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Day 1 schedule

1. Introduction to R and its environment
2. Data structures
3. Data analysis example
4. Programming techniques
5. Statistics



1
Introduction to R and its environment



What’s R?

• A statistical programming environment
• based on S
• Suited to high level data analysis

• Open source & cross platform
• Extensive graphics capabilities
• Diverse range of add-on packages
• Active community of developers
• Thorough documentation



www.r-project.org



Various platforms supported

• Release 3.1.0 (April 2014)
• Base package
• Contributed packages (general purposes extras)
• >5400 available packages

• Download from http://www.stats.bris.ac.uk/R/
• Windows, Mac and Linux versions available

• Executed using command line, or a graphical user interface (GUI)
• On this course, we use the RStudio GUI (www.rstudio.com)
• Everything you need is installed on the training machines
• If you are using your own machine, download both R and RStudio 

http://www.stats.bris.ac.uk/R/
http://www.rstudio.com/


Getting Started

● R is a program which, once installed on your system, can be 
launched and is immediately ready to take input directly from the 
user

● There are two ways to launch R:
1) From the command line (particularly useful if you're quite 

familiar with Linux)
2) As an application called RStudio (very good for beginners)



Prepare to launch R
From command line

● To start R in Linux we need to enter the Linux console (also called 
Linux terminal and Linux shell) 

● To start R, at the prompt simply type:
  $ R 

● If R doesn't print the welcome message, call us to help!



Prepare to launch R
Using RStudio

● To launch RStudio, find the RStudio icon in the menu bar on the left 
of the screen and double-click



The Working Directory (wd)

● Like many programs R has a concept of a working directory (wd)
● It is the place where R will look for files to execute and where it will 

save files, by default
● For this course we need to set the working directory to the location 

of the course scripts
● At the command prompt in the terminal or in RStudio console type:

> setwd("R_course/Day_1_scripts")

● Alternatively in RStudio use the mouse and browse to the directory 
location

● Session  Set Working Directory  Choose Directory...→ →



Basic concepts in R
command line calculation

● The command line can be used as a calculator. Type:
> 2 + 2

[1] 4

> 20/5 - sqrt(25) + 3^2

[1] 8

> sin(pi/2)

[1] 1

● Note: The number in the square brackets is an indicator of the 
position in the output. In this case the output is a 'vector' of length 1 
(i.e. a single number). More on vectors coming up...



Basic concepts in R
variables

● A variable is a letter or word which takes (or contains) a value. We 
use the assignment 'operator', <-
> x <- 10

> x

[1] 10

> myNumber <- 25

> myNumber

[1] 25

● We can perform arithmetic on variables:
> sqrt(myNumber)

[1] 5

● We can add variables together:
> x + myNumber

[1] 35



Basic concepts in R
variables

● We can change the value of an existing variable:
> x <- 21

> x

[1] 21

● We can set one variable to equal the value of another variable:
> x <- myNumber

> x

[1] 25

● We can modify the contents of a variable:
> myNumber <- myNumber + sqrt(16)

[1] 29



Basic concepts in R
functions

● Functions in R perform operations on arguments (the input(s) to the 
function). We have already used sin(x) which returns the sine of x. In 
this case the function has one argument, x. Arguments are always 
contained in parentheses, i.e. curved brackets (), separated by 
commas.

● Try these:
> sum(3, 4, 5, 6)

[1] 18

> max(3, 4, 5, 6)

[1] 6

> min(3, 4, 5, 6)

[1] 3

● Arguments can be named or unnamed, but if they are unnamed they 
must be ordered (we will see later how to find the right order).
> seq(from=2, to=10, by=2)

[1] 2 4 6 8 10

> seq(2, 10, 2)

[1] 2 4 6 8 10



Basic concepts in R
vectors

● The basic data structure in R is a vector – an ordered collection of 
values. R even treats single values as 1-element vectors. The function 
c() combines its arguments into a vector:
 > x <- c(3, 4, 5, 6)

 > x

  [1] 3 4 5 6

● As mentioned, the square brackets [] indicate position within the 
vector (the index). We can extract individual elements by using the [] 
notation:
> x[1]

 [1] 3

> x[4]

 [1] 6

● We can even put a vector inside the square brackets (vector indexing):
> y <- c(2, 3)

> x[y]

 [1] 4 5



Basic concepts in R
vectors

● There are a number of shortcuts to create a vector. Instead of: 
 > x <- c(3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

● we can write:
 > x <- 3:12

● or we can use the seq() function, which returns a vector:
> x <- seq(2, 10, 2)

> x

 [1] 2 4 6 8 10

> x <- seq(2, 10, length.out = 7)
● > x

 [1] 2.00000 3.33333 4.66667 6.00000 7.33333 8.66667 10.00000

● or the rep() function:
> y <- rep(3, 5)

● > y

[1] 3 3 3 3 3

> y <- rep(1:3, 5)

> y

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3



Basic concepts in R
vectors

● We have seen some ways of extracting elements of a vector. We can 
use these shortcuts to make things easier (or more complex!) 
 > x <- 3:12

 > x[3:7]

 [1] 5 6 7 8 9  

> x[seq(2, 6, 2)]

 [1] 4 6 8

> x[rep(3, 2)]

 [1] 5 5

● We can add an element to a vector
> y <- c(x, 1)

> y

[1] 3 4 5 6 7 8 9 10 11 12 1

● We can glue vectors together
> z <- c(x, y)

> z

[1] 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 1



Basic concepts in R
vectors

● We can remove element(s) from a vector 
> x <- 3:12

> x[-3]

 [1] 3 4 6 7 8 9 10 11 12

> x[-(5:7)]

 [1] 3 4 5 6 10 11 12

> x[-seq(2, 6, 2)]

 [1] 3 5 7 9 10 11 12

● Finally, we can modify the contents of a vector
> x[6] <- 4

> x

[1] 3 4 5 6 7 4 9 10 11 12

> x[3:5] <- 1

> x

[1] 3 4 1 1 1 4 9 10 11 12

● Remember! Square brackets for indexing [], parentheses  for 
function arguments ().



Basic concepts in R
vector arithmetic

● When applying all standard arithmetic operations to vectors, 
application is element-wise 
> x <- 1:10

> y <- x*2

> y

[1] 2 4 6 8 10 12 14 16 18 20

> z <- x^2

> z

[1] 1 4 9 16 25 36 49 64 81 100

● Adding two vectors
> y + z

[1] 3 8 15 24 35 48 63 80 99 120

● If vectors are not the same length, the shorter one will be recycled:
> x + 1:2

[1] 2 4 4 6 6 8 8 10 10 12

● But be careful if the vector lengths aren't factors of each other:
> x + 1:3



Basic concepts in R
Character vectors and naming

● All the vectors we have seen so far have contained numbers, but we 
can also store strings in vectors – this is called a character vector.
> gene.names <- c("Pax6","Beta-actin","FoxP2","Hox9")

● We can name elements of vectors using the names function, which 
can be useful to keep track of the meaning of our data:
> gene.expression <- c(0,3.2,1.2,-2)

> gene.expression

[1]  0.0  3.2  1.2 -2.0

> names(gene.expression)<-gene.names

> gene.expression

      Pax6 Beta-actin      FoxP2       Hox9 

       0.0        3.2        1.2       -2.0

● We can also use the names function to get a vector of the names of 
an object:
> names(gene.expression)

[1] "Pax6"       "Beta-actin" "FoxP2"      "Hox9"



Exercise: genes and genomes

● Let's try some vector arithmetic. Here are the genome lengths and 
number of protein coding genes for several model organisms:

Species Genome size (Mb) Protein coding genes

Homo sapiens 3,102 20,774

Mus musculus 2,731 23,139

Drosophila melanogaster 169 13,937

Caenorhabditis elegans 100 20,532

Saccharomyces cerevisiae 12 6,692

● Create genome.size and coding.genes vectors to hold the data in 
each column using the c function. Create a species.name vector and 
use this vector to name the values in the other two vectors.



Exercise: genes and genomes

● Let's assume a coding gene has an average length of 1.5 kilobases. 
On average, how many base pairs of each genome is made of coding 
genes? Create a new vector to record this called coding.bases.

● What percentage of each genome is made up of protein coding genes? 
Use your coding.bases and genome.size vectors to calculate this. 
(See earlier slides for how to do division in R.)

● How many times more bases are used for coding in the human 
genome compared to the yeast genome? How many times more bases 
are in the human genome in total compared to the yeast genome? 
Look up indices of your vectors to find out.



Answers to genome exercise

● Creating vectors:
> genome.size<-c(3102,2731,169,100,12)

> coding.genes<-c(20774,23139,13937,20532,6692)

> species.name<-c("H. sapiens","M. musculus","D. melanogaster","C. elegans","S. 
cerevisiae")

> names(genome.size)<-species.name

> names(coding.genes)<-species.name

● To calculate the number of coding bases, we need to use the same 
scale as we used for genome size: 1.5 kilobases is 0.0015 Megabases.
> coding.bases<-coding.genes*0.0015

> coding.bases

     H. sapiens     M. musculus D. melanogaster      C. elegans   S. cerevisiae 

        31.1610         34.7085         20.9055         30.7980         10.0380 



Answers to genome exercise

● To calculate the percentage of coding bases in each genome:
> coding.pc<-coding.bases/genome.size*100

> coding.pc

     H. sapiens     M. musculus D. melanogaster      C. elegans   S. cerevisiae 

       1.004545        1.270908       12.370118       30.798000       83.650000 

● To compare human to yeast:
> coding.bases[1]/coding.bases[5]

H. sapiens 

  3.104304

> genome.size[1]/genome.size[5]

H. sapiens 

     258.5 

● Note that if a new vector is created using a named vector, the names 
are usually carried across to the new vector. Sometimes this is what 
we want (as for coding.pc) but sometimes it is not (when we are 
comparing human to yeast). We can remove names by setting them 
to the special NULL value:
> names(coding.pc)<-NULL

> coding.pc

[1]  1.004545  1.270908 12.370118 30.798000 83.650000



Writing scripts with Rstudio

Typing lots of commands directly to R can be tedious. A better way is to 
write the commands to a file and then load it into R.
• Click on File -> New in Rstudio
• Type in some R code, e.g.
       x <- 2 + 2

       print(x)

• Click on Run to execute the current line, and Source to execute the 
whole script

   Sourcing can also be performed manually with source("myScript.R")



Getting Help

• To get help on any R function, type ? followed by the function name. 
For example:
> ?seq

• This retrieves the syntax and arguments for the function. You can see 
the default order of arguments here. The help page also tells you which 
package it belongs to. 

• There will typically be example usage, which you can test using the 
example function:

  > example(seq)

• If you can't remember the exact name type ?? followed by your guess. 
R will return a list of possibles
> ??plot



Interacting with the R console

• R console symbols
• ; end of line

• Enables multiple commands to be placed on one line of text

• # comment
• indicates text is a comment and not executed

• + command line wrap
• R is waiting for you to complete an expression

•  Ctrl-c or escape to clear input line and try again
•  Ctrl-l to clear window 
•  Press q to leave help (using R from the terminal)
•  Use the TAB key for command auto completion
•  Use up and down arrows to scroll through the command history



R packages

• R comes ready loaded with various libraries of functions called 
packages. e.g. the function sum() is in the base package and 
sd(), which calculates the standard deviation of a vector, is in the 
stats package

• There are 1000s of additional packages provided by third parties, 
and the packages can be found in numerous server locations on the 
web called repositories

• The two repositories you will come across the most are
• The Comprehensive R Archive Network (CRAN)
• Bioconductor

• CRAN is mirrored in many locations. Set your local mirror in RStudio 
using Tools  Options, and choose a CRAN mirror→

• Set the Bioconductor package download tool by typing:
> source("http://bioconductor.org/biocLite.R")

• Bioconductor packages are then loaded with the biocLite() function:
> biocLite("PackageName") 

http://bioconductor.org/biocLite.R


R packages

● 5400+ packages on CRAN:
● Use CRAN search to find functionality you need:
http://cran.r-project.org/search.html
● Or, look for packages by theme:
http://cran.r-project.org/web/views/

● 750 packages in Bioconductor:
● Specialised in genomics:
http://www.bioconductor.org/packages/release/bioc/

● Other repositiories:
● 1700+ projects on R-forge:

● http://r-forge.r-project.org/
● R graphical manual:

● http://rgm3.lab.nig.ac.jp/RGM
Bottomline: always first look if there is already an R package that 
does what you want before trying to implement it yourself

http://cran.r-project.org/search.html
http://cran.r-project.org/web/views/
http://www.bioconductor.org/packages/release/bioc/
http://r-forge.r-project.org/
http://rgm3.lab.nig.ac.jp/RGM


Exercise:  Install Packages
ggplot and DESeq

• ggplot2 is a commonly used graphics package (we will try it 
tomorrow).

• Use install.packages() function...
install.packages("ggplot2")

● or in RStudio goto Tools  Install Packages... and type the →
package name

• DESeq is a BioConductor package (www.bioconductor.org)
• Use biocLite() function

biocLite("DESeq")

• R needs to be told to use the new functions from the installed 
packages

• Use library(…) function to load the newly installed features
library(ggplot2) # loads ggplot functions

library(DESeq) # loads DESeq functions

• library()
• Lists all the packages you've got installed locally



2
Data structures



R is designed to handle experimental data

• Although the basic unit of R is a vector, we usually handle data in 
data frames.

• A data frame is a set of observations of a set of variables – in other 
words, the outcome of an experiment.

• For example, we might want to analyse information about a set of 
patients. To start with, let's say we have ten patients and for each 
one we know their name, sex, age, weight and whether they give 
consent for their data to be made public.



The patients data frame

We are going to create a data frame called 'patients', which will have 
ten rows (observations) and seven columns (variables). The columns 
must all be equal lengths.

   First_Name Second_Name      Full_Name    Sex Age Weight Consent

1        Adam       Jones     Adam Jones   Male  50   70.8    TRUE

2         Eve      Parker     Eve Parker Female  21   67.9    TRUE

3        John       Evans     John Evans   Male  35   75.3   FALSE

4        Mary       Davis     Mary Davis Female  45   61.9    TRUE

5       Peter       Baker    Peter Baker   Male  28   72.4   FALSE

6        Paul     Daniels   Paul Daniels   Male  31   69.9   FALSE

7      Joanna     Edwards Joanna Edwards Female  42   63.5   FALSE

8     Matthew       Smith  Matthew Smith   Male  33   71.5    TRUE

9       David     Roberts  David Roberts   Male  57   73.2   FALSE

10      Sally      Wilson   Sally Wilson Female  62   64.8    TRUE

Let's see how we can construct this from scratch.



Character, numeric and logical data types

• Each column is a vector, like previous vectors we have seen, for 
example:   
> age<-c(50, 21, 35, 45, 28, 31, 42, 33, 57, 62)

   > weight<-c(70.8, 67.9, 75.3, 61.9, 72.4, 69.9, 63.5, 71.5, 73.2, 64.8)

• We can define the names using character vectors:
   > firstName<- c("Adam", "Eve", "John", "Mary", "Peter", "Paul", "Joanna", 
"Matthew", "David", "Sally")
   > secondName<-c("Jones", "Parker", "Evans", "Davis", "Baker", "Daniels", 
"Edwards", "Smith", "Roberts", "Wilson")

• We also have a new type of vector, the logical vector, which only 
contains the values TRUE and FALSE:

   > consent<-c(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE)



Character, numeric and logical data types

• Vectors can only contain one type of data; we cannot mix numbers, 
characters and logical values in the same vector. If we try this, R 
will convert everything to characters:

   > c(20, "a string", TRUE)
   [1] "20"       "a string" "TRUE" 

• We can see the type of a particular vector using the class function:
> class(firstName)

   [1] "character"

   > class(age)
   [1] "numeric"

   > class(weight)
   [1] "numeric"

   > class(consent)
   [1] "logical"



Factors

• Character vectors are fine for some variables, like names.
• But sometimes we have categorical data and we want R to 

recognize this.
• A factor is R's data structure for categorical data.
   
   > sex<-c("Male", "Female", "Male", "Female", "Male", "Male", "Female", 
"Male", "Male", "Female")
   > sex
 [1] "Male"   "Female" "Male"   "Female" "Male"   "Male"   "Female" "Male"   
"Male"   "Female"
   > factor(sex)
 [1] Male   Female Male   Female Male   Male   Female Male   Male   Female
Levels: Female Male   

• R has converted the strings of the sex character vector into two 
levels, which are the categories in the data.

• Note the values of this factor are not character strings, but levels.
• We can use this factor to compare data for males and females.



Creating a data frame (first attempt)

• We can construct a data frame from other objects:
> patients<-data.frame(firstName, secondName, paste(firstName,secondName),

sex, age, weight, consent)

> patients
   firstName secondName paste.firstName..secondName.    sex age weight consent
1       Adam      Jones                   Adam Jones   Male  50   70.8    TRUE
2        Eve     Parker                   Eve Parker Female  21   67.9    TRUE
3       John      Evans                   John Evans   Male  35   75.3   FALSE
4       Mary      Davis                   Mary Davis Female  45   61.9    TRUE
5      Peter      Baker                  Peter Baker   Male  28   72.4   FALSE
6       Paul    Daniels                 Paul Daniels   Male  31   69.9   FALSE
7     Joanna    Edwards               Joanna Edwards Female  42   63.5   FALSE
8    Matthew      Smith                Matthew Smith   Male  33   71.5    TRUE
9      David    Roberts                David Roberts   Male  57   73.2   FALSE
10     Sally     Wilson                 Sally Wilson Female  62   64.8    TRUE

• The paste function joins character vectors together.
• We can access particular variables using the dollar operator:
   > patients$age
 [1] 50 21 35 45 28 31 42 33 57 62



Naming data frame variables

• R has inferred the names of our data frame variables from the 
names of the vectors or the commands (eg the paste command).

• We can name the variables after we have created a data frame 
using the names function, and we can use the same function to see 
the names:

• > names(patients)<-c("First_Name", "Second_Name", "Full_Name", "Sex", 
"Age", "Weight", "Consent")

> names(patients)
   [1] "First_Name"  "Second_Name" "Full_Name"   "Sex"         "Age"         
"Weight"      "Consent"

• Or we can name the variables when we define the data frame:
   > patients<-data.frame(First_Name=firstName, Second_Name=secondName, 
Full_Name=paste(firstName,secondName), Sex=sex, Age=age, Weight=weight, 
Consent=consent)

   > names(patients)
   [1] "First_Name"  "Second_Name" "Full_Name"   "Sex"         "Age"         
"Weight"      "Consent"

 [1] 50 21 35 45 28 31 42 33 57 62



Factors in data frames

• When creating a data frame, R assumes all character vectors should 
be categorical variables and converts them to factors. This is not 
always what we want:
> patients$firstName

 [1] Adam    Eve     John    Mary    Peter   Paul    Joanna  Matthew David   Sally 
Levels: Adam David Eve Joanna John Mary Matthew Paul Peter Sally

• We can avoid this by asking R not to treat strings as factors, and 
then explicitly stating when we want a factor by using factor:

   > patients<-data.frame(First_Name=firstName, Second_Name=secondName, 
Full_Name=paste(firstName,secondName), Sex=factor(sex), Age=age, 
Weight=weight, Consent=consent, stringsAsFactors=FALSE)

   > patients$Sex
    [1] Male   Female Male   Female Male   Male   Female Male   Male   Female
Levels: Female Male

   > patients$First_Name

    [1] "Adam"    "Eve"     "John"    "Mary"    "Peter"   "Paul"    "Joanna"  
"Matthew" "David"   "Sally"



Matrices
matrix(..., ncol=…, nrow=…)

• Data frames are R's speciality, but R also handles matrices:
> e <- matrix(1:10, nrow=5, ncol=2)
> e
     [,1] [,2]
[1,]    1    6
[2,]    2    7
[3,]    3    8
[4,]    4    9
[5,]    5   10
> f ← matrix(1:10, nrow=2, ncol=5)
> f
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10
> f %*% e
     [,1] [,2]
[1,]   95  220
[2,]  110  260

The %*% operator is the matrix multiplication operator, not the standard 
multiplication operator.



• We have seen that vectors can only hold data of one type. How can we store 
data of multiple types? Or vectors of different lengths in one object?

• We can use lists. A list can contain objects of any type.
one.to.ten <- 1:10
uniform.mat <- matrix(runif(100),ncol=10,nrow=10)
year.to.october <- data.frame(one.to.ten, month.name[1:10])

myList<-list( ls.obj.1=one.to.ten, ls.obj.2=uniform.mat, 
ls.obj.3=year.to.october )
names(myList)

• We can use the dollar syntax to access list items (in fact, a data frame is a 
special type of list):

myList$ls.obj.1

• We can also use myList[[1]] to get the first item in the list.
• (For the curious: this double indexing is necessary because lists are in fact just like vectors – they 

can only contain one type of object. But one of the types they can contain is a list. So any list like 
the above is actually a list of lists; the first element myList[1] is a list containing a vector, and so 
we need double indexing to actually get the vector.)

Lists
list(name1=obj1, name2=obj2, …)



Special cases:
a[i, ] i-th row
a[ ,j] j-th column

Indexing data frames and
matrices

• You can index multidimensional data structures like matrices and data 
frames using commas. If you don't provide an index for either rows or 
columns, all of the rows or columns will be returned.
 object [ rows , columns ]

> e[1,2]

[1] 6

> e[1,]

[1] 1 6

> patients[1,2]

[1] "Jones"

> patients[1,]

  First_Name Second_Name  Full_Name  Sex Age Weight Consent

1       Adam       Jones Adam Jones Male  50   70.8    TRUE



Advanced indexing

• As values in R are really vectors, so indices are actually vectors, and can be 
numeric or logical:

   > s <- letters[1:5]

   > s[c(1,3)]

   [1] "a" "c"

   > s[c(TRUE, FALSE, TRUE, FALSE, FALSE)]

   [1] "a" "c"

   > a<-1:5

   > a<3

   [1]  TRUE  TRUE FALSE FALSE FALSE

   > s[a<3]

   [1] "a" "b"

   > s[a>1 & a<3]

   [1] "b”

   > s[a==2]

   [1] "b"



• arithmetic

+, -, *, /, ^

• comparison

<, >, <=, >=, ==, !=

• logical

!, &, |, xor

Operators

(equal to, not equal to)

these always return 
logical values !
(TRUE, FALSE)



Exercise

• Create a data frame called my.patients using the instructions in 
the slides. Change the data if you like.

• Check you have created the data frame correctly by loading the 
original version from this file in the Day_1_scripts folder using 
source:

   > source("1.2_patients.R")

• Remake your data frame with three new variables: country, 
continent, and height. Make up the data. Make country a character 
vector but continent a factor.

• Try the summary function on your data frame. What does it do? 
How does it treat vectors (numeric, character, logical) and factors? 
(What does it do for matrices?)

• Use logical indexing to select the following patients:
– Patients under 40
– Patients who give consent to share their data
– Men who weigh as much or more than the average European 

male (70.8 kg)



Logical indexing answers

• Patients under 40:
> patients[patients$Age<40,]

• Patients who give consent to share their data:
   > patients[patients$Consent==TRUE,]

• Men who weigh as much or more than the average European male 
(70.8 kg):
> patients[patients$Sex=="Male" & patients$Weight>=70.8,]



3

R for data analysis 



3 steps to
Basic data analysis

1. Reading in data
• read.table()
• read.csv(), read.delim()

2. Analysis
• Manipulating & reshaping the data
• Any maths you like
• Plotting the outcome

• High level plotting functions (covered tomorrow)

3. Writing out results
• write.table()
• write.csv()



A simple walkthrough
Exemplifies 3 steps to R analysis

• 50 neuroblastoma patients were tested for NMYC gene copy number 
by interphase nuclei FISH

• Amplification of NMYC correlates with worse prognosis
• We have count data

• Numbers of cells per patient assayed
• For each we have NMYC copy number relative to base ploidy

• We need to determine which patients have amplifications
• (i.e >33% of cells show NMYC amplification)



We need to read in the results table and assign it to an object (rawData)
 

 rawData <- read.delim("1.3_NBcountData.txt")
 rawData[1:10,] # View the first 10 rows to ensure import is OK

# Note data frame contains a patient index column

If the data had been comma separated values, then sep=”,”
read.csv("1.3_NBcountData.csv")
?read.table for a full list of arguments

1.3_NBcountData.R
(script commands)

1.3_NBcountData.txt
(data file)

Patient Nuclei NB_Amp NB_Nor NB_Del
1 44 0 41 3
2 67 3 58 6
3 33 7 26 0
4 36 6 30 0
5 51 5 45 1
6 43 0 38 5
7 64 1 56 7
8 58 2 49 7
9 56 0 53 3

10 66 0 56 10
11 33 13 19 1

Step 1.
Read in the data

This data is a tab delimited text file
Each row is a record, each column is a field
Columns are separated by tabs in the text.



Handling missing values

• The data frame contains some 'NA' values, which means the values 
are missing – a common occurrence in real data collection.

• NA is a special value that can be present in objects of any type 
(logical, character, numeric etc).

• NA is not the same as NULL. NULL is an empty R object. NA is one 
missing value within an R object (like a data frame or a vector).

• Often R functions will handle NAs gracefully, but sometimes we have 
to tell the functions what to do with them. R has some built-in 
functions for dealing with NAs, and functions often have their own 
arguments (like na.rm) for handling them. 

> x<-c(1,NA,3)
> mean(x)
[1] NA
> mean(x,na.rm=TRUE)
[1] 2
> mean(na.omit(x))
[1] 2
> is.na(x)
[1] FALSE  TRUE FALSE



                        These 2 samples are amplified (11 & 23)

Step 2.
Analysis (reshaping data & maths) 

• Our analysis involves identifying patients with > 33% NB 
amplification

• prop <- rawData$NB_Amp / rawData$Nuclei # create an index of 
results

• amp <- which(prop > 0.33) # Get sample names of amplified 
patients

•   We can plot a simple chart of the % NB amplification
• plot(prop, ylim=c(0,1))
• abline(h=0.33)



Step 3.
Outputting the results

• We write out a data frame of results (patients > 33% NB 
amplification) as a 'comma separated values' text file

• write.csv(rawData[amp,],file="selectedSamples.csv") # 
Export table, file name = selectedSamples.csv

• Files are directly readable by Excel and Calc

• Its often helpful to double check where the data has been saved
• Use get working directory function

• getwd() # print working directory



Data analysis exercise:
Which samples are near normal?

• Patients are near normal if: 

(NB_Amp/Nuclei <0.33 & NB_Del ==0)

• Modify the condition in our previous code to find these patients

• Write out a results file of the samples that match these criteria, and 
open it in a spreadsheet program

1.3_NBcountData.R
(script commands)



> norm <- which( prop < 0.33 & rawData$NB_Del==0)

> norm

[1] 3  4  7 15 20 24 36 37 42 47

> write.csv(rawData[norm,],"My_NB_output.csv")

Solution to NB normality test
Basic data analysis



4
R programming techniques



• Arithmetic with vectors
• Rank ordering

rank(x)

• Quantiles
quantile(x); boxplot(x)

• Square Root

sqrt(x)

• Standard deviation

sd(x)

• Trigonometry functions

tan(x) ; cos(x) ; sin(x)

• Arithmetic with vectors
• Min / Max value number in a series

min(x) ; max(x)

• Sum of values in a series

sum(x)

• Average estimates (mean / median)

mean(x) ; median(x)

• Range of values in a series

range(x)

• Variance

var(x)

Basic  R 'Built-in' functions
for working with objects

 R has many built-in functions for doing simple calculations on 
objects. Start with a random sample of 15 numbers from 1 to 
100 and try the functions below.

  > x<-sample(100,15)
  



• We have seen before how we can get the names of our variables, but for dataframes and matrices we can 
also get these names with colnames, and the names of the rows with rownames:

> names(patients)
[1] "First_Name"  "Second_Name" "Full_Name"   "Sex"     "Age"     "Weight"      "Consent"
> colnames(patients)
[1] "First_Name"  "Second_Name" "Full_Name"   "Sex"     "Age"     "Weight"      "Consent"
> rownames(patients)
[1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"

We can get the numbers of rows or columns with nrow and ncol:
> nrow(patients)
[1] 10
> ncol(patients)
[1] 7

We can also find the length of a vector or a list with length, although this may give confusing results for 
some structures, like data frames:

> length(c(1,2,3,4,5))
[1] 5
> length(patients)
[1] 7
> length(patients$Age)
[1] 10
Remember, a data frame is a list of variables, so its length is the number of variables. The length of one of 

the variable vectors (like Age) is the number of observations.

Basic  R 'Built-in' functions
for working with data frames



Basic  R 'Built-in' functions
for working with data frames

 We can add rows or columns to a data frame using rbind and cbind:

 > newpatient<-c("Kate","Lawson","Kate Lawson","Female","35","62.5","TRUE")

 > rbind(patients,newpatient)

   First_Name Second_Name      Full_Name    Sex Age Weight Consent

1        Adam       Jones     Adam Jones   Male  50   70.8    TRUE

2         Eve      Parker     Eve Parker Female  21   67.9    TRUE

3        John       Evans     John Evans   Male  35   75.3   FALSE

4        Mary       Davis     Mary Davis Female  45   61.9    TRUE

5       Peter       Baker    Peter Baker   Male  28   72.4   FALSE

6        Paul     Daniels   Paul Daniels   Male  31   69.9   FALSE

7      Joanna     Edwards Joanna Edwards Female  42   63.5   FALSE

8     Matthew       Smith  Matthew Smith   Male  33   71.5    TRUE

9       David     Roberts  David Roberts   Male  57   73.2   FALSE

10      Sally      Wilson   Sally Wilson Female  62   64.8    TRUE

11       Kate      Lawson    Kate Lawson Female  35   62.5    TRUE

> cbind(patients,10:1)

• We can also remove rows and columns:

patients[-1,] # remove first row

patients[,-1] # remove first column



Basic  R 'Built-in' functions
for working with data frames

Sorting a vector with sort:

> sort(patients$Second_Name)

[1] "Baker"   "Daniels" "Davis"   "Edwards" "Evans"   "Jones"   "Parker"  "Roberts" "Smith"  
 "Wilson"

 Sorting a data frame by one variable with order:

> order(patients$Second_Name)

[1]  5  6  4  7  3  1  2  9  8 10

> patients[order(patients$Second_Name),]

   First_Name Second_Name      Full_Name    Sex Age Weight Consent

5       Peter       Baker    Peter Baker   Male  28   72.4   FALSE

6        Paul     Daniels   Paul Daniels   Male  31   69.9   FALSE

4        Mary       Davis     Mary Davis Female  45   61.9    TRUE

7      Joanna     Edwards Joanna Edwards Female  42   63.5   FALSE

3        John       Evans     John Evans   Male  35   75.3   FALSE

1        Adam       Jones     Adam Jones   Male  50   70.8    TRUE

2         Eve      Parker     Eve Parker Female  21   67.9    TRUE

9       David     Roberts  David Roberts   Male  57   73.2   FALSE

8     Matthew       Smith  Matthew Smith   Male  33   71.5    TRUE

10      Sally      Wilson   Sally Wilson Female  62   64.8    TRUE



The R workspace

• The objects we have been making are created in the R workspace.
• When we load a package, we are loading that package's functions and data sets 
into our workspace.
• You can see what is in your workspace with ls:
> ls()

• You can attach data frames to your workspace and then refer to the variables 
directly:
> attach(patients)

> Full_Name

• You can remove objects from the workspace with rm:
> x<-1:5

[1] 1 2 3 4 5

> rm(x)

> x

Error: object 'x' not found

• You can remove everything by giving rm a list of all the objects returned by ls:
> rm(list=ls())



The R workspace

• Your workspace is like an unsaved Word document.
• When you quit R, it will usually save your workspace to a hidden file called 
'.Rdata' in your current directory. This workspace will be loaded again if you open 
R in the same directory.
• This file is a binary, computer-readable file, not a human-readable file, which 
you have to open with R (like a Word document in Office).
• It is safer to explicitly save your workspace using save.image:
> save.image("phd.chapter.1.R")

• This way, if you are working on several different projects, you can make sure 
the objects for each project are saved to named files, rather than trying to 
remember which directory you were working in, or risking overwriting some 
objects you forgot about and need later.
• To load a particular image, use load:
> load("phd.chapter.1.R")



Packages in the R workspace

• You can see which packages are loaded into your workspace with search:
> search()

 [1] ".GlobalEnv"        "tools:rstudio"     "package:stats"     "package:graphics" 

 [5] "package:grDevices" "package:utils"     "package:datasets"  "package:methods"  

 [9] "Autoloads"         "package:base" 

• .GlobalEnv is where all the objects you create are stored.
• Most of the core functions are in stats, utils, methods and base.
• We will cover graphics and grDevices tomorrow afternoon.
• Search shows the search path R runs through whenever you use an object or 
function name. It will first look in your global environment, then in the Rstudio 
tools (if using Rstudio), then in the stats package and so on.
• When loading packages, you will often see warnings about some objects or 
functions being 'masked'. This means that the newly loaded package contains an 
object with the same name as some object in a package that is already loaded. R 
will use the object in the new package whenever it comes across the name, 
because the new package will be earlier in the search path.



Introducing loops

 Many programming languages have ways of doing the same 
thing many times, perhaps changing some variable each time. 
This is called looping.

 Loops are not used in R so often, because we can usually 
achieve the same thing using vector calculations.

 For example, to add two vectors together, we do not need to 
add each pair of elements one by one, we can just add the 
vectors.

 But there are some situations where R functions can not take 
vectors as input. For example, read.csv will only load one file at 
a time.

 What if we had ten files to load in, all ending in the same 
extension (like .csv)?



Introducing loops

 We could do this:
  > colony<-data.frame()    # Start with empty data frame

  > colony1<-read.csv("1.4_colony_Run1Counts.csv")
  > colony2<-read.csv("1.4_colony_Run2Counts.csv")
  > colony3<-read.csv("1.4_colony_Run3Counts.csv")
  ...
  > colony10<-read.csv("1.4_colony_Run10Counts.csv")

  > colony<-rbind(colony1,colony2,colony3,...,colony10)

But this will be boring to type, difficult to change, and prone to 
error.

● As we are doing the same thing 10 times, but with a different 
file name each time, we can use a loop instead.



LOOPS
Commands & flow control

• R has two basic types of loop:
for loop: run some code on every value in a vector
while loop: run some code while some condition is true

• Here are two simple examples of these loops:
for (f in 1:10) { 

   print(f) 

}

i <- 1 

while ( i <= 10 ) {

   print(i)

   i <- i + 1

}

when this condition is 
false the loop stops



LOOPS
Commands & flow control

• Here's how we might use a for loop to load in our CSV files.
• If the data files are in your current working directory, we can look up files 

containing a particular substring in their name using the dir function:
dir(pattern="Counts.csv")

[1] "1.4_colony_Run1Counts.csv" "1.4_colony_Run2Counts.csv" 
"1.4_colony_Run3Counts.csv"

• So we can load all the files using a for loop as follows:
colony<-data.frame()

countfiles<-dir(pattern="Counts.csv")

for (file in countfiles) {

   t<-read.csv(file)

   colony<-rbind(colony,t)

}

• Here, we use a temporary variable t to store the data in each file, and then 
add that data to the main colony data frame.



• Use an if statement for any kind of condition testing.
• Different outcomes can be selected based on a condition within brackets.
if (condition) {

… do this …

} else {

… do something else …

}

• condition is any logical value, and can contain multiple conditions
• e.g. (a==2 & b <5), this is a compound conditional argument

Conditional branching
Commands & flow control



For example, if we were writing a script to load an unknown set of 
files, using the for loop we wrote before, we might want to warn the 
user if we can't find any files with the pattern we are searching for.
Here's how we can use an if statement to test for this:

colony<-data.frame()

countfiles<-dir(pattern="Counts.csv")

if (length(countfiles) == 0) {

    stop("No Counts.csv files found!")

} else {

    for (file in countfiles) {

        t<-read.csv(file)

        colony<-rbind(colony,t)

    }

}
The stop function outputs the error message and quits.

Conditional branching
Commands & flow control



Code formatting avoids bugs!

• Code formatting is crucial for readability of loops

 f <- 26
 while( f != 0 ){
    print(letters[f])
    f <- f-1
 }

GOOD!

 f<-26
 while(f!=0){
 print(letters[f])
 f<-f-1 }

BAD!!!

 The code between brackets {} always is indented, this clearly 
separates what is executed once, and what is run multiple times

 Trailing bracket } always alone on the line at the same indentation 
level as the initial bracket {

 Use white spaces to divide the horizontal space between units of 
your code, e.g. around assignments, comparisons



1. Output the patients data frame, with the patients sorted in order 
of age, oldest first. (You may need the rev function.)

2. Load in the colony data frame using a for loop. Three of the data 
files are in the Day_1_scripts folder. Load all three files into colony 
using the for loop in the slides.

3. How many observations do you have in the colony data frame? 
Find out by counting the number of rows in colony using the nrow 
function.

4. Suppose a power analysis of your data shows that you only need 
48 observations to robustly test your hypothesis. This means we can 
stop loading files when we have loaded at least 48 observations. 
Modify your for loop so it will only load files if the colony data frame 
has less than 48 observations in it.

Exercise



1. To order the patients by decreasing age:
patients[rev(order(patients$Age)),]

3. To find the number of rows in the colony data frame:
nrow(colony)

4. To stop loading files after at least 48 observations have 
been found, use the code from the first for loop slide with a 
new if statement:
colony<-data.frame()

countfiles<-dir(pattern="Counts.csv")

for (file in countfiles) {

    if ( nrow(colony) < 48 ) {

        t<-read.csv(file)

        colony<-rbind(colony,t)

    }

}

Answers to exercise



5
Statistics



Built-in support for statistics

• R is a statistical programming language
• Classical statistical tests are built-in
• Statistical modeling functions are built-in
• Regression analysis is fully supported
• Additional mathematical packages are available

• MASS, Waves, sparse matrices, etc



Distribution functions

 mostly commonly used distributions are built-in, functions have 
stereotypical names, e.g. for normal distribution:

 pnorm - cumulative distribution for x
 qnorm - inverse of pnorm (from probability gives x)
 dnorm - distribution density
 rnorm - random number from normal distribution

available for variety of distributions: punif (uniform), pbinom (binomial), 
pnbinom (negative binomial), ppois (poisson), pgeom (geometric), phyper 
(hyper-geometric), pt (T distribution), pf (F distribution) ...



- 10 random values from the Normal distribution with mean 10 and standard 
deviation 5:

rnorm(10,mean=10,sd=5)

- The probability of drawing 10 from this distribution:

dnorm(10,mean=10,sd=5)

[1] 0.07978846

dnorm(100,mean=10,sd=5)

[1] 3.517499e-72

- The probability of drawing a value smaller than 10:

pnorm(10,mean=10,sd=5)

[1] 0.5
- The inverse of pnorm:

qnorm(0.5,mean=10,sd=5)

[1] 10
- How many standard deviations for statistical significance?

qnorm(0.95,mean=0,sd=1)

[1] 1.644854

Distribution functions



Two sample tests
Basic data analysis

• Comparing 2 variances
• Fisher's F test

var.test()

• Comparing 2 sample means with normal errors
• Student's t test

t.test()

• Comparing 2 means with non-normal errors
• Wilcoxon's rank test

wilcox.test()

• Comparing 2 proportions
• Binomial test

prop.test()

• Correlating 2 variables
• Pearson's / Spearman's rank correlation

cor.test()

• Testing for independence of 2 variables in a contingency table
• Chi-squared

chisq.test()

• Fisher's exact test
fisher.test()



Comparison of 2 data sets example
Basic data analysis

• Men, on average, are taller than women.
• The steps

  1. Determine whether variances in each data series are different
• Variance is a measure of sampling dispersion, a first estimate in 

determining the degree of difference
• Fisher's F test

  2. Comparison of the mean heights.
• Determine probability that mean heights really are drawn from different 

sample populations
• Student's t test, Wilcoxon's rank sum test



1. Comparison of 2 data sets
Fisher's F test

• Read in the data file into a new object, heightData

     heightData<-read.csv("1.5_heightData.csv")

• attach the data frame so we don't have to refer to it by 
name all the time:

attach(heightData)

• Do the two sexes have the same variance? 

var.test(Female,Male)

F test to compare two variances

data:  Female and Male

F = 1.0073, num df = 99, denom df = 99, p-value = 0.9714

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

 0.6777266 1.4970241

sample estimates:

ratio of variances 

           1.00726 



2. Comparison of 2 data sets
Student's t test

• Student's t test is appropriate for comparing the difference in 
mean height in our data. We need a one-tailed test.

• Remember a t test = difference in two sample means

standard error of the difference of the means

t.test(Female,Male, alternative="less")

Welch Two Sample t-test

data:  Female and Male

t = -8.4508, df = 197.997, p-value = 3.109e-15

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

       -Inf -0.5079986

sample estimates:

mean of x mean of y 

 5.168725  5.800214



> boxplot(heightData)

3. Comparison of 2 data sets
Review findings



Linear regression
Basic data analysis

• Linear modeling is supported by the function lm()

• example(lm) # the output assumes you know a fair bit about 
the subject

• lm is really useful for plotting lines of best fit to XY data in order 
to determine intercept, gradient & Pearson's correlation 
coefficient

• This is very easy in R

• Three steps to plotting with a best fit line

• Plot XY scatter-plot data

• Fit a linear model

• Add bestfit line data to plot with abline() function



X Y

1.0 2.6

2.3 2.8

3.1 3.1

4.8 4.7

5.6 5.1

6.3 5.3

> x<-c(1, 2.3, 3.1, 4.8, 5.6, 6.3)
> y<-c(2.6, 2.8, 3.1, 4.7, 5.1, 5.3)
> plot(y~x, xlim=c(0,10),ylim=c(0,10))

Note formula notation
( y is given by x )

> myModel<-lm(y~x)
> abline(myModel)

Get the coefficients of the fit from:
summary.lm(myModel) and

coef(myModel)
resid(myModel)
fitted(myModel)

Get QC of fit from
plot(myModel)

Find out about the fit data from
names(myModel)

Typical linear regression analysis
Basic data analysis



Modelling formulae

• R has a very powerful formula syntax for describing statistical models.
• Suppose we had two explanatory variables x and z and one response 

variable y.
• We can describe a relationship between, say, y and x using a tilde ~, 

placing the response variable on the left of the tilde and the 
explanatory variables on the right:

> y~x

• It is very easy to extend this syntax to do multiple regressions, 
ANOVAs, to include interactions, and to do many other common 
modelling tasks. For example:

> y~x       # If x is continuous, this is linear regression
> y~x       # If x is categorical, this is ANOVA
> y~x+z     # If x and z are continuous, this is multiple regression
> y~x+z     # If x and z are categorical this is a two-way ANOVA
> y~x+z+x:z # : is the symbol for the interaction term
> y~x*z     # * is a shorthand for x+z+x:z



The linear model object
Basic data analysis

• Summary data describing the linear fit is given by
• summary(myModel)

> summary(myModel)

Call:
lm(formula = y ~ x)

Residuals:
       1        2        3        4        5        6 
 0.33159 -0.22785 -0.39520  0.21169  0.14434 -0.06458 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  1.68422    0.29056   5.796   0.0044 **
x            0.58418    0.06786   8.608   0.0010 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.3114 on 4 degrees of freedom
Multiple R-squared: 0.9488, Adjusted R-squared: 0.936 
F-statistic:  74.1 on 1 and 4 DF,  p-value: 0.001001 

Y intercept

Gradient

R^2 , with pValue

Good fit: would 
happen 1 in 1000 by 

chance



Exercise
The coin toss

To learn how the distribution functions work, try simulating tossing a 
fair coin 100 times and then show that it is fair.

1) We can model a coin toss using the binomial distribution. Use the 
rbinom function to generate a sample of 100 coin tosses. Look up 
the binomial distribution help page to find out what arguments this 
function needs.

2) How many heads or tails were there in your sample? You can do this 
in two ways; either select the number of successes using indices, or 
convert your sample to a factor and get a summary of the factor.

3) If we toss a coin 50 times, what is the probability that we get 
exactly 25 heads? What about 25 heads or less? Use dbinom and 
pbinom to find out.

4) The argument to dbinom is a vector, so try calculating the 
probabilities for getting any number of coin tosses from 0 to 50 in 
fifty trials using dbinom. Plot these probabilities using plot. Does 
this plot remind you of anything?



Coin toss answers

• To simulate a coin toss, give rbinom a number of 
observations, the number of trials for each observation, 
and a probability of success:

> coin.toss<-rbinom(100, 1, 0.5)

• Because we only specified one trial per observation, we 
either have an outcome of 0 or 1 successes. To get the 
number of successes, use indices or a factor to look up the 
number of 1s in the coin.toss vector (your numbers will 
vary):

> length(coin.toss[coin.toss==1])

[1] 50

> summary(factor(coin.toss))
 0  1
50 50



Coin toss answers

The probability of getting exactly 25 heads from 50 
observations of a fair coin:

> dbinom(25, 50, 0.5)

The probability of getting 25 heads or less from 50 
observations of a fair coin:

> pbinom(25, 50, 0.5)

The probabilities for getting all numbers of coin tosses from 0 
to 50 in fifty trials:

> dbinom(0:50, 50, 0.5)

To plot this distribution, which should resemble a normal 
distribution:

> plot(dbinom(0:50, 50, 0.5))



Exercise
Linear modelling example

Mice have varying numbers of babies in each litter. Does the size of the 
litter affect the average brain weight of the offspring? We can use 
linear modelling to find out. (This example is taken from John 
Maindonald and John Braun's book Data Analysis and Graphics Using R 
(CUP, 2003), p140-143.)
1) Install and load the DAAG package. The litters data frame is part 

of this package. Take a look at it. How many variables and 
observations does it have? Does summary tell you anything useful? 
What about plot?

2) Are any of the variables correlated? Look up the cor.test function 
and use it to test for relationships.

3) Use lm to calculate the regression of brain weight on litter size, 
brain weight on body weight, and brain weight on litter size and 
body weight together. 

4) Look at the coefficients in your models. How is brain weight related 
to litter size on its own? What about in the multiple regression? How 
would you interpret this result?



Linear modelling answers

• To install and load the package and look at litters:

> install.packages("DAAG")

> library(DAAG)

> litters

> summary(litters)

> plot(litters)

• To calculate correlations between variables:

> attach(litters)

> cor.test(brainwt, lsize)

> cor.test(bodywt, lsize)

> cor.test(brainwt, bodywt)



Linear modelling answers

• To calculate the linear models:

> lm(brainwt~lsize)
Call:

lm(formula = brainwt ~ lsize)

Coefficients:

(Intercept)        lsize  

   0.447000    -0.004033

> lm(brainwt~bodywt)
Call:

lm(formula = brainwt ~ bodywt)

Coefficients:

(Intercept)       bodywt  

    0.33555      0.01048

> lm(brainwt~lsize+bodywt)
Call:

lm(formula = brainwt ~ lsize + bodywt)

Coefficients:

(Intercept)        lsize       bodywt  

    0.17825      0.00669      0.02431

Interpretation: brain weight decreases 
as litter size increases, but brain weight 
increases proportional to body weight 
(when bodywt is held constant, the lsize 
coefficient is positive: 0.00669). This is 
called 'brain sparing'; although the 
offspring get smaller as litter size 
increases, the brain does not shrink as 
much as the body. 



End of Day 1
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