer then { customer with Credit = customer.Credit + 100M }
 else { customer with Credit = customer.Credit + 50M }

let increaseCreditUsingVip = increaseCredit (fun c -> c.IsVip)

let customerWithMoreCredit = increaseCreditUsingVip customer

Do not copy and paste the code, you must type each exercise in, manually.

F# WORKSHOP 8

1.4. Open Module2/Tests/Tests.fs, uncomment the tests 2-1, 2-2, 2-3 and 2-4, save all the files and run “dotnet
test Module2/Tests” in the command terminal.

Step 2: Create an upgradeCustomer function

2.1. Create a function called “upgradeCustomer” in Module2/Application/Functions.fs that

• Receives a customer as parameter
• Calls getPurchases with the customer and assigns the result to a customerWithPurchases value
• Then it calls tryPromoteToVip passing customerWithPurchases and assigns the result to a

promotedCustomer value
• Then it calls increaseCreditUsingVip with promotedCustomer and assigns the result to an

upgradedCustomer value
• Returns the upgradedCustomer value

2.2. Send the function to the F# Interactive and test it in Module2/Application/Try.fsx using the existing customer
and assigning the result to an upgradedCustomer value.

2.3. Refactor the “upgradeCustomer” function to use the pipelining operator:

2.4. Send the new “upgradeCustomer” to the F# Interactive and test it again in Module2/Application/Try.fsx.

2.5. Refactor “upgradeCustomer” again, but this time using composition:

Note that the customer parameter needs to be removed when using composition.

2.6. Open Module2/Tests/Tests.fs, uncomment tests 2-5 and 2-6, save all the files and run “dotnet test
Module2/Tests” in the command terminal.

let upgradeCustomer customer =
 let customerWithPurchases = getPurchases customer
 let promotedCustomer = tryPromoteToVip customerWithPurchases
 let upgradedCustomer = increaseCreditUsingVip promotedCustomer
 upgradedCustomer

let upgradeCustomer customer =
 customer
 |> getPurchases
 |> tryPromoteToVip
 |> increaseCreditUsingVip

let upgradeCustomer = getPurchases >> tryPromoteToVip >> increaseCreditUsingVip

F# WORKSHOP 9

Module 3

• Options
• Pattern matching
• Discriminated unions
• Units of measure

Duration: 15-20 minutes

Step 1: Create new types

1.1. Go to the Module3/Application, open Types.fs and create the following types (above the existing Customer
type):

• A record called “PersonalDetails” with the following fields:
o FirstName: string
o LastName: string
o DateOfBirth: DateTime

• Two units of measure: “EUR” and “USD”.
• A discriminated union called “Notifications” with the following cases:

o NoNotifications
o ReceiveNotification of receiveDeals: bool * receiveAlerts: bool

Then add the following new fields to the Customer:
• PersonalDetails: PersonalDetails option
• Notifications: Notifications

Finally update the Credit field to use the decimal<USD> type

module Types

open System

type PersonalDetails = {
 FirstName: string
 LastName: string
 DateOfBirth: DateTime
}

[<Measure>] type EUR
[<Measure>] type USD

type Notifications =
 | NoNotifications
 | ReceiveNotifications of receiveDeals: bool * receiveAlerts: bool

type Customer = {
 Id: int
 IsVip: bool
 Credit: decimal<USD>
 PersonalDetails: PersonalDetails option
 Notifications: Notifications
}

Do not copy and paste the code, you must type each exercise in, manually.

F# WORKSHOP 10

1.2. Highlight all but the “module Types” line and send it to the F# Interactive (including “open System”).

Step 2: Update the increaseCredit function

2.1. Update the “increaseCredit” function to use the USD type in Module3/Application/Functions.fs:

2.2. Open Module3/Tests/Tests.fs, uncomment the tests 3-1, 3-2 and the customer defined at the top, save all the
files and run “dotnet test Module3/Tests” in the command terminal.

Step 3: Create an isAdult function

3.1. Create a function called “isAdult” in Module3/Application/Functions.fs that

• Receives a customer as parameter
• Returns false if the PersonalDetails are not defined (None)
• Returns true if the customer is 18 years of age or older, or false otherwise

3.2. Open Module3/Tests/Tests.fs, uncomment tests 3-3, 3-4 and 3-5, save all the files and run “dotnet test
Module3/Tests” in the command terminal.

Step 4: Create a getAlert function

4.1. Create a function called “getAlert” in Module3/Application/Functions.fs that

• Receives a customer as parameter
• Returns “Alert for customer [Id]” if the customer allowed alerts or returns an empty string otherwise.

4.2. Open Module3/Tests/Tests.fs, uncomment tests 3-6 and 3-7, save all the files and run “dotnet test
Module3/Tests” in the command terminal.

let increaseCredit condition customer =
 if condition customer then { customer with Credit = customer.Credit + 100M<USD> }
 else { customer with Credit = customer.Credit + 50M<USD> }

let isAdult customer =
 match customer.PersonalDetails with
 | None -> false
 | Some d -> d.DateOfBirth.AddYears 18 <= DateTime.Now.Date

let getAlert customer =
 match customer.Notifications with
 | ReceiveNotifications(receiveAlerts = true) ->
 sprintf "Alert for customer %i" customer.Id
 | _ -> ""

F# WORKSHOP 11

Module 4

• Functional lists
• Object-oriented

Programming
• Type providers

Duration: 15-20 minutes

Step 1: Refactor the getPurchases function to use the JsonProvider

1.1. Go to the Module4/Application, open Functions.fs and change the “getPurchases” function so that:

• Uses the JsonProvider with the Data.json file (both as schema and data)
• Filters the customer by his/her id
• Collects the PurchasesByMonth field
• Calculates the purchases’ average
• Returns a tuple with the customer and the purchases’ average

Note that you need to open the FSharp.Data namespace and defined a type called “Json” above the function.

1.2. Open Module4/Tests/Tests.fs, uncomment test 4-1, save all the files and run “dotnet test Module4/Tests” in
the command terminal.
.

Step 2: Create a CustomerService class with an UpgradeCustomer method

2.1. Open Module4/Application/Services.fs and add a “CustomerService” class with an UpgradeCustomers method
that:

• Receives the id of the customer
• Finds the customer using Function.getCustomer
• And then calls Functions.upgradeCustomer

open Types
open System
open FSharp.Data
…

let [<Literal>] JsonExample = __SOURCE_DIRECTORY__ + "/Data.json"
type Json = JsonProvider<JsonExample>

let getPurchases customer =
 let purchases =
 Json.Load "Data.json"
 |> Seq.filter (fun c -> c.CustomerId = customer.Id)
 |> Seq.collect (fun c -> c.PurchasesByMonth)
 |> Seq.average
 (customer, purchases)

Do not copy and paste the code, you must type each exercise in, manually.

F# WORKSHOP 12

2.2. Open Module4/Tests/Tests.fs, uncomment test 4-2, save all the files and run “dotnet test Module4/Tests” in
the command terminal.

Step 3: Add a GetCustomerInfo method to the CustomerService class

3.1. Open Module4/Application/Services.fs and add a method called “GetCustomerInfo” that:

• Receives a customer as parameter
• Calculates whether the customer is adult or not using the Functions.isAdult function
• Gets the alert using the Functions.getAlert function
• Returns a string with the format "Id: [Id], IsVip: [IsVip], Credit: [Credit], IsAdult: [IsAdult], Alert: [Alert]"

3.2. Open Module4/Tests/Tests.fs, uncomment test 4-3, save all the files and run “dotnet test Module4/Tests” in
the command terminal.

Step 4: Run the application

4.1. Open Module4/Application/Program.fs, uncomment all the code, save all the files and run “dotnet run -p
Module4/Application” in the command terminal.
.
4.2. Try the application, upgrade different customer ids. You should see the following output:

Note that we are not saving the updates, they are just displayed on the screen. Trying the same customer id
multiple times will generate the same output.

type CustomerService() =
 member this.UpgradeCustomer id =
 id
 |> Functions.getCustomer
 |> Functions.upgradeCustomer

type CustomerService() =
 …

 member this.GetCustomerInfo customer =
 let isAdult = Functions.isAdult customer
 let alert = Functions.getAlert customer
 sprintf "Id: %i, IsVip: %b, Credit: %.2f, IsAdult: %b, Alert: %s"
 customer.Id customer.IsVip customer.Credit isAdult alert

