
A beginners guide to solving biological
problems in R

Robert Stojnić (rs550), Laurent Gatto (lg390),
Rob Foy (raf51), John Davey (jd626) and Dávid Molnár (dm516)

Original slides by Ian Roberts and Robert Stojnić

Day 1 schedule

1. Introduction to R and its environment
2. Data structures
3. Data analysis example
4. Programming techniques
5. Statistics

1
Introduction to R and its environment

What’s R?

• A statistical programming environment
• based on S
• Suited to high level data analysis

• Open source & cross platform
• Extensive graphics capabilities
• Diverse range of add-on packages
• Active community of developers
• Thorough documentation

www.r-project.org

Various platforms supported

• Release 3.1.0 (April 2014)
• Base package
• Contributed packages (general purposes extras)
• >5400 available packages

• Download from http://www.stats.bris.ac.uk/R/
• Windows, Mac and Linux versions available

• Executed using command line, or a graphical user interface (GUI)
• On this course, we use the RStudio GUI (www.rstudio.com)
• Everything you need is installed on the training machines
• If you are using your own machine, download both R and RStudio

http://www.stats.bris.ac.uk/R/
http://www.rstudio.com/

Getting Started

● R is a program which, once installed on your system, can be
launched and is immediately ready to take input directly from the
user

● There are two ways to launch R:
1) From the command line (particularly useful if you're quite

familiar with Linux)
2) As an application called RStudio (very good for beginners)

Prepare to launch R
From command line

● To start R in Linux we need to enter the Linux console (also called
Linux terminal and Linux shell)

● To start R, at the prompt simply type:
 $ R

● If R doesn't print the welcome message, call us to help!

Prepare to launch R
Using RStudio

● To launch RStudio, find the RStudio icon in the menu bar on the left
of the screen and double-click

The Working Directory (wd)

● Like many programs R has a concept of a working directory (wd)
● It is the place where R will look for files to execute and where it will

save files, by default
● For this course we need to set the working directory to the location

of the course scripts
● At the command prompt in the terminal or in RStudio console type:

> setwd("R_course/Day_1_scripts")

● Alternatively in RStudio use the mouse and browse to the directory
location

● Session Set Working Directory Choose Directory...→ →

Basic concepts in R
command line calculation

● The command line can be used as a calculator. Type:
> 2 + 2

[1] 4

> 20/5 - sqrt(25) + 3^2

[1] 8

> sin(pi/2)

[1] 1

● Note: The number in the square brackets is an indicator of the
position in the output. In this case the output is a 'vector' of length 1
(i.e. a single number). More on vectors coming up...

Basic concepts in R
variables

● A variable is a letter or word which takes (or contains) a value. We
use the assignment 'operator', <-
> x <- 10

> x

[1] 10

> myNumber <- 25

> myNumber

[1] 25

● We can perform arithmetic on variables:
> sqrt(myNumber)

[1] 5

● We can add variables together:
> x + myNumber

[1] 35

Basic concepts in R
variables

● We can change the value of an existing variable:
> x <- 21

> x

[1] 21

● We can set one variable to equal the value of another variable:
> x <- myNumber

> x

[1] 25

● We can modify the contents of a variable:
> myNumber <- myNumber + sqrt(16)

[1] 29

Basic concepts in R
functions

● Functions in R perform operations on arguments (the input(s) to the
function). We have already used sin(x) which returns the sine of x. In
this case the function has one argument, x. Arguments are always
contained in parentheses, i.e. curved brackets (), separated by
commas.

● Try these:
> sum(3, 4, 5, 6)

[1] 18

> max(3, 4, 5, 6)

[1] 6

> min(3, 4, 5, 6)

[1] 3

● Arguments can be named or unnamed, but if they are unnamed they
must be ordered (we will see later how to find the right order).
> seq(from=2, to=10, by=2)

[1] 2 4 6 8 10

> seq(2, 10, 2)

[1] 2 4 6 8 10

Basic concepts in R
vectors

● The basic data structure in R is a vector – an ordered collection of
values. R even treats single values as 1-element vectors. The function
c() combines its arguments into a vector:
 > x <- c(3, 4, 5, 6)

 > x

 [1] 3 4 5 6

● As mentioned, the square brackets [] indicate position within the
vector (the index). We can extract individual elements by using the []
notation:
> x[1]

 [1] 3

> x[4]

 [1] 6

● We can even put a vector inside the square brackets (vector indexing):
> y <- c(2, 3)

> x[y]

 [1] 4 5

Basic concepts in R
vectors

● There are a number of shortcuts to create a vector. Instead of:
 > x <- c(3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

● we can write:
 > x <- 3:12

● or we can use the seq() function, which returns a vector:
> x <- seq(2, 10, 2)

> x

 [1] 2 4 6 8 10

> x <- seq(2, 10, length.out = 7)
● > x

 [1] 2.00000 3.33333 4.66667 6.00000 7.33333 8.66667 10.00000

● or the rep() function:
> y <- rep(3, 5)

● > y

[1] 3 3 3 3 3

> y <- rep(1:3, 5)

> y

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Basic concepts in R
vectors

● We have seen some ways of extracting elements of a vector. We can
use these shortcuts to make things easier (or more complex!)
 > x <- 3:12

 > x[3:7]

 [1] 5 6 7 8 9

> x[seq(2, 6, 2)]

 [1] 4 6 8

> x[rep(3, 2)]

 [1] 5 5

● We can add an element to a vector
> y <- c(x, 1)

> y

[1] 3 4 5 6 7 8 9 10 11 12 1

● We can glue vectors together
> z <- c(x, y)

> z

[1] 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 1

Basic concepts in R
vectors

● We can remove element(s) from a vector
> x <- 3:12

> x[-3]

 [1] 3 4 6 7 8 9 10 11 12

> x[-(5:7)]

 [1] 3 4 5 6 10 11 12

> x[-seq(2, 6, 2)]

 [1] 3 5 7 9 10 11 12

● Finally, we can modify the contents of a vector
> x[6] <- 4

> x

[1] 3 4 5 6 7 4 9 10 11 12

> x[3:5] <- 1

> x

[1] 3 4 1 1 1 4 9 10 11 12

● Remember! Square brackets for indexing [], parentheses for
function arguments ().

Basic concepts in R
vector arithmetic

● When applying all standard arithmetic operations to vectors,
application is element-wise
> x <- 1:10

> y <- x*2

> y

[1] 2 4 6 8 10 12 14 16 18 20

> z <- x^2

> z

[1] 1 4 9 16 25 36 49 64 81 100

● Adding two vectors
> y + z

[1] 3 8 15 24 35 48 63 80 99 120

● If vectors are not the same length, the shorter one will be recycled:
> x + 1:2

[1] 2 4 4 6 6 8 8 10 10 12

● But be careful if the vector lengths aren't factors of each other:
> x + 1:3

Basic concepts in R
Character vectors and naming

● All the vectors we have seen so far have contained numbers, but we
can also store strings in vectors – this is called a character vector.
> gene.names <- c("Pax6","Beta-actin","FoxP2","Hox9")

● We can name elements of vectors using the names function, which
can be useful to keep track of the meaning of our data:
> gene.expression <- c(0,3.2,1.2,-2)

> gene.expression

[1] 0.0 3.2 1.2 -2.0

> names(gene.expression)<-gene.names

> gene.expression

 Pax6 Beta-actin FoxP2 Hox9

 0.0 3.2 1.2 -2.0

● We can also use the names function to get a vector of the names of
an object:
> names(gene.expression)

[1] "Pax6" "Beta-actin" "FoxP2" "Hox9"

Exercise: genes and genomes

● Let's try some vector arithmetic. Here are the genome lengths and
number of protein coding genes for several model organisms:

Species Genome size (Mb) Protein coding genes

Homo sapiens 3,102 20,774

Mus musculus 2,731 23,139

Drosophila melanogaster 169 13,937

Caenorhabditis elegans 100 20,532

Saccharomyces cerevisiae 12 6,692

● Create genome.size and coding.genes vectors to hold the data in
each column using the c function. Create a species.name vector and
use this vector to name the values in the other two vectors.

Exercise: genes and genomes

● Let's assume a coding gene has an average length of 1.5 kilobases.
On average, how many base pairs of each genome is made of coding
genes? Create a new vector to record this called coding.bases.

● What percentage of each genome is made up of protein coding genes?
Use your coding.bases and genome.size vectors to calculate this.
(See earlier slides for how to do division in R.)

● How many times more bases are used for coding in the human
genome compared to the yeast genome? How many times more bases
are in the human genome in total compared to the yeast genome?
Look up indices of your vectors to find out.

Answers to genome exercise

● Creating vectors:
> genome.size<-c(3102,2731,169,100,12)

> coding.genes<-c(20774,23139,13937,20532,6692)

> species.name<-c("H. sapiens","M. musculus","D. melanogaster","C. elegans","S.
cerevisiae")

> names(genome.size)<-species.name

> names(coding.genes)<-species.name

● To calculate the number of coding bases, we need to use the same
scale as we used for genome size: 1.5 kilobases is 0.0015 Megabases.
> coding.bases<-coding.genes*0.0015

> coding.bases

 H. sapiens M. musculus D. melanogaster C. elegans S. cerevisiae

 31.1610 34.7085 20.9055 30.7980 10.0380

Answers to genome exercise

● To calculate the percentage of coding bases in each genome:
> coding.pc<-coding.bases/genome.size*100

> coding.pc

 H. sapiens M. musculus D. melanogaster C. elegans S. cerevisiae

 1.004545 1.270908 12.370118 30.798000 83.650000

● To compare human to yeast:
> coding.bases[1]/coding.bases[5]

H. sapiens

 3.104304

> genome.size[1]/genome.size[5]

H. sapiens

 258.5

● Note that if a new vector is created using a named vector, the names
are usually carried across to the new vector. Sometimes this is what
we want (as for coding.pc) but sometimes it is not (when we are
comparing human to yeast). We can remove names by setting them
to the special NULL value:
> names(coding.pc)<-NULL

> coding.pc

[1] 1.004545 1.270908 12.370118 30.798000 83.650000

Writing scripts with Rstudio

Typing lots of commands directly to R can be tedious. A better way is to
write the commands to a file and then load it into R.
• Click on File -> New in Rstudio
• Type in some R code, e.g.
 x <- 2 + 2

 print(x)

• Click on Run to execute the current line, and Source to execute the
whole script

 Sourcing can also be performed manually with source("myScript.R")

Getting Help

• To get help on any R function, type ? followed by the function name.
For example:
> ?seq

• This retrieves the syntax and arguments for the function. You can see
the default order of arguments here. The help page also tells you which
package it belongs to.

• There will typically be example usage, which you can test using the
example function:

 > example(seq)

• If you can't remember the exact name type ?? followed by your guess.
R will return a list of possibles
> ??plot

Interacting with the R console

• R console symbols
• ; end of line

• Enables multiple commands to be placed on one line of text

• # comment
• indicates text is a comment and not executed

• + command line wrap
• R is waiting for you to complete an expression

• Ctrl-c or escape to clear input line and try again
• Ctrl-l to clear window
• Press q to leave help (using R from the terminal)
• Use the TAB key for command auto completion
• Use up and down arrows to scroll through the command history

R packages

• R comes ready loaded with various libraries of functions called
packages. e.g. the function sum() is in the base package and
sd(), which calculates the standard deviation of a vector, is in the
stats package

• There are 1000s of additional packages provided by third parties,
and the packages can be found in numerous server locations on the
web called repositories

• The two repositories you will come across the most are
• The Comprehensive R Archive Network (CRAN)
• Bioconductor

• CRAN is mirrored in many locations. Set your local mirror in RStudio
using Tools Options, and choose a CRAN mirror→

• Set the Bioconductor package download tool by typing:
> source("http://bioconductor.org/biocLite.R")

• Bioconductor packages are then loaded with the biocLite() function:
> biocLite("PackageName")

http://bioconductor.org/biocLite.R

R packages

● 5400+ packages on CRAN:
● Use CRAN search to find functionality you need:
http://cran.r-project.org/search.html
● Or, look for packages by theme:
http://cran.r-project.org/web/views/

● 750 packages in Bioconductor:
● Specialised in genomics:
http://www.bioconductor.org/packages/release/bioc/

● Other repositiories:
● 1700+ projects on R-forge:

● http://r-forge.r-project.org/
● R graphical manual:

● http://rgm3.lab.nig.ac.jp/RGM
Bottomline: always first look if there is already an R package that
does what you want before trying to implement it yourself

http://cran.r-project.org/search.html
http://cran.r-project.org/web/views/
http://www.bioconductor.org/packages/release/bioc/
http://r-forge.r-project.org/
http://rgm3.lab.nig.ac.jp/RGM

Exercise: Install Packages
ggplot and DESeq

• ggplot2 is a commonly used graphics package (we will try it
tomorrow).

• Use install.packages() function...
install.packages("ggplot2")

● or in RStudio goto Tools Install Packages... and type the →
package name

• DESeq is a BioConductor package (www.bioconductor.org)
• Use biocLite() function

biocLite("DESeq")

• R needs to be told to use the new functions from the installed
packages

• Use library(…) function to load the newly installed features
library(ggplot2) # loads ggplot functions

library(DESeq) # loads DESeq functions

• library()
• Lists all the packages you've got installed locally

2
Data structures

R is designed to handle experimental data

• Although the basic unit of R is a vector, we usually handle data in
data frames.

• A data frame is a set of observations of a set of variables – in other
words, the outcome of an experiment.

• For example, we might want to analyse information about a set of
patients. To start with, let's say we have ten patients and for each
one we know their name, sex, age, weight and whether they give
consent for their data to be made public.

The patients data frame

We are going to create a data frame called 'patients', which will have
ten rows (observations) and seven columns (variables). The columns
must all be equal lengths.

 First_Name Second_Name Full_Name Sex Age Weight Consent

1 Adam Jones Adam Jones Male 50 70.8 TRUE

2 Eve Parker Eve Parker Female 21 67.9 TRUE

3 John Evans John Evans Male 35 75.3 FALSE

4 Mary Davis Mary Davis Female 45 61.9 TRUE

5 Peter Baker Peter Baker Male 28 72.4 FALSE

6 Paul Daniels Paul Daniels Male 31 69.9 FALSE

7 Joanna Edwards Joanna Edwards Female 42 63.5 FALSE

8 Matthew Smith Matthew Smith Male 33 71.5 TRUE

9 David Roberts David Roberts Male 57 73.2 FALSE

10 Sally Wilson Sally Wilson Female 62 64.8 TRUE

Let's see how we can construct this from scratch.

Character, numeric and logical data types

• Each column is a vector, like previous vectors we have seen, for
example:
> age<-c(50, 21, 35, 45, 28, 31, 42, 33, 57, 62)

 > weight<-c(70.8, 67.9, 75.3, 61.9, 72.4, 69.9, 63.5, 71.5, 73.2, 64.8)

• We can define the names using character vectors:
 > firstName<- c("Adam", "Eve", "John", "Mary", "Peter", "Paul", "Joanna",
"Matthew", "David", "Sally")
 > secondName<-c("Jones", "Parker", "Evans", "Davis", "Baker", "Daniels",
"Edwards", "Smith", "Roberts", "Wilson")

• We also have a new type of vector, the logical vector, which only
contains the values TRUE and FALSE:

 > consent<-c(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE)

Character, numeric and logical data types

• Vectors can only contain one type of data; we cannot mix numbers,
characters and logical values in the same vector. If we try this, R
will convert everything to characters:

 > c(20, "a string", TRUE)
 [1] "20" "a string" "TRUE"

• We can see the type of a particular vector using the class function:
> class(firstName)

 [1] "character"

 > class(age)
 [1] "numeric"

 > class(weight)
 [1] "numeric"

 > class(consent)
 [1] "logical"

Factors

• Character vectors are fine for some variables, like names.
• But sometimes we have categorical data and we want R to

recognize this.
• A factor is R's data structure for categorical data.

 > sex<-c("Male", "Female", "Male", "Female", "Male", "Male", "Female",
"Male", "Male", "Female")
 > sex
 [1] "Male" "Female" "Male" "Female" "Male" "Male" "Female" "Male"
"Male" "Female"
 > factor(sex)
 [1] Male Female Male Female Male Male Female Male Male Female
Levels: Female Male

• R has converted the strings of the sex character vector into two
levels, which are the categories in the data.

• Note the values of this factor are not character strings, but levels.
• We can use this factor to compare data for males and females.

Creating a data frame (first attempt)

• We can construct a data frame from other objects:
> patients<-data.frame(firstName, secondName, paste(firstName,secondName),

sex, age, weight, consent)

> patients
 firstName secondName paste.firstName..secondName. sex age weight consent
1 Adam Jones Adam Jones Male 50 70.8 TRUE
2 Eve Parker Eve Parker Female 21 67.9 TRUE
3 John Evans John Evans Male 35 75.3 FALSE
4 Mary Davis Mary Davis Female 45 61.9 TRUE
5 Peter Baker Peter Baker Male 28 72.4 FALSE
6 Paul Daniels Paul Daniels Male 31 69.9 FALSE
7 Joanna Edwards Joanna Edwards Female 42 63.5 FALSE
8 Matthew Smith Matthew Smith Male 33 71.5 TRUE
9 David Roberts David Roberts Male 57 73.2 FALSE
10 Sally Wilson Sally Wilson Female 62 64.8 TRUE

• The paste function joins character vectors together.
• We can access particular variables using the dollar operator:
 > patients$age
 [1] 50 21 35 45 28 31 42 33 57 62

Naming data frame variables

• R has inferred the names of our data frame variables from the
names of the vectors or the commands (eg the paste command).

• We can name the variables after we have created a data frame
using the names function, and we can use the same function to see
the names:

• > names(patients)<-c("First_Name", "Second_Name", "Full_Name", "Sex",
"Age", "Weight", "Consent")

> names(patients)
 [1] "First_Name" "Second_Name" "Full_Name" "Sex" "Age"
"Weight" "Consent"

• Or we can name the variables when we define the data frame:
 > patients<-data.frame(First_Name=firstName, Second_Name=secondName,
Full_Name=paste(firstName,secondName), Sex=sex, Age=age, Weight=weight,
Consent=consent)

 > names(patients)
 [1] "First_Name" "Second_Name" "Full_Name" "Sex" "Age"
"Weight" "Consent"

 [1] 50 21 35 45 28 31 42 33 57 62

Factors in data frames

• When creating a data frame, R assumes all character vectors should
be categorical variables and converts them to factors. This is not
always what we want:
> patients$firstName

 [1] Adam Eve John Mary Peter Paul Joanna Matthew David Sally
Levels: Adam David Eve Joanna John Mary Matthew Paul Peter Sally

• We can avoid this by asking R not to treat strings as factors, and
then explicitly stating when we want a factor by using factor:

 > patients<-data.frame(First_Name=firstName, Second_Name=secondName,
Full_Name=paste(firstName,secondName), Sex=factor(sex), Age=age,
Weight=weight, Consent=consent, stringsAsFactors=FALSE)

 > patients$Sex
 [1] Male Female Male Female Male Male Female Male Male Female
Levels: Female Male

 > patients$First_Name

 [1] "Adam" "Eve" "John" "Mary" "Peter" "Paul" "Joanna"
"Matthew" "David" "Sally"

Matrices
matrix(..., ncol=…, nrow=…)

• Data frames are R's speciality, but R also handles matrices:
> e <- matrix(1:10, nrow=5, ncol=2)
> e
 [,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> f ← matrix(1:10, nrow=2, ncol=5)
> f
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> f %*% e
 [,1] [,2]
[1,] 95 220
[2,] 110 260

The %*% operator is the matrix multiplication operator, not the standard
multiplication operator.

• We have seen that vectors can only hold data of one type. How can we store
data of multiple types? Or vectors of different lengths in one object?

• We can use lists. A list can contain objects of any type.
one.to.ten <- 1:10
uniform.mat <- matrix(runif(100),ncol=10,nrow=10)
year.to.october <- data.frame(one.to.ten, month.name[1:10])

myList<-list(ls.obj.1=one.to.ten, ls.obj.2=uniform.mat,
ls.obj.3=year.to.october)
names(myList)

• We can use the dollar syntax to access list items (in fact, a data frame is a
special type of list):

myList$ls.obj.1

• We can also use myList[[1]] to get the first item in the list.
• (For the curious: this double indexing is necessary because lists are in fact just like vectors – they

can only contain one type of object. But one of the types they can contain is a list. So any list like
the above is actually a list of lists; the first element myList[1] is a list containing a vector, and so
we need double indexing to actually get the vector.)

Lists
list(name1=obj1, name2=obj2, …)

Special cases:
a[i,] i-th row
a[,j] j-th column

Indexing data frames and
matrices

• You can index multidimensional data structures like matrices and data
frames using commas. If you don't provide an index for either rows or
columns, all of the rows or columns will be returned.
 object [rows , columns]

> e[1,2]

[1] 6

> e[1,]

[1] 1 6

> patients[1,2]

[1] "Jones"

> patients[1,]

 First_Name Second_Name Full_Name Sex Age Weight Consent

1 Adam Jones Adam Jones Male 50 70.8 TRUE

Advanced indexing

• As values in R are really vectors, so indices are actually vectors, and can be
numeric or logical:

 > s <- letters[1:5]

 > s[c(1,3)]

 [1] "a" "c"

 > s[c(TRUE, FALSE, TRUE, FALSE, FALSE)]

 [1] "a" "c"

 > a<-1:5

 > a<3

 [1] TRUE TRUE FALSE FALSE FALSE

 > s[a<3]

 [1] "a" "b"

 > s[a>1 & a<3]

 [1] "b”

 > s[a==2]

 [1] "b"

• arithmetic

+, -, *, /, ^

• comparison

<, >, <=, >=, ==, !=

• logical

!, &, |, xor

Operators

(equal to, not equal to)

these always return
logical values !
(TRUE, FALSE)

Exercise

• Create a data frame called my.patients using the instructions in
the slides. Change the data if you like.

• Check you have created the data frame correctly by loading the
original version from this file in the Day_1_scripts folder using
source:

 > source("1.2_patients.R")

• Remake your data frame with three new variables: country,
continent, and height. Make up the data. Make country a character
vector but continent a factor.

• Try the summary function on your data frame. What does it do?
How does it treat vectors (numeric, character, logical) and factors?
(What does it do for matrices?)

• Use logical indexing to select the following patients:
– Patients under 40
– Patients who give consent to share their data
– Men who weigh as much or more than the average European

male (70.8 kg)

Logical indexing answers

• Patients under 40:
> patients[patients$Age<40,]

• Patients who give consent to share their data:
 > patients[patients$Consent==TRUE,]

• Men who weigh as much or more than the average European male
(70.8 kg):
> patients[patients$Sex=="Male" & patients$Weight>=70.8,]

3

R for data analysis

3 steps to
Basic data analysis

1. Reading in data
• read.table()
• read.csv(), read.delim()

2. Analysis
• Manipulating & reshaping the data
• Any maths you like
• Plotting the outcome

• High level plotting functions (covered tomorrow)

3. Writing out results
• write.table()
• write.csv()

A simple walkthrough
Exemplifies 3 steps to R analysis

• 50 neuroblastoma patients were tested for NMYC gene copy number
by interphase nuclei FISH

• Amplification of NMYC correlates with worse prognosis
• We have count data

• Numbers of cells per patient assayed
• For each we have NMYC copy number relative to base ploidy

• We need to determine which patients have amplifications
• (i.e >33% of cells show NMYC amplification)

We need to read in the results table and assign it to an object (rawData)

 rawData <- read.delim("1.3_NBcountData.txt")
 rawData[1:10,] # View the first 10 rows to ensure import is OK

Note data frame contains a patient index column

If the data had been comma separated values, then sep=”,”
read.csv("1.3_NBcountData.csv")
?read.table for a full list of arguments

1.3_NBcountData.R
(script commands)

1.3_NBcountData.txt
(data file)

Patient Nuclei NB_Amp NB_Nor NB_Del
1 44 0 41 3
2 67 3 58 6
3 33 7 26 0
4 36 6 30 0
5 51 5 45 1
6 43 0 38 5
7 64 1 56 7
8 58 2 49 7
9 56 0 53 3

10 66 0 56 10
11 33 13 19 1

Step 1.
Read in the data

This data is a tab delimited text file
Each row is a record, each column is a field
Columns are separated by tabs in the text.

Handling missing values

• The data frame contains some 'NA' values, which means the values
are missing – a common occurrence in real data collection.

• NA is a special value that can be present in objects of any type
(logical, character, numeric etc).

• NA is not the same as NULL. NULL is an empty R object. NA is one
missing value within an R object (like a data frame or a vector).

• Often R functions will handle NAs gracefully, but sometimes we have
to tell the functions what to do with them. R has some built-in
functions for dealing with NAs, and functions often have their own
arguments (like na.rm) for handling them.

> x<-c(1,NA,3)
> mean(x)
[1] NA
> mean(x,na.rm=TRUE)
[1] 2
> mean(na.omit(x))
[1] 2
> is.na(x)
[1] FALSE TRUE FALSE

 These 2 samples are amplified (11 & 23)

Step 2.
Analysis (reshaping data & maths)

• Our analysis involves identifying patients with > 33% NB
amplification

• prop <- rawData$NB_Amp / rawData$Nuclei # create an index of
results

• amp <- which(prop > 0.33) # Get sample names of amplified
patients

• We can plot a simple chart of the % NB amplification
• plot(prop, ylim=c(0,1))
• abline(h=0.33)

Step 3.
Outputting the results

• We write out a data frame of results (patients > 33% NB
amplification) as a 'comma separated values' text file

• write.csv(rawData[amp,],file="selectedSamples.csv") #
Export table, file name = selectedSamples.csv

• Files are directly readable by Excel and Calc

• Its often helpful to double check where the data has been saved
• Use get working directory function

• getwd() # print working directory

Data analysis exercise:
Which samples are near normal?

• Patients are near normal if:

(NB_Amp/Nuclei <0.33 & NB_Del ==0)

• Modify the condition in our previous code to find these patients

• Write out a results file of the samples that match these criteria, and
open it in a spreadsheet program

1.3_NBcountData.R
(script commands)

> norm <- which(prop < 0.33 & rawData$NB_Del==0)

> norm

[1] 3 4 7 15 20 24 36 37 42 47

> write.csv(rawData[norm,],"My_NB_output.csv")

Solution to NB normality test
Basic data analysis

4
R programming techniques

• Arithmetic with vectors
• Rank ordering

rank(x)

• Quantiles
quantile(x); boxplot(x)

• Square Root

sqrt(x)

• Standard deviation

sd(x)

• Trigonometry functions

tan(x) ; cos(x) ; sin(x)

• Arithmetic with vectors
• Min / Max value number in a series

min(x) ; max(x)

• Sum of values in a series

sum(x)

• Average estimates (mean / median)

mean(x) ; median(x)

• Range of values in a series

range(x)

• Variance

var(x)

Basic R 'Built-in' functions
for working with objects

 R has many built-in functions for doing simple calculations on
objects. Start with a random sample of 15 numbers from 1 to
100 and try the functions below.

 > x<-sample(100,15)

• We have seen before how we can get the names of our variables, but for dataframes and matrices we can
also get these names with colnames, and the names of the rows with rownames:

> names(patients)
[1] "First_Name" "Second_Name" "Full_Name" "Sex" "Age" "Weight" "Consent"
> colnames(patients)
[1] "First_Name" "Second_Name" "Full_Name" "Sex" "Age" "Weight" "Consent"
> rownames(patients)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

We can get the numbers of rows or columns with nrow and ncol:
> nrow(patients)
[1] 10
> ncol(patients)
[1] 7

We can also find the length of a vector or a list with length, although this may give confusing results for
some structures, like data frames:

> length(c(1,2,3,4,5))
[1] 5
> length(patients)
[1] 7
> length(patients$Age)
[1] 10
Remember, a data frame is a list of variables, so its length is the number of variables. The length of one of

the variable vectors (like Age) is the number of observations.

Basic R 'Built-in' functions
for working with data frames

Basic R 'Built-in' functions
for working with data frames

 We can add rows or columns to a data frame using rbind and cbind:

 > newpatient<-c("Kate","Lawson","Kate Lawson","Female","35","62.5","TRUE")

 > rbind(patients,newpatient)

 First_Name Second_Name Full_Name Sex Age Weight Consent

1 Adam Jones Adam Jones Male 50 70.8 TRUE

2 Eve Parker Eve Parker Female 21 67.9 TRUE

3 John Evans John Evans Male 35 75.3 FALSE

4 Mary Davis Mary Davis Female 45 61.9 TRUE

5 Peter Baker Peter Baker Male 28 72.4 FALSE

6 Paul Daniels Paul Daniels Male 31 69.9 FALSE

7 Joanna Edwards Joanna Edwards Female 42 63.5 FALSE

8 Matthew Smith Matthew Smith Male 33 71.5 TRUE

9 David Roberts David Roberts Male 57 73.2 FALSE

10 Sally Wilson Sally Wilson Female 62 64.8 TRUE

11 Kate Lawson Kate Lawson Female 35 62.5 TRUE

> cbind(patients,10:1)

• We can also remove rows and columns:

patients[-1,] # remove first row

patients[,-1] # remove first column

Basic R 'Built-in' functions
for working with data frames

Sorting a vector with sort:

> sort(patients$Second_Name)

[1] "Baker" "Daniels" "Davis" "Edwards" "Evans" "Jones" "Parker" "Roberts" "Smith"
 "Wilson"

 Sorting a data frame by one variable with order:

> order(patients$Second_Name)

[1] 5 6 4 7 3 1 2 9 8 10

> patients[order(patients$Second_Name),]

 First_Name Second_Name Full_Name Sex Age Weight Consent

5 Peter Baker Peter Baker Male 28 72.4 FALSE

6 Paul Daniels Paul Daniels Male 31 69.9 FALSE

4 Mary Davis Mary Davis Female 45 61.9 TRUE

7 Joanna Edwards Joanna Edwards Female 42 63.5 FALSE

3 John Evans John Evans Male 35 75.3 FALSE

1 Adam Jones Adam Jones Male 50 70.8 TRUE

2 Eve Parker Eve Parker Female 21 67.9 TRUE

9 David Roberts David Roberts Male 57 73.2 FALSE

8 Matthew Smith Matthew Smith Male 33 71.5 TRUE

10 Sally Wilson Sally Wilson Female 62 64.8 TRUE

The R workspace

• The objects we have been making are created in the R workspace.
• When we load a package, we are loading that package's functions and data sets
into our workspace.
• You can see what is in your workspace with ls:
> ls()

• You can attach data frames to your workspace and then refer to the variables
directly:
> attach(patients)

> Full_Name

• You can remove objects from the workspace with rm:
> x<-1:5

[1] 1 2 3 4 5

> rm(x)

> x

Error: object 'x' not found

• You can remove everything by giving rm a list of all the objects returned by ls:
> rm(list=ls())

The R workspace

• Your workspace is like an unsaved Word document.
• When you quit R, it will usually save your workspace to a hidden file called
'.Rdata' in your current directory. This workspace will be loaded again if you open
R in the same directory.
• This file is a binary, computer-readable file, not a human-readable file, which
you have to open with R (like a Word document in Office).
• It is safer to explicitly save your workspace using save.image:
> save.image("phd.chapter.1.R")

• This way, if you are working on several different projects, you can make sure
the objects for each project are saved to named files, rather than trying to
remember which directory you were working in, or risking overwriting some
objects you forgot about and need later.
• To load a particular image, use load:
> load("phd.chapter.1.R")

Packages in the R workspace

• You can see which packages are loaded into your workspace with search:
> search()

 [1] ".GlobalEnv" "tools:rstudio" "package:stats" "package:graphics"

 [5] "package:grDevices" "package:utils" "package:datasets" "package:methods"

 [9] "Autoloads" "package:base"

• .GlobalEnv is where all the objects you create are stored.
• Most of the core functions are in stats, utils, methods and base.
• We will cover graphics and grDevices tomorrow afternoon.
• Search shows the search path R runs through whenever you use an object or
function name. It will first look in your global environment, then in the Rstudio
tools (if using Rstudio), then in the stats package and so on.
• When loading packages, you will often see warnings about some objects or
functions being 'masked'. This means that the newly loaded package contains an
object with the same name as some object in a package that is already loaded. R
will use the object in the new package whenever it comes across the name,
because the new package will be earlier in the search path.

Introducing loops

 Many programming languages have ways of doing the same
thing many times, perhaps changing some variable each time.
This is called looping.

 Loops are not used in R so often, because we can usually
achieve the same thing using vector calculations.

 For example, to add two vectors together, we do not need to
add each pair of elements one by one, we can just add the
vectors.

 But there are some situations where R functions can not take
vectors as input. For example, read.csv will only load one file at
a time.

 What if we had ten files to load in, all ending in the same
extension (like .csv)?

Introducing loops

 We could do this:
 > colony<-data.frame() # Start with empty data frame

 > colony1<-read.csv("1.4_colony_Run1Counts.csv")
 > colony2<-read.csv("1.4_colony_Run2Counts.csv")
 > colony3<-read.csv("1.4_colony_Run3Counts.csv")
 ...
 > colony10<-read.csv("1.4_colony_Run10Counts.csv")

 > colony<-rbind(colony1,colony2,colony3,...,colony10)

But this will be boring to type, difficult to change, and prone to
error.

● As we are doing the same thing 10 times, but with a different
file name each time, we can use a loop instead.

LOOPS
Commands & flow control

• R has two basic types of loop:
for loop: run some code on every value in a vector
while loop: run some code while some condition is true

• Here are two simple examples of these loops:
for (f in 1:10) {

 print(f)

}

i <- 1

while (i <= 10) {

 print(i)

 i <- i + 1

}

when this condition is
false the loop stops

LOOPS
Commands & flow control

• Here's how we might use a for loop to load in our CSV files.
• If the data files are in your current working directory, we can look up files

containing a particular substring in their name using the dir function:
dir(pattern="Counts.csv")

[1] "1.4_colony_Run1Counts.csv" "1.4_colony_Run2Counts.csv"
"1.4_colony_Run3Counts.csv"

• So we can load all the files using a for loop as follows:
colony<-data.frame()

countfiles<-dir(pattern="Counts.csv")

for (file in countfiles) {

 t<-read.csv(file)

 colony<-rbind(colony,t)

}

• Here, we use a temporary variable t to store the data in each file, and then
add that data to the main colony data frame.

• Use an if statement for any kind of condition testing.
• Different outcomes can be selected based on a condition within brackets.
if (condition) {

… do this …

} else {

… do something else …

}

• condition is any logical value, and can contain multiple conditions
• e.g. (a==2 & b <5), this is a compound conditional argument

Conditional branching
Commands & flow control

For example, if we were writing a script to load an unknown set of
files, using the for loop we wrote before, we might want to warn the
user if we can't find any files with the pattern we are searching for.
Here's how we can use an if statement to test for this:

colony<-data.frame()

countfiles<-dir(pattern="Counts.csv")

if (length(countfiles) == 0) {

 stop("No Counts.csv files found!")

} else {

 for (file in countfiles) {

 t<-read.csv(file)

 colony<-rbind(colony,t)

 }

}
The stop function outputs the error message and quits.

Conditional branching
Commands & flow control

Code formatting avoids bugs!

• Code formatting is crucial for readability of loops

 f <- 26
 while(f != 0){
 print(letters[f])
 f <- f-1
 }

GOOD!

 f<-26
 while(f!=0){
 print(letters[f])
 f<-f-1 }

BAD!!!

 The code between brackets {} always is indented, this clearly
separates what is executed once, and what is run multiple times

 Trailing bracket } always alone on the line at the same indentation
level as the initial bracket {

 Use white spaces to divide the horizontal space between units of
your code, e.g. around assignments, comparisons

1. Output the patients data frame, with the patients sorted in order
of age, oldest first. (You may need the rev function.)

2. Load in the colony data frame using a for loop. Three of the data
files are in the Day_1_scripts folder. Load all three files into colony
using the for loop in the slides.

3. How many observations do you have in the colony data frame?
Find out by counting the number of rows in colony using the nrow
function.

4. Suppose a power analysis of your data shows that you only need
48 observations to robustly test your hypothesis. This means we can
stop loading files when we have loaded at least 48 observations.
Modify your for loop so it will only load files if the colony data frame
has less than 48 observations in it.

Exercise

1. To order the patients by decreasing age:
patients[rev(order(patients$Age)),]

3. To find the number of rows in the colony data frame:
nrow(colony)

4. To stop loading files after at least 48 observations have
been found, use the code from the first for loop slide with a
new if statement:
colony<-data.frame()

countfiles<-dir(pattern="Counts.csv")

for (file in countfiles) {

 if (nrow(colony) < 48) {

 t<-read.csv(file)

 colony<-rbind(colony,t)

 }

}

Answers to exercise

5
Statistics

Built-in support for statistics

• R is a statistical programming language
• Classical statistical tests are built-in
• Statistical modeling functions are built-in
• Regression analysis is fully supported
• Additional mathematical packages are available

• MASS, Waves, sparse matrices, etc

Distribution functions

 mostly commonly used distributions are built-in, functions have
stereotypical names, e.g. for normal distribution:

 pnorm - cumulative distribution for x
 qnorm - inverse of pnorm (from probability gives x)
 dnorm - distribution density
 rnorm - random number from normal distribution

available for variety of distributions: punif (uniform), pbinom (binomial),
pnbinom (negative binomial), ppois (poisson), pgeom (geometric), phyper
(hyper-geometric), pt (T distribution), pf (F distribution) ...

- 10 random values from the Normal distribution with mean 10 and standard
deviation 5:

rnorm(10,mean=10,sd=5)

- The probability of drawing 10 from this distribution:

dnorm(10,mean=10,sd=5)

[1] 0.07978846

dnorm(100,mean=10,sd=5)

[1] 3.517499e-72

- The probability of drawing a value smaller than 10:

pnorm(10,mean=10,sd=5)

[1] 0.5
- The inverse of pnorm:

qnorm(0.5,mean=10,sd=5)

[1] 10
- How many standard deviations for statistical significance?

qnorm(0.95,mean=0,sd=1)

[1] 1.644854

Distribution functions

Two sample tests
Basic data analysis

• Comparing 2 variances
• Fisher's F test

var.test()

• Comparing 2 sample means with normal errors
• Student's t test

t.test()

• Comparing 2 means with non-normal errors
• Wilcoxon's rank test

wilcox.test()

• Comparing 2 proportions
• Binomial test

prop.test()

• Correlating 2 variables
• Pearson's / Spearman's rank correlation

cor.test()

• Testing for independence of 2 variables in a contingency table
• Chi-squared

chisq.test()

• Fisher's exact test
fisher.test()

Comparison of 2 data sets example
Basic data analysis

• Men, on average, are taller than women.
• The steps

 1. Determine whether variances in each data series are different
• Variance is a measure of sampling dispersion, a first estimate in

determining the degree of difference
• Fisher's F test

 2. Comparison of the mean heights.
• Determine probability that mean heights really are drawn from different

sample populations
• Student's t test, Wilcoxon's rank sum test

1. Comparison of 2 data sets
Fisher's F test

• Read in the data file into a new object, heightData

 heightData<-read.csv("1.5_heightData.csv")

• attach the data frame so we don't have to refer to it by
name all the time:

attach(heightData)

• Do the two sexes have the same variance?

var.test(Female,Male)

F test to compare two variances

data: Female and Male

F = 1.0073, num df = 99, denom df = 99, p-value = 0.9714

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

 0.6777266 1.4970241

sample estimates:

ratio of variances

 1.00726

2. Comparison of 2 data sets
Student's t test

• Student's t test is appropriate for comparing the difference in
mean height in our data. We need a one-tailed test.

• Remember a t test = difference in two sample means

standard error of the difference of the means

t.test(Female,Male, alternative="less")

Welch Two Sample t-test

data: Female and Male

t = -8.4508, df = 197.997, p-value = 3.109e-15

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

 -Inf -0.5079986

sample estimates:

mean of x mean of y

 5.168725 5.800214

> boxplot(heightData)

3. Comparison of 2 data sets
Review findings

Linear regression
Basic data analysis

• Linear modeling is supported by the function lm()

• example(lm) # the output assumes you know a fair bit about
the subject

• lm is really useful for plotting lines of best fit to XY data in order
to determine intercept, gradient & Pearson's correlation
coefficient

• This is very easy in R

• Three steps to plotting with a best fit line

• Plot XY scatter-plot data

• Fit a linear model

• Add bestfit line data to plot with abline() function

X Y

1.0 2.6

2.3 2.8

3.1 3.1

4.8 4.7

5.6 5.1

6.3 5.3

> x<-c(1, 2.3, 3.1, 4.8, 5.6, 6.3)
> y<-c(2.6, 2.8, 3.1, 4.7, 5.1, 5.3)
> plot(y~x, xlim=c(0,10),ylim=c(0,10))

Note formula notation
(y is given by x)

> myModel<-lm(y~x)
> abline(myModel)

Get the coefficients of the fit from:
summary.lm(myModel) and

coef(myModel)
resid(myModel)
fitted(myModel)

Get QC of fit from
plot(myModel)

Find out about the fit data from
names(myModel)

Typical linear regression analysis
Basic data analysis

Modelling formulae

• R has a very powerful formula syntax for describing statistical models.
• Suppose we had two explanatory variables x and z and one response

variable y.
• We can describe a relationship between, say, y and x using a tilde ~,

placing the response variable on the left of the tilde and the
explanatory variables on the right:

> y~x

• It is very easy to extend this syntax to do multiple regressions,
ANOVAs, to include interactions, and to do many other common
modelling tasks. For example:

> y~x # If x is continuous, this is linear regression
> y~x # If x is categorical, this is ANOVA
> y~x+z # If x and z are continuous, this is multiple regression
> y~x+z # If x and z are categorical this is a two-way ANOVA
> y~x+z+x:z # : is the symbol for the interaction term
> y~x*z # * is a shorthand for x+z+x:z

The linear model object
Basic data analysis

• Summary data describing the linear fit is given by
• summary(myModel)

> summary(myModel)

Call:
lm(formula = y ~ x)

Residuals:
 1 2 3 4 5 6
 0.33159 -0.22785 -0.39520 0.21169 0.14434 -0.06458

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.68422 0.29056 5.796 0.0044 **
x 0.58418 0.06786 8.608 0.0010 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3114 on 4 degrees of freedom
Multiple R-squared: 0.9488, Adjusted R-squared: 0.936
F-statistic: 74.1 on 1 and 4 DF, p-value: 0.001001

Y intercept

Gradient

R^2 , with pValue

Good fit: would
happen 1 in 1000 by

chance

Exercise
The coin toss

To learn how the distribution functions work, try simulating tossing a
fair coin 100 times and then show that it is fair.

1) We can model a coin toss using the binomial distribution. Use the
rbinom function to generate a sample of 100 coin tosses. Look up
the binomial distribution help page to find out what arguments this
function needs.

2) How many heads or tails were there in your sample? You can do this
in two ways; either select the number of successes using indices, or
convert your sample to a factor and get a summary of the factor.

3) If we toss a coin 50 times, what is the probability that we get
exactly 25 heads? What about 25 heads or less? Use dbinom and
pbinom to find out.

4) The argument to dbinom is a vector, so try calculating the
probabilities for getting any number of coin tosses from 0 to 50 in
fifty trials using dbinom. Plot these probabilities using plot. Does
this plot remind you of anything?

Coin toss answers

• To simulate a coin toss, give rbinom a number of
observations, the number of trials for each observation,
and a probability of success:

> coin.toss<-rbinom(100, 1, 0.5)

• Because we only specified one trial per observation, we
either have an outcome of 0 or 1 successes. To get the
number of successes, use indices or a factor to look up the
number of 1s in the coin.toss vector (your numbers will
vary):

> length(coin.toss[coin.toss==1])

[1] 50

> summary(factor(coin.toss))
 0 1
50 50

Coin toss answers

The probability of getting exactly 25 heads from 50
observations of a fair coin:

> dbinom(25, 50, 0.5)

The probability of getting 25 heads or less from 50
observations of a fair coin:

> pbinom(25, 50, 0.5)

The probabilities for getting all numbers of coin tosses from 0
to 50 in fifty trials:

> dbinom(0:50, 50, 0.5)

To plot this distribution, which should resemble a normal
distribution:

> plot(dbinom(0:50, 50, 0.5))

Exercise
Linear modelling example

Mice have varying numbers of babies in each litter. Does the size of the
litter affect the average brain weight of the offspring? We can use
linear modelling to find out. (This example is taken from John
Maindonald and John Braun's book Data Analysis and Graphics Using R
(CUP, 2003), p140-143.)
1) Install and load the DAAG package. The litters data frame is part

of this package. Take a look at it. How many variables and
observations does it have? Does summary tell you anything useful?
What about plot?

2) Are any of the variables correlated? Look up the cor.test function
and use it to test for relationships.

3) Use lm to calculate the regression of brain weight on litter size,
brain weight on body weight, and brain weight on litter size and
body weight together.

4) Look at the coefficients in your models. How is brain weight related
to litter size on its own? What about in the multiple regression? How
would you interpret this result?

Linear modelling answers

• To install and load the package and look at litters:

> install.packages("DAAG")

> library(DAAG)

> litters

> summary(litters)

> plot(litters)

• To calculate correlations between variables:

> attach(litters)

> cor.test(brainwt, lsize)

> cor.test(bodywt, lsize)

> cor.test(brainwt, bodywt)

Linear modelling answers

• To calculate the linear models:

> lm(brainwt~lsize)
Call:

lm(formula = brainwt ~ lsize)

Coefficients:

(Intercept) lsize

 0.447000 -0.004033

> lm(brainwt~bodywt)
Call:

lm(formula = brainwt ~ bodywt)

Coefficients:

(Intercept) bodywt

 0.33555 0.01048

> lm(brainwt~lsize+bodywt)
Call:

lm(formula = brainwt ~ lsize + bodywt)

Coefficients:

(Intercept) lsize bodywt

 0.17825 0.00669 0.02431

Interpretation: brain weight decreases
as litter size increases, but brain weight
increases proportional to body weight
(when bodywt is held constant, the lsize
coefficient is positive: 0.00669). This is
called 'brain sparing'; although the
offspring get smaller as litter size
increases, the brain does not shrink as
much as the body.

End of Day 1

	Diapositiba 1
	Diapositiba 2
	Diapositiba 3
	Diapositiba 4
	Diapositiba 5
	Diapositiba 6
	Diapositiba 7
	Diapositiba 8
	Diapositiba 9
	Diapositiba 10
	Diapositiba 11
	Diapositiba 12
	Diapositiba 13
	Diapositiba 14
	Diapositiba 15
	Diapositiba 16
	Diapositiba 17
	Diapositiba 18
	Diapositiba 19
	Diapositiba 20
	Diapositiba 21
	Diapositiba 22
	Diapositiba 23
	Diapositiba 24
	Diapositiba 25
	Diapositiba 26
	Diapositiba 27
	Diapositiba 28
	Diapositiba 29
	Diapositiba 30
	Diapositiba 31
	Diapositiba 32
	Diapositiba 33
	Diapositiba 34
	Diapositiba 35
	Diapositiba 36
	Diapositiba 37
	Diapositiba 38
	Diapositiba 39
	Diapositiba 40
	Diapositiba 41
	Diapositiba 42
	Diapositiba 43
	Diapositiba 44
	Diapositiba 45
	Diapositiba 46
	Diapositiba 47
	Diapositiba 48
	Diapositiba 49
	Diapositiba 50
	Diapositiba 51
	Diapositiba 52
	Diapositiba 53
	Diapositiba 54
	Diapositiba 55
	Diapositiba 56
	Diapositiba 57
	Diapositiba 58
	Diapositiba 59
	Diapositiba 60
	Diapositiba 61
	Diapositiba 62
	Diapositiba 63
	Diapositiba 64
	Diapositiba 65
	Diapositiba 66
	Diapositiba 67
	Diapositiba 68
	Diapositiba 69
	Diapositiba 70
	Diapositiba 71
	Diapositiba 72
	Diapositiba 73
	Diapositiba 74
	Diapositiba 75
	Diapositiba 76
	Diapositiba 77
	Diapositiba 78
	Diapositiba 79
	Diapositiba 80
	Diapositiba 81
	Diapositiba 82
	Diapositiba 83
	Diapositiba 84
	Diapositiba 85
	Diapositiba 86
	Diapositiba 87
	Diapositiba 88
	Diapositiba 89
	Diapositiba 90
	Diapositiba 91
	Diapositiba 92

