
DAY 2. A beginners guide to solving
biological problems in R

Robert Stojnić (rs550), Laurent Gatto (lg390),
Rob Foy (raf51), John Davey (jd626) and Dávid Molnár (dm516)

Original slides by Ian Roberts and Robert Stojnić

Day 2
Schedule

1. Writing scripts

2. Writing functions

3. Data analysis examples

4. Graphics

1
Writing custom scripts for data analysis

The R scripting language
Scripting

• A script is a series of instructions that when executed sequentially
automates a task

• A script is a good solution to a repetitive problem
• The art of good script writing is

• understanding exactly what you want to do
• expressing the steps as concisely as possible
• making use of error checking
• including descriptive comments

• R is a powerful scripting language, and embodies aspects found in most
standard programming environments

• procedural statements
• loops
• functions
• conditional branching

• Scripts may be written in any standard text editor, e.g. notepad, gedit, kate
• We will use RStudio

Colony forming experiment

• We have been asked by some collaborators to analyse some trial
data to see if an experiment will work.

• We are interested in the behaviour of a gene, X, which is involved in
a cell proliferation pathway.

• This pathway causes cells to proliferate in the presence of a
compound, Z.

• Gene X turns the pathway off, reducing cell proliferation.

• Our collaborators want to test what happens when we knock down
X in the presence of Z.

• To do this, they want to grow cell colonies in the presence of Z, with
or without X, and count the number of colonies that result.

Initial trial

• Our collaborators have sent us a first batch of test data, growing
colonies in different concentrations of compound Z, and replicating
each Z concentration three times.

• Does increasing concentration of Z have an effect on colony growth?
• We want to do the following:

– Load the data into R
– Plot the data to inspect it
– Calculate an Analysis of Variance to see if growth is influenced

by Z concentration
– Calculate the mean growth for each level of Z concentration, to

see the direction of change
– (We will ignore full post hoc testing)

Initial trial exercise

• The initial trial data is in the file 2.1_colony_trial.csv. Load this file
into R using the command we learnt yesterday.

• Plot the data using a formula, to see how Z affects colony Count.
Recall how we did this yesterday with linear modelling, with
independent variable x and dependent variable y:

plot(y~x)

• Calculate an analysis of variance for the data. The R function for
ANOVA is aov(), which works like lm() for linear modelling – recall
this from yesterday:

summary(lm(y~x))

• There are four concentrations of Z, and each concentration has
been replicated three times. What is the mean colony count for
each concentration? See if you can figure out a way to calculate this
with what we learned yesterday. You will need to use logical
indexing and you may want to use a for loop.

Importing data

Use read.csv to load the data:
colony<-read.csv("2.1_colony_trial.csv")

The data frame has three columns, Z,
Replicate and Count. We want to know how Z
affects the number of colonies (Count). To do
this, we need to summarise the data over all
replicates for each concentration of Z.

We will attach the data frame to our
workspace, so we can refer to the variables
without referring to the data frame all the
time:
attach(colony)

(We will also detach colony from the
workspace at the end of our script.)

Z Replicate Count
None 1 150
None 2 180
None 3 223
Low 1 87
Low 2 40
Low 3 53
Medium 1 5
Medium 2 1
Medium 3 9
High 1 0
High 2 0
High 3 0

Plotting

We want to plot the colony
growth in response to changing
Z concentration.
Z is the explanatory variable,
and Count is the response
variable.
We don't want to plot replicates
separately here, but get R to
summarise each Z concentration
over all replicates.
We can call plot using the same
formula syntax we learnt
yesterday:
plot(Count~Z)

Plotting

We can improve on this. Firstly,
we want to order the Z
categories. Z is a factor, so we
need to supply new levels to
this factor in the colony data
frame:
Z <- factor(Z,

levels=c("None","Low","M
edium","High"))

plot(Count~Z)

Analysis of Variance

We can use the same formula syntax to calculate an analysis of
variance:
colony.aov<-aov(Count~Z)

summary(colony.aov)
 Df Sum Sq Mean Sq F value Pr(>F)

Z 3 68154 22718 46.89 2.02e-05 ***

Residuals 8 3876 484

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This tells us what we can already see from the plot, that there is a
highly significant relationship between Z concentration and colony
growth.

We would like to investigate this relationship. For example, we might
want to calculate the mean colony count for each concentration of Z.

Calculating group means

We can calculate a mean for a particular group like this:
> mean(colony[Z=="None",]$Count)

[1] 187

> mean(colony[Z=="Low",]$Count)

[1] 60

> mean(colony[Z=="Medium",]$Count)

[1] 5

> mean(colony[Z=="High",]$Count)

[1] 0

We could generalise this with a for loop:
for (z in levels(Z)) {

 print(mean(colony[Z==z,]$Count))

}

[1] 187

[1] 60

[1] 5

[1] 0

But there is a better way.

The tapply function
a brief digression

• The apply family of functions allow us to group data by variable and
calculate something for each group.

• Assume we have the following data for heights of 5 males and
females:

data <- data.frame(gender=c("Male", "Male", "Female",
"Female", "Female"), height=c(6, 6.1, 5.8, 6, 5.95))

 gender height
1 Male 6.00
2 Male 6.10
3 Female 5.80
4 Female 6.00
5 Female 5.95

• How can we get mean height of males and females separately?
tapply() lets us do exactly this:

• tapply(data$height, data$gender, mean)

 data groups function

Using tapply on colony

• We can use tapply to calculate group means on colony like this:
> colony.means<-tapply(Count, Z, mean)

> colony.means

 None Low Medium High

 187 60 5 0

> barplot(colony.means)

A complete script

We now have a complete script to analyse this data:
Load data, order Z and plot

colony<-read.csv("2.1_colony_trial.csv")

colony$Z<-factor(colony$Z,c("None","Low","Medium","High"))

attach(colony)

plot(Count~Z)

Analysis of Variance

colony.aov<-aov(Count~Z)

print(summary(colony.aov))

Calculate group means

colony.means<-tapply(Count,Z,mean)

print(colony.means)

barplot(colony.means)

detach(colony)

Make sure you can source your commands (or the file 2.1_colony_1.R)
from Rstudio and generate the results and plot.

Knocking down gene X: revising the script

As the trial worked, our collaborators have gone ahead with an
experiment to knock down gene X in the same concentrations of Z.
The new data is in the file 2.1_colony_run.csv.

They want us to see if knocking down X affects colony growth.

Because we saved our analysis in a script, we can rerun the same
script to analyse the data, just by changing the name of the file we
are loading.

Run your script on this new data file and confirm that you can
calculate an ANOVA and group means for this new data set.

Knocking down gene X: revising the script

Our current script only analyses Z, not X. We need to modify it to
include X and see how both X and Z influence colony growth.

1. We need to include X and the interaction between Z and X in our
formulae for plotting and for ANOVA. Look up the 'Modelling formulae'
slide from Day 1 to see how to do this.

2. What does plot do with a formula including both X and Z? Try using
boxplot instead. What difference does it make if you change the
order of X and Z?

3. We need to include both X and Z in our call to tapply. Modify the
call to tapply by changing the second argument, which should be a
list containing the data for both X and Z.

4. Plot the group means you calculated with tapply using barplot.
Plot bars for different conditions beside each other, not on top of each
other. Check the help page for an option to do this.

Plotting interactions

Including interactions in formulae is straightforward, but plot doesn't
show us the interaction, only the main effects:
> plot(Count~X*Z)

Plotting interactions

To get a sense of what's
happening with the
interactions, use boxplot:
> boxplot(Count ~ X*Z)

To make the labels visible, we'll use
some graphics commands to increase the
size of the lower margin and make the x-
axis labels vertical (full details on this
this afternoon):
> par(oma=c(6,2,2,2))

> boxplot(Count ~ X*Z,las=2)

It looks like
knocking down
X increases
colony growth,
except when Z
is completely
absent.

Analysis of variance with interactions

Including interactions in the analysis of variance is straightforward:

> colony.aov<-aov(Count~X*Z)

> print(summary(colony.aov))

 Df Sum Sq Mean Sq F value Pr(>F)

X 1 2321 2321 14.072 0.00174 **

Z 3 36150 12050 73.067 1.48e-09 ***

X:Z 3 3441 1147 6.954 0.00329 **

Residuals 16 2639 165

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Not only do X and Z have a significant effect on colony growth
individually, but there is also a significant interaction between them.

tapply with multiple variables

Including Z in the call to tapply is a little fiddly, but easy when you
know how. Use the beside option in the call to barplot. (What
happens if you put X first in the list?)
> colony.means<-tapply(Count,list(Z,X),mean)

> print(colony.means)

 Control Knockdown

None 108.3333333 98.333333

Low 21.6666667 75.000000

Medium 0.3333333 29.666667

High 0.3333333 6.333333

> barplot(colony.means,beside=TRUE)

Complete revised script

Our script now looks like this (see 2.1_colony_2.R):
Load data, order Z and plot

colony<-read.csv("2.1_colony_run.csv")

colony$Z<-factor(colony$Z,c("None","Low","Medium","High"))

attach(colony)

par(oma=c(6,2,2,2))

boxplot(Count~Z*X,las=2)

Analysis of Variance

colony.aov<-aov(Count~X*Z)

print(summary(colony.aov))

Calculate group means

colony.means<-tapply(Count,list(Z,X),mean)

print(colony.means)

barplot(colony.means,beside=TRUE)

detach(colony)

2
User functions

Introducing ...
User functions

• All R commands are function calls.

• Functions take some input, perform calculations on that input, and
return some output.

• EG sqrt is a function that takes a value, calculates the square root
of the value, and returns the square root.

• aov takes a formula referring to some data, calculates the analysis
of variance for that data, and returns the model it calculated.

• We can define our own functions. User functions extend the
capabilities of R by adapting or creating new tasks that are tailored
to your specific requirements.

• User functions are objects, just like vectors and data frames. This
has a few useful implications.

Defining a new function
 A function has a name, arguments, procedural steps, and a return

value.
 sqXplusX <- function(x){
 x^2 + x
 }
 sqXplusX is the function name
 x is the single argument to this function and it exists only within the

function
 everything between brackets { } are procedural steps
 the last calculated value is the function return value. We can call

return explicitly:
 sqXplusX <- function(x){
 return(x^2 + x)
 }
 After defining the function, we can use it:

 > sqXplusX(10)

 [1] 110

Named and default arguments

 We can generalise our function by adding a second argument.

 powXplusX <- function(x, power=2){

 x^power + x

 }

 The power argument has a default value of 2; if we don't supply a power
when we call the function, x will be squared.

 Arguments without default value are required, those with default values are
optional.

 > powXplusX(10)

 [1] 110

 > powXplusX(10, 3)

 [1] 1010

 > powXplusX(x=10, power=3)

 [1] 1010

arguments matched based on name

arguments matched based on position

Calculation with user functions

User functions can be used wherever a built in function can be used:

a <- matrix(1:100, ncol=10, byrow=TRUE) # make some dummy data

sqXplusX(a)

Functions are R objects, just like a vector or a data frame, and exist in
our workspace:
> sqXplusX

function(x) x^2+x

Variable scope

Objects created in functions are not available to the global
environment unless returned. They are limited to the scope of the
function.
> addone<-function(x) {x<-x+1; x}

> x<-1

> addone(x)

[1] 2

> x

[1] 1

The x in the global environment has nothing to do with the x declared
in the function, and is unchanged by the call to the function. To update
the global x, we would need to assign the return value of the function:
> x<-addone(x)

A function can only return one object, but that object can be a list, so
if you have many objects to return, package them up into a list first.

Script / function tips
User functions

• If your script repeats the same command with different values more
than twice, you should consider writing a function to generalise that
command.

• Writing functions makes your code more easily understandable
because they encapsulate a procedure into a well-defined boundary
with consistent input/output

• Functions should only do one thing. If a function is doing multiple
tasks, try to split it up into multiple functions. This rule of thumb
means functions tend to be short, not more than around one or two
screens of code.

• Look at other functions to get ideas for how to write your own …
• Display function code by entering the function’s name without

brackets.

Checking input and reporting errors

● A function should fail gracefully if it does not receive valid input when
it is called. We can use if statements to check for appropriate
input.

● R has two useful commands to tell the user something is wrong.
warning prints a message and continues to run the function.
stop ends the function after printing the message.

● For example, we might rewrite our powXplusX function to check
that the power argument is a whole number:

powXplusX<-function(x,power=2) {

if (power %% 1 != 0) stop("Power should be a whole number")

x^power+x

}

> powXplusX(10,3)

[1] 1010

> powXplusX(10,3.5)

Error in powXplusX(10, 3.5) : Power should be a whole number

Checking input and reporting errors

R has a very useful set of functions called the is family, which check
the type of input values. For example:
sqXplusX <- function(x){

 if (is.numeric(x)) {

 x^2 + x

 } else {

 stop("Input should be numeric")

 }
}

> sqXplusX(10)
[1] 110
> sqXplusX("ten")
Error in sqXplusX("ten") : Input should be numeric

The is.family

Checking input and reporting errors

Here's another, more concise way to do the same thing:
sqXplusX <- function(x){

 if (!is.numeric(x)) stop ("Input should be numeric")

 x^2 + x
}

This is not only shorter, but it also gets all the error checking out of the
way before the main processing steps.

You may also find the %in% command useful, which checks to see if
the elements of one vector are present in another:
> levels(colony$Z)

[1] "None" "Low" "Medium" "High"

> "Low" %in% colony$Z

[1] TRUE

> "Zero" %in% colony$Z

[1] FALSE

> c("None","Low") %in% colony$Z

[1] TRUE TRUE

Temperature conversion exercise
User functions

Centigrade to Fahrenheit conversion is given by F = 9/5 * C +32.
Write a function that converts between temperatures.
The function should take two named arguments:

temperature (t) is numeric
units (unit) is character

Both arguments should have appropriate default values.
The function should report an appropriate error if inappropriate values
are given.

if(!is.numeric(t)) { }

if(!(unit %in% c("c","f"))){...}

The function should print out the temperature in Fahrenheit if given in
Centigrade, and vice versa.

Building the solution

• It is difficult to write large chunks of code. Instead, start with something that
works and build upon it.

• E.g. to solve the temperature conversion exercise:

• write a skeleton function definition (eg just a name and brackets)

• add appropriate argument names and defaults

• write code to convert Centigrade into Fahrenheit and check it works

• write code to convert Fahrenheit to Centigrade and check it works

• add error checking code, including the checks from the previous slide, and
any others you can think of

• write a set of test calls to confirm that your function handles correct and
incorrect input

• If you get stuck, call us to help you!

convTemp<-function(t=0,unit="c"){ # convTemp is defined as a new user function requiring two
arguments, t and unit, the default values are 0 and "c", respectively.

 if (!is.numeric(t)) stop("Non numeric temperature entered")

 if (!(unit %in% c("c","f"))){
 stop("Unrecognized temperature unit. Enter (c)entigrade or (f)ahrenheit.")
 }

 converted<-0

 # Conversion for centigrade
 if (unit=="c") {
 converted <- 9/5 * t + 32
 }

 # Conversion for Fahrenheit
 if(unit=="f"){
 converted <- 5/9 * (t-32)
 }

 converted
}

> convTemp(t=-273,unit="c")
[1] -459.4

Example code:
2.2_convtemp.R

Temperature conversion exercise
script

3
Advanced data processing

Combining data from multiple sources
Gene clustering example

 R has powerful functions to combine heterogeneous data into
a single data set
 Gene clustering example data:

– five sets of differentially expressed genes from various
experimental conditions

– file with names of experimentally verified genes
 Gene clustering exercise:

1.combine this dataset into a single table and cluster to
see which conditions are similar

2.repeat the clustering but only on a subset of
experimentally verified genes

Combining gene tables

 input files have two columns: gene names and fold change
 we want to combine all five tables into a single table, with 0 for missing values

+ + + +

Gene clustering
Script walkthrough 1

 To make the big table we first need to find out all the genes
present in at least one of the files
 Make sure not to use factors in read.delim()

start with en empty collection of genes

genes <- c()

for(fileNum in 1:5){

 # load in files 2.3_DiffGenes1.tsv ...

 t <- read.delim(paste("2.3_DiffGenes", fileNum, ".tsv", sep=""),

as.is=TRUE, header=FALSE)

 # label the input columns to help code readability

 names(t) <- c("gene", "expression")

 genes <- union(genes, t$gene)

}

for tidiness order our genes by name

genes <- sort(genes)

genes # show all genes
Example code:
2.3_geneClustering.R

union() is a set operation, combines
two vectors by eliminating duplicates.
There are also intersect() and setdiff()

when loading in character data
use as.is=TRUE to prevent it being
converted to factors!

Gene clustering
Script walkthrough 2

 Using the complete list of genes, we can create the big table
and fill in the values:

make the destination table [rows = unique genes, cols = file numbers]

values <- matrix(0, nrow=length(genes), ncol=5)

rownames(values) <- genes # name the rows with the complete gene names

for(fileNum in 1:5){

 # read in the file again

 t <- read.delim(paste("2.3_DiffGenes", fileNum, ".tsv", sep=""),

as.is=TRUE, header=FALSE)

 names(t) <- c("gene", "expression")

 # match the names of the genes to the rows in our big table

 index <- match(t$gene, rownames(values))

 # copy the expression levels

 values[index,fileNum] <- t$expression

}

match() returns the index of first argument
in the second, i.e. index of input file genes
in the big table

we use index to pick the rows in such way that
they match the gene order in the input file

 Now we can do hierarchical clustering:
heatmap(values, scale="none", col = cm.colors(256))

Gene clustering
Script walkthrough 3

Values from the matrix
are colour-coded.
Rows and columns
are re-arranged
according to similarity

 In a second part of our analysis, we want to produce the
same heatmap but only based on a list of experimentally
verified genes

 The problem is data is not formatted in the most convenient
way:

Gene clustering
Script walkthrough 4

genes citation

oc,run,RhoBTB,CG5149,CG11153,S,Fur1 Segal et al, Development 2001

tna,Kr-h1,rux Krejci et al, Development 2002

 We load in this table, and only extract the gene names, then
we use them to select a subset of values matrix

load in the tab-delimited file with genes and citations
t.exp <- read.delim("2.3_ExperimentalGenes.tsv", as.is=TRUE)
split all gene names by "," and then flatten it out into a single vector
experim.genes <- unlist(strsplit(t.exp$genes, ","))

redo the heatmap by using just the genes in the experimentally verified set
is.experimental <- rownames(values) %in% experim.genes
heatmap(values[is.experimental,], scale="none", col = cm.colors(256))

Gene clustering
Script walkthrough 5

strsplit() splits a vector of strings by a custom
split character (","). The result is a list of split
values for each element of the input vector

unlist() flattens out a nested
list into a single vector

Gene clustering review

 We load in the five tables twice - first to collect gene names, then to
load expression values
 Based on expression table (values) we construct a clustered heatmap
first on the whole set of genes, then on a selected subset

 Go through the code, try it out it and understand it

 Try answering the following questions:
 what is rownames(values) ?

 why is rownames(values)[index] and t$gene giving the same
output?

 what is the difference between rownames(values) %in%
experim.genes and experim.genes %in% rownames(values)

Example code:
2.3_geneClustering.R

4
Graphics

Starting out with R graphics
Graphics

• R provides several mechanisms for producing graphical output
• Functionality depends on the level at which the user seeks interaction with R

• graphics systems, packages, devices & engines

• High level graphics
• Functions compute an appropriate chart based up on the information provided.

Optional arguments may tailor the chart as required
• Interaction is at traditional graphics system level. The user isn’t required to know much

about anything

• Low level graphics
• The user interacts with the drawing device to build up a picture of the chart piece

by piece.
• This fine granular control is only required if you seek to do something exceptional

• R graphics produces plots using a painter’s model
• Elements of the graph are added to the canvas one layer at a time, and the picture

built up in levels. Lower levels are obscured by higher levels, allowing for
blending, masking and overlaying of objects.

High level vs. Low level plotting
Graphics

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

speed

d
is

t

-2 0 2 4 6

-1
.0

-0
.5

0
.0

0
.5

1
.0

x

s
in

 (
x

)

0
5

1
0

1
5

2
0

rpois(100,lambda=5)

ta
b

le
(r

p
o

is
(1

0
0

,
5

))

1 2 3 4 5 6 7 8 9 10 0 10 20 30 40

-2
-1

0
1

2

plot(x, type = "s")

Index

x
 <

-
s

o
rt

(r
n

o
rm

(4
7

))

High level plotting
example(plot)

Low level plotting
(Scotland by blighty package)

Essential plotting - plot()

● plot() is the main function for plotting, it takes x,y values to plot and
also lots of graphical parameters (see ?par for all of them)

x <- 1:5
y <- 2:6
plot(x,y)

default plotting custom plotting

x <- 1:5
y <- 2:6
plot(x,y, xlab="X data", ylab="Y
data", xlim=c(0,10), ylim=c(0,10),
main="Our title")

x <- seq(-2, 2, 0.1)
y <- sin(x)

-2 -1 0 1 2

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

x

y

-2 -1 0 1 2

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

x

y

-2 -1 0 1 2

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

x

y

plot(y~x, ylim=c(-1.5,1.5),
xlim=c(-2.5,2.5),
col="red" ,pch=16, cex=1.4)

lines(y~x, ylim=c(-1.5,1.5),
xlim=c(-2.5,2.5), col="blue",
lty=1,lwd=2)

rect(-2.5,0,2.5,-1.5,
col="white", border="white")

xlim, ylim = axis limits
col = line colour
pch = plotting character [example(points)]
cex = character expansion [scaling factor]

lty = line type
lwd = line width
rect = rectangle

Example code:
14_painterModel.R

R graphics uses a painter’s model

1 2 3

Plotting x,y data - plot(), points(), lines()

● plot() is used to start a new plot, accepts x,y data, but also data from some
objects (like linear regression). Use the parameter type to draw points, lines,
etc (see ?plot)
● points() is used to add points to an existing plot
● lines() is used to add lines to an existing plot

plot(c(0, 5), c(0, 5), type="l") # draw as line from (0,0) to (5,5)

points(1, 3) # add a point at 1,3

Making bar plots - barplot()

● visualizing a vector of data can be done with bar plots, using function
barplot()

data <- c("2000"=0, "2001"=20, "2002"=50, "2003"=100)

barplot(data, main="Number of R developers")

Making box plots - boxplot()

● when a spread of data needs to be visualised, we can use boxplots
with function boxplot()

data1 <- rnorm(1000, mean=0)

data2 <- rnorm(1000, mean=1)

boxplot(data1, data2)

Making histograms - hist()

● when we need to look at the distribution of data, we can visualize it
using histograms with function hist()

data <- rnorm(1000)

hist(data)

Pie charts - pie()

● to visualise percentages or parts of a whole we can use pie charts
with function pie()

data <- c("Mon"=1, "Tue"=3, "Wed"=6, "Thr"=4, "Fri"=9)

pie(data)

Typical plotting workflow

• Set the plot layout and style - par()
– Set the number of plots you want per page
– Set the outer margins of the figure region

• The distance between the edge of the page and the figure
region, or between adjacent plots if there are multiple
figures per page

– Set the inner margins of the plot
• The distance between the plot axes and the labels & titles

– Set the styles for the plot
• Colours, fonts, line styles and weights

• Draw the plot - plot(x,y, …)

type par() to get a list of top down settings which may be set globally

Setting graphics layout and style - par()

par() Top level graphics function
• parameter specifies various page settings. These are inherited

by subordinate functions, if no other styles are set.
• Specific colours and styles may be set globally with par, but changed

ad hoc in plotting commands
• The global setting will remain unchanged, and reused in future

plotting calls.

• par sets the size of page and figure margins
• Margin spacing is in ‘lines’

• par is responsible for controlling the number of figures that are
plotted on a page

• par may set global colouring of axes, text, background,
foreground, line styles (solid/dashed), if figures should be boxed
or open etc. etc.

par(mar=c(5,4,4,2))
Sets space for x & y labels, a main title, and a thin margin on
the right

par(mfrow=c(1,1))
one figure on page
par(oma=c(2,2,2,2))
equal outer margins

Page settings with par
Graphics

Numbering: bottom, left, top, right

See how the figure margins overlap
Using painter’s model

2 4 6 8 10

2
6

1
0

Index

2 4 6 8 10

2
6

1
0

Index

1
:1

0

2 4 6 8 10

2
6

1
0

Index

2 4 6 8 10

2
6

1
0

Index

1
:1

0

oma 1 line here

mar 4 lines here

m
ar 2 lines here

15_parExample.R

Page layout plot exercise
Graphics

par(mfrow=c(2,2))
• 2 x 2 figures per page
par(oma=c(1,0,1,0)
• 1 line spacing top and bottom
par(mar=c(4,2,4,2))
• 4 lines at bottom & top
• 2 lines left & right
par(bg="lightblue",fg="darkgrey")
• light blue background
• dark grey spots
par(pch=16,cex=1.4)
• Large circles for spots
• Execute 4 times with different colors:
 plot(1:10)
 box("figure",lty=3,col="blue")
• Draw a blue dashed line around plot
box("outer",lty=1,lwd=3,
col="green")
• Draw a green solid line around figure

Plotting characters for plot()
size and orientation

pch= ...

Sets one of the 26 standard plotting
character used.
Can also use characters, such as "."
cex= ...

Character expansion. Sets the scaling
factor of the printing character
las= ...

Axes label style. 1 normal, 2 rotated
90º
4 styles (0-3)

xCounter<-1
yCounter<-1
plotChar<-0

plot(NULL, xlim=c(0,8),
ylim=c(0,5),xaxt="n",

yaxt="n",ylab="",xlab=""
,main="26 standard plotting

characters")

while (plotChar < 26){
 if(xCounter < 7){
 xCounter <- xCounter+1
 } else {
 xCounter <- 1

yCounter <- yCounter+1
 }

 points(xCounter,yCounter,pch=plotChar,
cex=2)
 text(xCounter,(yCounter-0.3),plotChar)
 plotChar <- plotChar+1
}

X-Y coordinates,
Plotting character index counter

Sets up an empty plotting area.
Axis scale limits, xlim, ylim
Don't draw axis ticks, xaxt, yaxt="n"
Don't annotate axis, xlab, ylab=""
Set a main title, main

While loop counts up to 25
(0 to 25 = 26 iterations)
And cycles through each pch
available

We want to print the characters in a
7 x 4 grid. The if statement sets up
the character plotting coordinates
such that each time x =7, make it 1
again and increment the y axis by 1 at
the same time

16_plottingChars.R

Plotting characters exercise
Graphics

Annotating the plot

• plot accepts main title, subtitle, X label, Y label as standard
arguments

plot(x, y, main="...", sub="...", xlab="...", ylab="...")

mtext(text="…", side= …)

• allows text to be written directly into the margin of a plot
text(x,y,labels="…")

• allows text to be written in the plot at x,y
legend(x,y, legend=…)

• produces a legend for the plot

Appreciating drawing coordinates

• How do we know where to place items within the plot region when building
up our customized graphs?

• Most of the time we can specify X,Y coordinates.
• R calculates sensible pixel coordinates of plots from the data we provide.

 We don’t need to worry about pixels, centimetre distances etc.
• locator(…)

• Returns x,y coordinates from a mouse click within a plot
• good for working out where to place legend items

• identify(…)

• provides an id tag for the closest plotted point to a mouse click
• useful if you want to label points on a chart

• xy.coords(…)

• translates x,y coordinates into pixel coordinates

• Margin spacing is in lines
• The exact distance is a factor of font family, style and size

• Text may appear bunched or squashed if sufficient distance is not left between
the axes and the caption

align text left, right & centre with
adj=(i,j) i.e centre is adj=(0.5,0.5), left
is adj=(1,0) and right is adj=(0,1)17_buildingAplot.R

Adding legend ...
Don't forget to mouse click!

Building up a plot
Graphics

R code
par(mfrow=c(1,1))

par(bg="white",fg="black",cex=1)

par(oma=c(1,1,1,1))

par(mar=c(5,4,4,2)+0.1)

plot(1:10,main="The plot title",
sub="A subtitle", xlab="Numbers",

ylab="More numbers")

mtext(c("Bottom", "Left", "Top",
"Right"), c(1,2,3,4), line=.5)

text(2,10,"Text at X=2,Y=10")

legend(locator(1),"Some
Legend",fill="red")

2 4 6 8 10

2
4

6
8

1
0

The plot title

A subtitle
Numbers

M
o

re
 n

u
m

b
e

rs

Bottom

L
e

ft

Top

R
ig

h
t

Text at X=2,Y=10

Some Legend

Xlab Subtitle

mtext

Text

Plots with custom axes
Graphics

• R plot doesn’t support multiple Y axis by default
• You have to make additional axes yourself!

• Adding custom axis
axis(side=, at=, labels=, …)

• If you want to specify custom axes, make sure you turn off the
automatic axes in the plot / points call

plot(…, axes=FALSE)

Adding a second Y axis
Graphics

5 10 15 20

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

A second axis example

Ordered units

B
ig

 v
a
lu

e
s

0
.0

0
.2

0
.4

0
.6

0
.8

L
itt

le
 v

a
lu

e
s

Big Y
Little Y

The trick

1.plot first Y series

2.use par(new=TRUE) to overlay a second
figure region

3.plot second series without axes

4.axis(side=4, …) to add second Y axis

5.mtext(side=4, …) to label second Y

x1<-1:20
y1<-sample(1000,20)
y2<-runif(20)
y2axis<-seq(0,1,.2)

par(mar=c(4,4,4,4))

plot(x1,y1,type="p",pch=10,cex=2,col="red",
main="A second axis example",
ylab="Big values",ylim=c(0,1100),
xlab="Ordered units")

points(x1,y1,type="l",lty=3,lwd=2,col="green")

par(new=TRUE)

plot(x1,y2,type="p",pch=20,cex=2,col="black",axes=FALSE,bty="n",xlab="",ylab="")
points(x1,y2,type="l",lty=2,lwd=2,col="grey")

axis(side=4,at=pretty(y2axis))
mtext("Little values",side=4,line=2.5)

legend(15,0.2,c("Big Y","Little Y"),lty=1,lwd=2,col=c("green","grey"))

Demo data

Set up equivalent figure margins

Plot and label first Y series

Overlay a second plot region

Plot second Y series, but suppress labels

Connect dots with a line

18_secondYaxis.R

Example: The second Y series
Graphics

Anotate second Y axis

Add legend, note X,Y is on second Y axis scale

> rgb(1,1,1)
[1] "#FFFFFF"

> par(mfrow=c(2,2))
> plot(1:10,col="#FF00FF")
> plot(1:10,col=rgb(1,0,1))
> plot(1:10,col="magenta")

Use of colour in R
Graphics

• Colour is usually expressed as a hexadecimal code of Red, Green, and
Blue counterparts

• No good for humans.

• R supports numerous colour palettes which are available through several
"colour" functions.

• colours() # get inbuilt names of known colours
• RGB primaries may take on a decimal intensity value of 0 to 255

• 255 is #FF in hexidecimal
• White is #FF FF FF
• Black is #00 00 00

• rgb() # converts red green blue intensities to colour

• Strangely, likes decimalized intensities (ie. 0 is black, 1 is white)

Colour Ramps & Palettes
Graphics

•Heatmaps use colour depth to convey
data values. Cold colours are typically
low values, and light colours are high
state values. This is a colour ramp.
•R supports numerous graded colour
charts. Specify n, to set the number of
gradations required in the palette

rainbow(n)

heat.colors(n)

terrain.colors(n)

topo.colors(n)

cm.colors(n)

You can specify a user defined palette of indexed colours:
palette(rainbow(7)) # creates 7 indexed colours (1:7) based on

 # rainbow palette R O Y G B I V !!!

19_colourCharts.R

Colour packages: RColorBrewer
Graphics

• This add on package provides a series of well defined colour
palettes. The colours in these palettes are selected to permit
maximum visual discrimination

• Access the RColorBrewer library functions ...

library("RColorBrewer")

• Check out the available palettes
display.brewer.all(n=NULL, type="all", select=NULL, exact.n=TRUE)

• Define your own palette based on one of RColorBrewers'
myCol<-brewer.pal(n,"...") # n=number of colours, "..." is the palette name

RColorBrewer named palettes
Graphics

Saving plots to files

• Unless specified, R plots all graphics to the screen
• To send plots to a file, you need to set up an appropriate graphics device …
postscript(file="a_name.ps", …)

pdf(file="…pdf", …)

jpeg(file=" …jpg", …)

png(file=" ….png", …)

• Each graphics device will have a specific set of arguments that dictate
characteristics of the outputted file

• height=, width=, horizontal=, res=, paper=
• Top tip: jpg, A4 @ 300 dpi, portrait, size in pixels
• jpg(file="my_Figure.jpg", height=3510, width=2490, res=300)

• Postscript & pdf work in inches by default, A4 = 8.3" x 11.7"

• Graphics devices need closing when printing is finished
dev.off()

for example:
png("tenPoints.png", width=300, height=300)
plot(1:10)
dev.off()

Thoughts when plotting to a file
Graphics

• Its very tempting to send all graphical output to a pdf file. Caution!
• For high resolution publication quality images you need

postscript. Set up postscript file capture with the following
function

postscript("a_file.ps",paper="a4")

• postscript images can be converted to JPEG using ghostscript (free
to download) for low resolution lab book photos and talks

• PDF images will grow too large for acrobat to render if plots
contain many data points (e.g. Affymetrix MA plots)

• Automatically send multiple page outputs to separate image files
using …file="somename%02d.jpg"

• Don’t forget to close graphics devices (i.e. the file) by using
• dev.off()

20_6PanelPlotScript.R

Plotting exercise
Graphics

• Exercise:
• Make a full A4 page figure comprising of 6 plots: 2 each of XY plot (plot()),

barchart (barplot()) and box plots (boxplot())
• The two version of each plots should consistent of: the default plot and a

customised plot (change for instance colours, range, captions...)
• Output the completed 6-panel figure to: screen, jpeg, postscript and pdf

file

• Suggested route to solution:
 1. Generate some plotting data appropriate for each type of plot
 2. Write the code to produce the six plots, once plotting the data by using

default plotting, one with some customisations you want
 3. To output the plot to screen, jpeg, postscript and pdf you will need to redo

the plot multiple times - create a function to do a plotting and call it by
redirecting graphical output to screen, jpeg file, poscript file and pdf file

6 Panel plots exercise
Graphics

References

• Official documentation on:

– http://cran.r-project.org/manuals.html

• A good repository of R recipes:

– Quick-R: http://www.statmethods.net/

• Don't forget that many packages come with tutorials (vignettes)

• Website of this course:

– http://logic.sysbiol.cam.ac.uk/teaching/Rcourse/

• R forums (stackoverflow & official):

– http://stackoverflow.com/questions/tagged/r

– http://news.gmane.org/gmane.comp.lang.r.general

• Plenty of textbooks to choose from, comprehensive list + reviews:

– http://www.r-project.org/doc/bib/R-books.html

END OF COURSE

Thanks for your attention!

	Diapositiba 1
	Diapositiba 2
	Diapositiba 3
	Diapositiba 4
	Diapositiba 5
	Diapositiba 6
	Diapositiba 7
	Diapositiba 8
	Diapositiba 9
	Diapositiba 10
	Diapositiba 11
	Diapositiba 12
	Diapositiba 13
	Diapositiba 14
	Diapositiba 15
	Diapositiba 16
	Diapositiba 17
	Diapositiba 18
	Diapositiba 19
	Diapositiba 20
	Diapositiba 21
	Diapositiba 22
	Diapositiba 23
	Diapositiba 24
	Diapositiba 25
	Diapositiba 26
	Diapositiba 27
	Diapositiba 28
	Diapositiba 29
	Diapositiba 30
	Diapositiba 31
	Diapositiba 32
	Diapositiba 33
	Diapositiba 34
	Diapositiba 35
	Diapositiba 36
	Diapositiba 37
	Diapositiba 38
	Diapositiba 39
	Diapositiba 40
	Diapositiba 41
	Diapositiba 42
	Diapositiba 43
	Diapositiba 44
	Diapositiba 45
	Diapositiba 46
	Diapositiba 47
	Diapositiba 48
	Diapositiba 49
	Diapositiba 50
	Diapositiba 51
	Diapositiba 52
	Diapositiba 53
	Diapositiba 54
	Diapositiba 55
	Diapositiba 56
	Diapositiba 57
	Diapositiba 58
	Diapositiba 59
	Diapositiba 60
	Diapositiba 61
	Diapositiba 62
	Diapositiba 63
	Diapositiba 64
	Diapositiba 65
	Diapositiba 66
	Diapositiba 67
	Diapositiba 68
	Diapositiba 69
	Diapositiba 70
	Diapositiba 71
	Diapositiba 72
	Diapositiba 73
	Diapositiba 74
	Diapositiba 75
	Diapositiba 76

