kaggle link -> https://www.kaggle.com/code/banddaniel/iris-segmentation-u-net-w-tpu-dice-coef-0-94
I have used the following methods.
- Dice coefficient and Jaccard index implementation,
- The project took place using Google TPU,
- Custom layers for encoding and decoding,
- Custom callback class that used predicting a sample from the train dataset during training
- Test Dice Coefficient : 0.94
- Test Jaccard Index : 0.88
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1505.04597
- https://www.aao.org/eye-health/anatomy/parts-of-eye
- https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient