CLASSIFICATION OF ENVIRONMENTAL SOUND USING IOT SENSORS

Jon Nordby jon@soundsensing.no

November 19, 2019

INTRODUCTION

JON NORDBY

Internet of Things specialist

- B.Eng in **Electronics**
- 9 years as Software developer. Embedded + Web
- M. Sc in **Data** Science

Now:

- CTO at Soundsensing
- Machine Learning Consultant

What we do

_ _ _

Noise Monitoring for outdoor and indoor environments

- Smart cities •
- Workspaces/offices •
- Hotels/AirBnB ٠
- Music venues •

Designed for Privacy:

Sound is not transmitted or stored. - only the noise information

Our R&D focus

How to provide the best information possible about noise using IoT sensors and machine learning

Pilot projects with customers Now - 2020

THESIS

Environmental Sound Classification on Microcontrollers using Convolutional Neural Networks

Master's Thesis 2019 30 ECTS Faculty of Science and Technology

Environmental Sound Classification on Microcontrollers using Convolutional Neural Networks

Jon Nordby Master of Science in Data Science

Report & Code: https://github.com/jonnor/ESC-CNN-microcontroller

WIRELESS SENSOR NETWORKS

- Want: Wide and dense coverage
- Need: Sensors need to be low-cost
- **Opportunity**: Wireless reduces costs
- Challenge: Power consumption

SENSOR NETWORK ARCHITECTURES

Airconditioner	0.11
Engine idling	0.05
Car horn	0.88
Children playing	0.22
Dog barking	0.12
Siren	0.09
Street Music	0.30
Drillling	0.07
Jackhammer	0.04

ľ	Airconditioner	0.11
	Engine idling	0.05
	Car horn	0.88
	Children playing	0.22
	Dog barking	0.12
	Siren	0.09
Convon	Street Music	0.30
Server	Drillling	0.07
	Jackhammer	0.04

	\mathbf{Y}	
7, 0.04]	Server	

Airconditioner Engine idling	0.11
Car norn	0.88
Children playing	0.22
Dog barking	0.12
Siren	0.09
Street Music	0.30
Drillling	0.07
Jackhammer	0.04

AUDIO MACHINE LEARNING ON LOW-POWER SENSORS

WHAT DO YOU MEAN BY LOW-POWER?

Want: 1 year lifetime for palm-sized battery

Need: <1mW system power

GENERAL PURPOSE MICROCONTROLLER

STM32L4 @ 80 MHz. Approx **10 mW**.

- TensorFlow Lite for Microcontrollers (Google)
- ST X-CUBE-AI (ST Microelectronics)

FPGA

Lattice ICE40 UltraPlus with Lattice sensAl

Human presence detection. VGG8 on 64x64 RGB image, 5 FPS: 7 mW.

Audio ML approx **1 mW**

NEURAL NETWORK CO-PROCESSORS

Project Orlando (ST Microelectronics), expected 2020

2.9 TOPS/W. AlexNet, 1000 classes, 10 FPS. 41 mWatt

Audio models probably < 1 mWatt.

ON-EDGE CLASSIFICATION OF NOISE

ENVIRONMENTAL SOUND CLASSIFICATION

Given an audio signal of environmental sounds,

determine which class it belongs to

- Widely researched. 1000 hits on Google Scholar
- Datasets. Urbansound8k (10 classes), ESC-50, AudioSet (632 classes)
- 2017: Human-level performance on ESC-50

r AudioSet (632 classes)

URBANSOUND8K

Soundsensing

EXISTING WORK

- Convolutional Neural Networks dominate
- Techniques come from image classification
- Mel-spectrogram input standard
- End2end models: getting close in accuracy
- "Edge ML" focused on mobile-phone class HW
- "Tiny ML" (sensors) just starting

MODEL REQUIREMENTS

With 50% of STM32L476 capacity:

- 64 kB RAM
- 512 kB FLASH memory
- 4.5 M MACC/second

NTS

EXISTING MODELS

Green: Feasible region

eGRU: running on ARM Cortex-M0 microcontroller, accuracy 61% with **non-standard** evaluation

MODELS

		D			
onv2d		2,2			
atchNorm ReLu			Strid	е	
CONV		2,2			
atchNorm ReLu					
CONV		2,2			
atchNorm ReLu					
latten					
Dropout					
Dense	64				
ReLu Dropout					
Dense	10				
Softmax					

STRATEGIES FOR SHRINKING CONVOLUTIONAL NEURAL NETWORK

REDUCE INPUT DIMENSIONALITY

44.1kHz, 2 seconds, 128x128

16kHz, 0.75 seconds, 32x32

- Lower frequency range
- Lower frequency resolution
- Lower time duration in window
- Lower time resolution

REDUCE OVERLAP

Models in literature use 95% overlap or more. 20x penalty in inference time! Often low performance benefit. Use 0% (1x) or 50% (2x).

MobileNet, "Hello Edge", AclNet. 3x3 kernel,64 filters: 7.5x speedup

SPATIALLY-SEPARABLE CONVOLUTION

Standard Convolution 3x3 convolution

EffNet, LD-CNN. 5x5 kernel: 2.5x speedup

Output

Output

DOWNSAMPLING USING MAX-POOLING

Maxpool 2x2 filter 2x2 stride

Wasteful? Computing convolutions, then throwing away 3/4 of results!

ISING

7	8
6	7

DOWNSAMPLING USING STRIDED CONVOLUTION

stride: 2

5x5 input

^{ISING}Striding means fewer computations and "learned" downsampling

2x2 output

MODEL COMPARISON

Isensing Sour

PERFORMANCE VS COMPUTE

Sour laser ising

QUANTIZATION

Inference can often use 8 bit integers instead of 32 bit floats

- 1/4 the size for weights (FLASH) and activations (RAM)
- 8bit SIMD on ARM Cortex M4F: 1/4 the inference time
- Supported in X-CUBE-AI 4.x (July 2019)

d of 32 bit floats ivations (RAM) oference time

CONCLUSIONS

- Able to perform Environmental Sound Classification at ~ 10mW power,
- Using general purpose microcontroller, ARM Cortex M4F
- Best performance: 70.9% mean accuracy, under 20% CPU load
- Highest reported Urbansound8k on microcontroller (over eGRU 62%)
- Best architecture: Depthwise-Separable convolutions with striding
- Quantization enables 4x bigger models (and higher perf)
- With dedicated Neural Network Hardware

tion at ~ 10mW power, ex M4F 20% CPU load oller (over eGRU 62%) tions with striding her perf)

FURTHER RESEARCH

WAVEFORM INPUT TO MODEL

- Preprocessing. Mel-spectrogram: 60 milliseconds
- CNN. Stride-DS-24: **81** milliseconds
- With quantization, spectrogram conversion is the bottleneck!
- Convolutions can be used to learn a Time-Frequency transformation.

Can this be faster than the standard FFT? And still perform well?

ON-SENSOR INFERENCE CHALLENGES

- Reducing power consumption. Adaptive sampling
- Efficient training data collection in WSN. Active Learning?
- Real-life performance evaluations. Out-of-domain samples

ampling ctive Learning? domain samples

WRAPPING UP

SUMMARY

- Noise pollution is a growing problem
- Wireless Sensor Networks can used to quantify
- Noise Classification can provide more information
- Want high density of sensors. Need to be low cost
- On-sensor classification desirable for power/cost and privacy

ntify mation w cost er/cost and privacy

MORE RESOURCES

Machine Hearing. ML on Audio

• github.com/jonnor/machinehearing

Machine Learning for Embedded / IoT

github.com/jonnor/embeddedml

Thesis Report & Code

• github.com/jonnor/ESC-CNN-microcontroller

QUESTIONS

?

Email: jon@soundsensing.no

COME TALK TO ME!

- Noise Monitoring sensors. Pilot projects for 2020?
- Environmental Sound, Wireless Sensor Networks for Audio. Research partnering?
- "On-edge" / Embedded Device ML. Happy to advise!

Email: jon@soundsensing.no

THESIS RESULTS

MODEL COMPARISON

Isensing Sour

LIST OF RESULTS

Model	CPU use	Accuracy	FC
Baseline	$971 \mathrm{ms}$	$72.3\% \pm 4.6$	7
Baseline-DS	$244 \mathrm{\ ms}$	$70.2\% \pm 4.7$	7
Stride	$325 \mathrm{~ms}$	$68.3\% \pm 5.2$	7
Stride-BTLN-DS	$71 \mathrm{~ms}$	$64.8\% \pm 7.1$	6
Stride-DS-12	$38 \mathrm{~ms}$	$66.0\% \pm 6.0$	7
Stride-DS-16	$51 \mathrm{ms}$	$67.5\% \pm 5.6$	7
Stride-DS-20	$66 \mathrm{ms}$	$68.4\% \pm 5.2$	7
Stride-DS-24	$81 \mathrm{ms}$	$70.9\% \pm 4.3$	7
Stride-DS-3x3	$59 \mathrm{~ms}$	$67.2\% \pm 6.5$	7
Stride-Effnet	$73 \mathrm{\ ms}$	$60.7\% \pm 6.6$	6

G Accuracy BG Accuracy

- $78.3\% \pm 7.1$
- $76.1\% \pm 7.5$
- $74.1\% \pm 6.6$
- $69.5\% \pm 8.2$
- $72.6\% \pm 6.5$
- $73.3\% \pm 7.7$
- $75.0\% \pm 7.4$
- $75.8\% \pm 6.3$
- $73.0\% \pm 7.4$
- $66.9\% \pm 7.9$

- $60.5\% \pm 7.7$ $58.6\% \pm 8.2$ $56.6\% \pm 8.0$
- $55.3\% \pm 8.9$
- $53.3\% \pm 9.1$
- $56.2\% \pm 8.3$ $55.2\% \pm 10.0$
 - $61.8\% \pm 6.8$
 - $55.8\% \pm 9.1$ $48.7\% \pm 8.3$

	air_conditioner -	46.9	0.8	4.4	4.4	7.0	15.1	3.0	11.8	2.3	4.3
	car_horn -	0.7	86.0	4.2	0.2	1.2	1.6	0.0	3.0	0.0	3.0
	children_playing -	2.3	0.2	72.3	5.5	2.6	3.9	2.6	0.7	3.9	6.0
	dog_bark -	2.1	1.6	5.2	81.7	1.1	2.0	2.3	0.9	1.7	1.4
abels	drilling -	1.3	2.4	1.8	6.9	60.0	2.6	2.0	20.0	2.5	0.5
rue	engine_idling -	10.9	0.9	2.1	0.4	2.1	59.9	2.3	19.0	1.5	0.9
F	gun_shot -	0.0	0.5	0.0	3.2	0.3	0.0	96.0	0.0	0.0	0.0
	jackhammer -	8.5	1.4	0.4	0.7	3.1	4.7	1.1	76.1	3.2	0.8
	siren -	1.2	0.9	5.6	1.9	1.9	2.4	0.1	1.2	82.7	2.2
	street_music -	1.8	3.8	7.6	2.8	3.9	2.9	0.8	1.3	2.5	72.6
		- condition -	ilin Gr Ver	uren Dlaui	- 50, 000	er drilling -	'gine idling -	941 - 19	-cchanna-	St. St.	- Ceet Music -

Predicted labels

GROUPED CLASSIFICATION

social_activity -	92.5	1.8	4.3	0.2	1.2	- 80
construction -	6.3	83.6	6.3	2.1	1.7	- 60
road_noise -	2.2	16.7	74.6	4.8	1.6	40
domestic_machines -	8.3	18.6	23.4	45.9	3.9	- 40
danger -	2.6	0.3	0.7	0.0	96.4	- 20
	Cctivity -	uction -	< noise -	chine.	danger -	- 0
	Social Social	Const	de de	mesticm		
		Pre	ک dicted lab	S els		

True labels

Soundsensing

UNKNOWN CLASS

Soundsensing

EXPERIMENTAL DETAILS

ALL MODELS

Model	Downsample	Convolution	L	F	MACC	RAM	FLASH
Baseline	maxpool 3x2	standard	3	24	$10185 {\rm ~K}$	35 kB	405 kB
Baseline-DS	maxpool $3x2$	DS	3	24	$1567~{\rm K}$	55 kB	96 kB
Stride	stride $2x2$	standard	3	22	$2980~{\rm K}$	55 kB	372 kB
Stride-BTLN-DS	stride $2x2$	BTLN-DS	3	22	$445~{\rm K}$	47 kB	80 kB
Stride-DS-12	stride $2x2$	DS	3	12	$208~{\rm K}$	27 kB	88 kB
Stride-DS-16	stride $2x2$	DS	3	16	$291~{\rm K}$	36 kB	118 kB
Stride-DS-20	stride $2x2$	DS	3	20	$380 \mathrm{K}$	45 kB	149 kB
Stride-DS-24	stride $2x2$	DS	3	24	$477~{\rm K}$	54 kB	180 kB
Stride-DS-3x3	stride $2x2$	DS	4	24	$318~{ m K}$	54 kB	95 kB
Stride-Effnet	stride $2x2$	Effnet	3	22	$468~{\rm K}$	$47~\mathrm{kB}$	125 kB

METHODS

Standard procedure for Urbansound8k

- Classification problem
- 4 second sound clips
- 10 classes
- 10-fold cross-validation, predefined
- Metric: Accuracy

TRAINING SETTINGS

22050
60
1024
512
31
400
100
30000
5000
0.005
NaN

TRAINING

- NVidia RTX2060 GPU 6 GB
- 10 models x 10 folds = 100 training jobs
- 100 epochs
- 3 jobs in parallel
- 36 hours total

EVALUATION

For each fold of each model

1. Select best model based on validation accuracy

2. Calculate accuracy on test set

For each model

• Measure CPU time on device

YOUR MODEL WILL TRICK YOU

And the bugs can be hard to spot

FAIL: INTEGER TRUNCATION

```
features: Fix integer truncation
```

```
Especially combined with meanstd normalization
which makes range (-3,3),
this accidentally removed a lot of details
```

```
microesc/features.py
index 9d16d2a..6d9ca59 100644
```

```
@@ -152,7 +154,7 @@ def load_sample(sample, settings, feature dir, window frames,
     if window frames is None:
         padded = mels
     else:
         padded = numpy.full((n mels, window frames), 0)
         padded = numpy.full((n mels, window frames), 0.0, dtype=float)
+
         inp = mels[:, 0:min(window frames, mels.shape[1])]
         padded[:, 0:inp.shape[1]] = inp
```

FAIL. DROPOUT LOCATION

models: Fix Dropout location

Suprised this was able to train at all before, as whole classes must have been dropped Training and validation loss now follow eachother much more closely

```
---- microesc/models/sbcnn.py ------
index 2e95242..3986bcf 100644
@@ -98,12 +98,12 @@ def backend dense1(x, n classes, fc=64, regularization=0.001, dropout=0.5):
     11 11 11
```

```
x = Flatten()(x)
```

+

+

- x = Dropout(dropout)(x)
 - x = Dense(fc, kernel regularizer=l2(regularization))(x)
 - x = Activation('relu')(x)
- x = Dropout(dropout)(x)
- x = Dense(n classes, kernel regularizer=l2(regularization))(x)
 - x = Dropout(dropout)(x)
 - x = Dense(n classes, kernel_regularizer=l2(regularization))(x) x = Activation('softmax')(x)return x

BACKGROUND

MEL-SPECTROGRAM

NOISE POLLUTION

Reduces health due to stress and loss of sleep

In Norway

- 1.9 million affected by road noise (2014, SSB)
- 10'000 healty years lost per year (Folkehelseinstituttet)

In Europe

- 13 million suffering from sleep disturbance (EEA)
- 900'000 DALY lost (WHO)

NOISE MAPPING

Simulation only, no direct measurements

