Skip to content

Latest commit

 

History

History

iris-segmentation-unet-main

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Iris Segmentation U-net w/TPU (Dice Coef: 0.94, Jaccard Index : 0.88)

kaggle link -> https://www.kaggle.com/code/banddaniel/iris-segmentation-u-net-w-tpu-dice-coef-0-94

I have used the following methods.

  • Dice coefficient and Jaccard index implementation,
  • The project took place using Google TPU,
  • Custom layers for encoding and decoding,
  • Custom callback class that used predicting a sample from the train dataset during training

Results for 40 epochs

  • Test Dice Coefficient : 0.94
  • Test Jaccard Index : 0.88

Predictions

266796515-aa78767d-4f7f-4df3-a5eb-6cd8d943c7a2

266796487-4d1757b3-17b8-4c42-badc-ab3a19a57a06

References

  1. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1505.04597
  2. https://www.aao.org/eye-health/anatomy/parts-of-eye
  3. https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient