Pizza Guy

Giacomo Boldini, Alessio Diana, Federica Zaglio

February 14, 2022

Abstract

In this report, we will describe the Pizza Guy project. This project

aims to find the best possible schedule of a set of orders that minimizes
the distance traveled by the deliverers in a evening of work. Our solution
is developed using a CLP(FD) model and implemented in MiniZinc. All
the remaing part of the project (data retrieving, cleaning and visualiza-
tion) are done using Python.
In the section 1 we will describe the problem and the goal we want to
reach, in the section 2 we will the describe the model and the implemen-
tation, including some euristichs and symmetry breaking strategies. In
the section 3 we will describe the results and the possible search strate-
gies. Finally, in section 4 we will conclude that the main problem in the
proposed model is the solving time, that quickly increases considering a
number of orders greater than 10 and a number of deliverers greater than
4, which are relatively small. Also, some possible changes and improve-
ments will be proposed.

Contents
1 The problem 2
1.1 Assignment . . . . . . . ... e e e 2
2 Model 3
2.1 Inputdata. . . .. .. . . e 3
2.2 Assumptions . . . ... e 3
2.3 Implementation . . . . . . . ... 4
2.4 Constraints . . . . . . . ... L e e 6
2.4.1 Restrict the search space . . . . . . . .. .. .. ... ... .. ..., 8
2.4.2 Simmetry breaking strategy . . . . . .. ... L0000 9
3 Results 10
3.1 Search strategies comparison . . . . . ... ..o 10
3.1.1 Preliminary analysis . . . . . . . . . . ... o o 11
3.1.2 More specific analysis . . . .. ... ... o000 11
3.2 bucityofincreasing size . . . . . . . ... oL 13
3.3 Increasing the size of the problem . . . . . . . ... ... ... ... ... 15
3.4 Real-world application . . . . . .. ... ..o oo 15
4 Conclusions 15



1 The problem

The main problem we want to solve can be described as follow: the best pizzeria
in the town delivers pizzas at home; we want to find the best schedule of the
set of orders (for a single evening) that minimize the total traveled distance by
the deliverers respecting the delivery times requested by the customers.

The assignment gives us the following informations about the problem:

1. an order consists of:

(a) a delivery address;
(b) a desired delivery time;
(c) a number of pizzas;

2. the desired delivery time has a granularity of 15 minutes (from 19.00 to
22.00);

3. the delivery window is up to 30 minutes later than desired delivery time;

4. the street topology of the city can be seen as a graph: the nodes represent
the addresses and they are connected by edges that contain travel time
between nodes; so, we know the distance (in terms of time) between each
pair of addresses in the town;

5. every deliverer can carry at most 16 pizzas;

6. multiple travels from and to the pizzeria are allowed even in the delivery
window.

To solve the problem means to assign a set of sorted lists of orders to every
deliverer. Each list represents a travel and all the orders in it must be handled
(or, in other words, the destination of this order must be reached) in the specified
sequence.

1.1 Assignment
The goals of this work are:

1. write a program that solves the problem (in MiniZinc);

2. write a benchmark suite using 5 different towns of increasing size and 10
input sets for each one; the input sets must enforce that all the deliverers
do at least two travels (in section 3.2)

3. on one configuration that runs in a couple of minutes, try different search
strategies and then use the most promising one to solve a difficult input
set (in section 3.1).



2 Model

2.1

Input data

The input consists in having:

1.

2.

2.2

d: the number of deliverers available

mdist: the 2-d matrix representing the travel distance between every pair
of nodes in the graph generated using Dijkstra (including those that are
not a destination)

k: the side dimension of mdist

a set of NV orders, each of them made by a destination dest, a delivery
time orario and a number of pizzas num_pizzas

orario = [01, 09, ...,0N];
num_pizzas = [np1, npa, . .., NPN|;
dest = [dl, d27 “e ,dN];

Assumptions

In order to make the problem a little easier, we made the following semplifica-

tions:

1.

the graph is undirected, so mdist is symmetric:
mdist[x, y] = mdistly, x]

As we’ll show later, we can use Dijkstra on a real-world graph to calcu-
late distances between the nodes. In this case, mdist matrix could be
asymmetric.

a deliverer can do only a single travel in one half-an-hour. In other words,
the orders that are assigned to him/her are delivered creating a circuit
starting from the pizzeria, visiting all the destinations and ending in the
pizzeria in one half-an-hour;

distances and travels time are considered the same thing;
the set of orders is known before the start of the evening;

all the time needed by the deliverer to interacts with customers (give them
the pizzas, eventually handle the payment and other stuff) is supposed to
be zero.



2.3 Implementation

The time is divided in 6 slots of half-an-hour (19.00 - 22.00). Let’s call h one of
these slots of time. There are d deliverers available for doing deliveries. Each
deliverer, d, has a set of orders to handle for each slot of time h.

Scheduling These informations are stored in a boolean 3-d matrix called
scheduling in which:

scheduling[d, orderID, h] = true

means that the deliverer d has to deliver the order with id orderID in the
time slot h. In every slot h, the deliverer must reach all nodes specified as
destinations (dest) of the orders assigned to him/her, starting from node 1
(pizzeria) and returning back to it. This creates a sort of circuit starting and
ending with the same node, that reaches all the nodes specified in the matrix
row.

Obviously, one order can be delivered only once during the evening by only
one deliverer, and must be done in the delivery window computed from the
requested time.

array[1..d, 1..N, 1..h] of var bool: scheduling;

Pizzas_carried During the evening there are N orders to be delivered, each
of which is made of 16 pizzas at most. This ensure that we need only a deliverer
to deliver the entire order. Since we can deliver more than one order in a single
travel, we need to record the total number of pizzas that a deliverer has in
his/her bag. To do this, we use a 2-d matrix called pizzas_carried where the
first dimension represents the deliverer d and the second represents the half-an-
hour A considered.

array[1..d, 1..h] of var 0..16: pizzas_carried;

Ea - Estimated arrival In order to ensure that all deliveries arrive in time,
we use ea which stands for estimated arrival. This array contains, for every
order, the arrival time (in minutes) from the starting time (19.00). At every
order, we sum the number of minutes that must pass before the delivery take
place, so doing this way, we are sure that the delivery is done in the right delivery
window. For example, if the delivery is requested for 20.00, if the destination
is five minutes far from the pizzeria and no other delivery is made before that,
we will sum 60 to be sure about the right delivery window and 5 for the travel
time. So the ea for this delivery will be 65.

array[1..N] of var 0..h*30: ea;



P The main goal of the project is to minimize the travel distance covered by
all the deliverers in the evening. To do so, a possible strategy is to deliver more
than one delivery in a single travel. This is convenient if the deliveries are made
in a way that minimize the distance traveled between the nodes. To encode this
information, we use P, which is a 3-d matrix that stores all the nodes that every
deliverer has to visit in one travel, according to scheduling.

array[1..d, 1..N, 1..h] of var array2set(dest) union 0: P;

X This 3-d matrix is used to support the creation of all the other constraints,
making the computation of the distances easier. In this matrix, meangingful
positions of the matrix P are stored for each d and h. Each row contains the
positions of the matrix P (destination nodes) that d deliverer has to reach in the
h half-an-hour. This matrix allows us to control the order of each delivery made
by every deliverer in one travel and, as consequence, compute the corresponding
travel distances (stored in distances).

array[1..d, 1..N, 1..h] of var 0..N: X;

Distances Using the data structures seen before, we use this 3-d matrix to
store all the partial distances needed to reach every delivery node starting from
0 for each half-an-hour. Using this matrix we can enforce that all the deliveries
are delivered in time and, since we want to minimize the traveled distance, it
allows us to combine deliveries that belongs to different time slots (eg. 19.15
and 19.30) but only if they are adjacent because of the maximum delivery time
of 30 minutes.

array[1..d, 1..N, 1..h] of var 0..29: distances;

The matrices scheduling, P and distances are strictly related to each other.
They encode the same concept but using different informations. First of all
they have the same sizes [1..d,1..N,1..h] and if one cell is meaningful in
one of them, it is also meaningful in the others. In particular, in a position
[id,iN,ih]:

e sheduling = 1 means that the order iN has to be accomplished by the
deliverer id in the ih half-an-hour;

e P = n means that the order «N has to be accomplished by the deliverer
id in the ih half-an-hour reaching the node n in the graph;

e distances = | means that the order iN has to be accomplished by the
deliverer id in the ih half-an-hour and it will take [ minutes to reach
it, starting from the beginning of the corresponding half-an-hour (partial
time).

All the others meaningless positions are set to zero in all the matrices.



Total_travel We use this 2-d matrix in order to store the total travel distance
of deliverer id in one half-an-hour ¢h. As described above, in the matrix distance
there are partial distances: from pizzeria for each delivery node handled, starting
from the corresponding half-an-hour. If we add the distance between the last
delivery node and the pizzeria (that is the path to return to the pizzeria) we
have the total travel distance. As already mentioned, our goal is minimize the
sum of all these values.

array[l..d, 1..h] of var 0..29: total_travel;

2.4 Constraints
To ensure scheduling consistency, the following constraints are made:
e sum(scheduling) = N; ensures that all the orders are fulfilled

e forall(j in 1..N)(
sum([scheduling[id,j,ih]| id in 1..d, ih in 1..h]) =1
) ; ensures that only one delivever takes care of one order.

To construct the matrix P a simple product between a scheduling row and
the array of the destinations dest is made:

forall(id in 1..d, iN in 1..N, ih in hral[iN])(
P[id, iN, ih] = scheduling[id, iN, ih] * dest[iN]
);

Thanks to this product, we are able to make meangingful the same positions
of scheduling.

The X matrix has to contain all the meaningful positions in the matrix P. To
ensure this, we need a simple way to sequentially compute all the informations
related in a single row. For every value greater than zero found in a row of P,
we enforce the corresponding row of X to contain it. Also, we want to push all
the meaningless values (zeros) to the end of the row: this is done by another
constraint described below (section 2.4.1 (3)).

forall(id in 1..d, iN in 1..N, ih in 1..h)(
if P[id, iN, ih] > O then
count ([ X[id, iNN, ih] | iNN in 1..N], iN, 1)
else
(
count ([ X[id, iNN, ih] | iNN in 1..N], iN, 0)
/\
distances[id,iN,ih] = 0
)
endif

)



To compute distances means to fill the distances matrix. To do this, we
have to use the matrix X. Considering a single row, we must take care of the
following cases:

e the first (meaningful) cell;
e the other (meaningful) cells.

In the first case, if X[1] is the first meaningful position in the matrix P and
P[X[1]1] is the first visited node in a travel, the distance of the node P[X[1]]
is computed summing the distance between the pizzeria (node number 1) and
this node: mdist[1, P[X[1]]]. This value is put in distances[X[1]1].

In the second case, the distance to reach the node in X[i] is the sum of the
distance between the node X[i] and X[i-1], and the last distance previusly
computed (distances[X[i-1]]).

For the sake of simplicity, in the example above, the matrices P and X are
treated like arrays to avoid writing all the other indexes that are fixed because
we are considering a single row.

forall(id in 1..d, iN in 1..N, ih in 1..h)(
if (X[id,iN,ih] !'=0 /\ P[id, X[id,iN,ih], ih] != 0) then
if iN == 1 then
distances[id, X[id,iN,ih], ih] =
mdist[1, P[id, X[id,iN,ih], ih]]
else
distances[id, X[id,iN,ih], ih] =
mdist[P[id, X[id,iN-1,ih], ih], P[id, X[id,iN,ih], ih]]
+ distances[id,X[id,iN-1,ih], ih]
| iNN in 1..iN-1])
endif
endif

)

Moreover, using X, we must check the ”travel consistency”, which means that
the deliverer must be able to return back to the pizzeria before the start of
the next half-an-hour. To do this, we store the computed travel distance in
total_travel and its domain [0..29] ensures this property.

forall(id in 1..d, iN in 1..N, ih in 1..h)(
( X[id,iN,ih] '=0
/\ ( iN+1 == N+1 \/ X[id,iN+1,ih] == 0)
/\ P[id,X[id,iN,ih],ih] != 0)
-> (total_travellid,ih] =
distances([id, X[id,iN,ih], ih]
+ mdist [P[id, X[id,iN,ih], ih],1])



To make ea consistent, which is the array that allow us to record the expected
arrival time of each delivery, we take into account the row representing the
delivery in the scheduling matrix and the same position in the distances
matrix. Since scheduling is a boolean matrix, only the meaningful position
in distances will be used. For every half-an-hour from the starting time to
the beginning of the corresponding half-an-hour, 30 is added to this value. In
addition, we must constraint that every delivery is delivered within 30 minutes
starting from the desired delivery time.

forall(iN in 1..N)(
ea[iN] = sum([scheduling[id,iN,ih]
* (distances[id,iN,ih]+((ih-1)*30))
| id in 1..d, ih in 1..h])

/\

eal[iN] >= ral[iN]
/\

ea[iN] < ra[iN]+30

)

The consistency of pizzas_carried is trivial. For every order, we enforce
that the number of pizzas carried by a deliverer in one half-an-hour is the same
as the number of pizzas in the orders that he/she is taking care of in the same
half-an-hour.

forall(id in 1..d, ih in 1..h)(
pizzas_carried[id, ih] = sum([ num_pizze[j]
[ j in 1..N
where schedulinglid, j, ih] = 1])
)3

Some of the data structures previously analized could have been avoided if we
wanted to have a more lightweight model. We introduced them to make simpler
the creation of the constraint and to keep the model readable.

2.4.1 Restrict the search space

Creating the model, we included some easy euristichs that can restrict the di-
mension of the search space:

1. domain restrictions.

As said in section 2, the domain for each decision variable has been strictly
restriced to the only possible values that they can assume. For example,
a cell of distances, that represent the partial travel time to reach a
destination, can’t be greater than 29 since we want that each deliverer
returns back to the pizzeria before the next half-an-hour. Another example
is the domain of P: in this case we restrict the domain from 0. .k (which



is correct) to only the set of possible destinations. This reduces a lot the
number of possibility in the domain.

2. for each order, exclude all the non-possible half-an-hour.

Every order has a requested delivery time that becomes a delivery win-
dow. We know that all the half-an-hours before and after this delivery
window are not usable. So, for each order we computed its valid half-
an-hour indeces (hra) that are used to access the matrices scheduling,
P and distances in not-valid half-an-hour to set it equal to zero. Also,
a consideration on X matrix is made: for each not-valid half-an-hour for
a specific order, we know that this order index will be not present in the
corresponding row of X.

forall(id in 1..d, iN in 1..N, ih in (1..h diff hral[iN]) ) (
scheduling[id,iN,ih] = 0

/\

P[id,iN,ih] = 0

/\

distances[id,iN,ih] = 0O
/\

count( [X[id,iNN,ih] | iNN in 1..N], iN, 0)
)

3. enforce useless cells of matrix X to zero.

Each line of X contains the indexes of the corresponding line of P that are
meangingful (different from zero). Also, all the zero in this (X) line must
be pushed to the end of it. Knowning this, if we count the number of
zeros in each line of P we can contraint the same number of cells to be
zero, starting from the end of line of X.

forall(id in 1..d, ih in 1..h)(
let {
var int: c¢ = count([P[id,iNN,ih] | iNN in 1..N],O0)
}
in forall(iN in N-c+1..N)(
X[id,iN,ih] = 0
) /\
forall(iN in 1..N-c)(
X[id,iN,ih] > 0

)

2.4.2 Simmetry breaking strategy

Having more than one deliverer implies the possibility of having the same solu-
tion multiple times. For example, if we have three delivery and two deliverers,



known that the best strategy is to deliver the first two togheter and the third
alone, one solution is to give the first two to the deliverer d1 and the third to
the deliverer d2. A simmetric and equivalent solution is to give the first two to
d2 and the third to d1i.

In order to avoid this kind of problem, we impose an ordering on the de-
liverers by counting the number of pizzas that are carried in one half-an-hour.
This enforce that the first deliverer carries a number of pizzas greater or equal
to the number of pizzas carried by the second deliverer, the second deliverer a
number of pizzas greater or equal to the number of pizzas of the third deliverer
and so on.

forall(ih in 1..h, id in 1..d-1)(
pizzas_carried[id,ih] >= pizzas_carried[id+1,ih]

)

3 Results

In this section, we will describe how the model behave, mainly in terms of
solving time, using different input data and different search strategies.

To do this, we consider 5 italian city of increasing size (listed by increasing
dimension): Visano(BS), Asola(MN), Montichiari(BS), Brescia (BS) and Roma
(Roma). Their street graphs have the following characteristics:

City nodes edges
Visano 297 378 to
Asola 480 664
Montichiari | 1130 1509
Brescia 3925 5464
Roma 4729 7277

As preprocessing step, for each of them we computed the shortest path
beetween all the pairs of nodes using Dijkstra. This produced the corresponding
mdist € Mnodesxnodes.

In addition to the model tests, we report a real-world result of a model
execution, obtained using some pre- and post-processing techniques.

3.1 Search strategies comparison

Choosen a configuration of the problem that runs in a couple of minutes, we
tested how it performs (in terms of solving time) changing the search strategies.
The configuration choosen is:

N =12 (orders), d = 2 (deliverers), city = Visano.

First of all we made a preliminary analysis, which results are shown in sec-
tion 3.1.1. Then, more specific analyses are made on a subset of possible search
strategies (the most promising among all) and results are shown in section 3.1.2.

10



The best strategy we found in the preliminary analysis (in terms of solving
time) is the one shown in table 1. However, as we found later, searching on vari-
able P isn’t the optimal one (on average). Indeed, later we used the scheduling
variable, which turned out to be the best one (on average).

var P

vsa anti_first_fail
vea indomain
initTime 0.665783
solveTime 4.45827
solutions 2.0

variables 5925.0

propagators 2322.0
propagations 2118705.0

nodes 5179.0
failures 2916.0
restarts 0.0
peakDepth 18.0

Table 1: Search strategy with minimum solve time in preliminary analysis.

3.1.1 Preliminary analysis

First of all, we made preliminary analyses to figure out the most promising
search strategies among all their possibile configurations. To do this, we sim-
ply analyzed the variation of solving time changing the search annotations in
Minizine: in particular, we changed (1) the search variable, (2) how the variable
is choosen and (3) how to constraint the variable.

Results are shown in fig. 1 and we can see that searching of variable scheduling
could be the faster choice. Also, some VCA (Variable Choice Annotation) and
VSA (Variable Search Annotation) appear to be more promising than others.

3.1.2 More specific analysis

In this case, we selected a subset of search strategies (the most promising) and
then we made a more specific analysis, reducing the timeout to 20 seconds and
testing the same strategy more than one single time. All the executions that
reached the timeout are removed from the analysis.

We computed the correration matrix (fig. 2) between search statistics and it
shows high correration between:

e number of failures and number of nodes (1);

e number of propagations and solve time (0.79): this, in addition to the
non-correration between maximum depth and solve time (—0.05), points
out that as the number of propagations increases, it also increases the
solve time, but not the tree’s depth.

11



50
25
200
7s
% 150
5
el
125
100
75
50
P X scheduling
e
(a) changing search variable.
40
E-)
EV)
g
5
8
0
15
10
5
indomain indamain_max indomain_median indomain_min indomain random  indomain_reverse_split indomain_split indomain_split_random
wa
(b) changing Variable Choice Annotation (VCA)
50
40
g
%
a
20
10

antifirst._fail dom_w_deg first._fail impact input_order largest max_fegret  mostconstrained  cccurence smallest
vsa

(c) changing Variable Search Annotations (VSA)

Figure 1: How solving time behave (on average) changing search strategies
configurations.

12



e ﬂ -
e ﬂ.
solutions - 0.06 .
propagations - 0114

-0o

nodes 8
--01
failures

peakDepth - 0.08 0.05 013 013
n
a
=
2

03

0.2

-0l

initTime -
solutions -

" H
e -.

solveTime -

Figure 2: Correlation matrix between the search statistics.

var count mean std min 25% 50% 75% max
scheduling 280.0 5.3998 0.5834 4.7762 4.87248 5.4201 5.576 8.7637
X 240.0 9.2220 2.7396 5.8241 7.03597 8.7616 10.510 20.0438
P 251.0 9.4433 5.0247 4.9271 5.55710 6.4068 15.243 19.5353

Table 2: Solve time statistics

In fig. 3 more detailed solve time analyses are reported, for each search
variable. It’s clear that:

e regardless of which VCA and VSA are choosen, searching on scheduling
variable is faster than searching on X or P variables (again, on average).

e searching on scheduling variable never leads to timeout executions.

The table 2 shows a summary of these informations.

3.2 5 city of increasing size

Using one of the best search strategies, we tried to solve the problem using all
the 5 increasing size cities in order to see how solving time changes. The timeout
is set to 5 minutes for each execution. In this case, the configuration choosen
is:
N =12 (orders), d = 2 (deliverers)
city = Visano, Asola, Montichiari, Brescia, Roma

Solving times found are shown in fig. 4. Solve and init times are set to 300
seconds if the execution reached the timeout without solving the problem. This
is the case for the two biggest cities (Brescia and Roma). For the other cities,
the time increases with the size of the city and it is always under 20 seconds.

13



var=Pp

20
P, N -_ ¢
= &
16 -y - 5]
L 14
E
g -
B
10
:.80
8
o w0 -—— -t
-+
6 + L= - — +
wvar=X
20 + N
18 - -
16 wea
W indomain_max
g - B indomain_min
i . . indomain_random
212 - . -
H I L L _ B indomain_split
0 " —"‘+ +- Rac g + = indomain
" W indomain_reverse_split
8l — _ ¢ B B indamain_split random
4 - ‘.- - LSpi S
“+r == 4 = -
5 - -
var = scheduling
2
18
1%
P
E
£
g
)
10
]
5 -+ _ '-!i ﬂ ]
el e ) et & & [ e -

dom_w_deg frst_fail impact input_order largest max_regret  most_constrained smallest
vsa

Figure 3: More specific analysis on solve time, changing the search strategies.

300 1 time_type time_type
—— solve . solve
— init 10 . init
250
200 4
£ 1504 g
= a
100 4
50 4
0
Visano ssola Montichiari Brescia Roma Visano Asola Montichiari
dty dty

(a) (b)

Figure 4: Solving times for 5 cities of increasing size. N =12, d =2

14



3.3 Increasing the size of the problem

Using one of the best search strategies, we tried to solve a set of problems in the
same city (Visano) with different complexities, represented by number of order
N and number of deliverer d. The timeout is set to 2 minutes for each execution,
N ranges from 2 to 15 and d ranges from 1 to 4. Results are represented in
fig. 5 and they show what we expected: the peak depth of the tree, the solve
time, the number of solutions and propagations increases with NV and d.

3.4 Real-world application

Using Python and OpenStreetMap we were able to execute the model on a graph
obtained by a real-world map and plot the results directly on the streetmap.

In fig. 6 there is an example of model execution on the city Visano, with
N = 13 orders and d = 2 deliverer. Solve time was 48.8 seconds.

4 Conclusions

Our proposed model seems to be working, but the main problem is the solving
time: it increases quickly with the size of the problem. Indeed, the model takes
a couple of seconds to solve the problem only with a number of order N < 12.
Using a number of orders over this threshold, the executions always reach the
timeout of 5 minutes. With such a small value of NV, we’re far from a real world
situation, which usually includes N > 50 (and more than d = 3 deliverer).

Also, we tried to use different solvers (from Gecode), but we got no improve-
ment; on the contrary, we obtained worst results.

One possible improvement that we tried is reducing mdist size, considering
only the destination nodes. This requires some pre- and post-processing steps
and removes the correlation between the size of the city (number of nodes) and
the time required to solve the problem; However, considering the complexity (N
and d) the required time keeps growing in the same way.

Future works

First of all, rethink about the model could be useful in order to reduce the solve
time; maybe a simpler model leads to lower times. This can be done in parallel
with mdist reduction, which is still a good choice. Also, it can be a good idea
to find a way to exclude from the same travel those orders whose destinations
are too far away to be made in a single travel.

Talking about the goal, only total traveled distance is minimized (for now);
maybe a balancing function between the deliveres could be useful.

Finally, for a more realistic application, take care of the time needed by a
deliverer to give the pizza to the customer, eventually handle the payment and
other stuff could be useful.

15



100

peakDepth

120

100

solveTime.

solutions

propagations

Figure 5: Results increasing the size of the problem. N

(d) Propagations

city = Visano. 2 minutes timeout.

16



(a) Pizzeria (red) and destinations to reach (green)

— deliverer #1
deliverer #2

(b) Path for each deliverer

Figure 6: Map plot of model’s results.

17



	The problem
	Assignment

	Model
	Input data
	Assumptions
	Implementation
	Constraints
	Restrict the search space
	Simmetry breaking strategy


	Results
	Search strategies comparison
	Preliminary analysis
	More specific analysis

	5 city of increasing size
	Increasing the size of the problem
	Real-world application

	Conclusions

