forked from Kaixhin/Rainbow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
186 lines (153 loc) · 8.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
from __future__ import division
import argparse
import bz2
from datetime import datetime
import os
import pickle
import atari_py
import numpy as np
import torch
from tqdm import trange
from agent import Agent
from env import Env
from memory import ReplayMemory
from test import test
# Note that hyperparameters may originally be reported in ATARI game frames instead of agent steps
parser = argparse.ArgumentParser(description='Rainbow')
parser.add_argument('--id', type=str, default='default', help='Experiment ID')
parser.add_argument('--seed', type=int, default=123, help='Random seed')
parser.add_argument('--disable-cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--game', type=str, default='space_invaders', choices=atari_py.list_games(), help='ATARI game')
parser.add_argument('--T-max', type=int, default=int(50e6), metavar='STEPS', help='Number of training steps (4x number of frames)')
parser.add_argument('--max-episode-length', type=int, default=int(108e3), metavar='LENGTH', help='Max episode length in game frames (0 to disable)')
parser.add_argument('--history-length', type=int, default=4, metavar='T', help='Number of consecutive states processed')
parser.add_argument('--architecture', type=str, default='canonical', choices=['canonical', 'data-efficient'], metavar='ARCH', help='Network architecture')
parser.add_argument('--hidden-size', type=int, default=512, metavar='SIZE', help='Network hidden size')
parser.add_argument('--noisy-std', type=float, default=0.1, metavar='σ', help='Initial standard deviation of noisy linear layers')
parser.add_argument('--atoms', type=int, default=51, metavar='C', help='Discretised size of value distribution')
parser.add_argument('--V-min', type=float, default=-10, metavar='V', help='Minimum of value distribution support')
parser.add_argument('--V-max', type=float, default=10, metavar='V', help='Maximum of value distribution support')
parser.add_argument('--model', type=str, metavar='PARAMS', help='Pretrained model (state dict)')
parser.add_argument('--memory-capacity', type=int, default=int(1e6), metavar='CAPACITY', help='Experience replay memory capacity')
parser.add_argument('--replay-frequency', type=int, default=4, metavar='k', help='Frequency of sampling from memory')
parser.add_argument('--priority-exponent', type=float, default=0.5, metavar='ω', help='Prioritised experience replay exponent (originally denoted α)')
parser.add_argument('--priority-weight', type=float, default=0.4, metavar='β', help='Initial prioritised experience replay importance sampling weight')
parser.add_argument('--multi-step', type=int, default=3, metavar='n', help='Number of steps for multi-step return')
parser.add_argument('--discount', type=float, default=0.99, metavar='γ', help='Discount factor')
parser.add_argument('--target-update', type=int, default=int(8e3), metavar='τ', help='Number of steps after which to update target network')
parser.add_argument('--reward-clip', type=int, default=1, metavar='VALUE', help='Reward clipping (0 to disable)')
parser.add_argument('--learning-rate', type=float, default=0.0000625, metavar='η', help='Learning rate')
parser.add_argument('--adam-eps', type=float, default=1.5e-4, metavar='ε', help='Adam epsilon')
parser.add_argument('--batch-size', type=int, default=32, metavar='SIZE', help='Batch size')
parser.add_argument('--norm-clip', type=float, default=10, metavar='NORM', help='Max L2 norm for gradient clipping')
parser.add_argument('--learn-start', type=int, default=int(20e3), metavar='STEPS', help='Number of steps before starting training')
parser.add_argument('--evaluate', action='store_true', help='Evaluate only')
parser.add_argument('--evaluation-interval', type=int, default=100000, metavar='STEPS', help='Number of training steps between evaluations')
parser.add_argument('--evaluation-episodes', type=int, default=10, metavar='N', help='Number of evaluation episodes to average over')
# TODO: Note that DeepMind's evaluation method is running the latest agent for 500K frames ever every 1M steps
parser.add_argument('--evaluation-size', type=int, default=500, metavar='N', help='Number of transitions to use for validating Q')
parser.add_argument('--render', action='store_true', help='Display screen (testing only)')
parser.add_argument('--enable-cudnn', action='store_true', help='Enable cuDNN (faster but nondeterministic)')
parser.add_argument('--checkpoint-interval', default=0, help='How often to checkpoint the model, defaults to 0 (never checkpoint)')
parser.add_argument('--memory', help='Path to save/load the memory from')
parser.add_argument('--disable-bzip-memory', action='store_true', help='Don\'t zip the memory file. Not recommended (zipping is a bit slower and much, much smaller)')
# Setup
args = parser.parse_args()
print(' ' * 26 + 'Options')
for k, v in vars(args).items():
print(' ' * 26 + k + ': ' + str(v))
results_dir = os.path.join('results', args.id)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
metrics = {'steps': [], 'rewards': [], 'Qs': [], 'best_avg_reward': -float('inf')}
np.random.seed(args.seed)
torch.manual_seed(np.random.randint(1, 10000))
if torch.cuda.is_available() and not args.disable_cuda:
args.device = torch.device('cuda')
torch.cuda.manual_seed(np.random.randint(1, 10000))
torch.backends.cudnn.enabled = args.enable_cudnn
else:
args.device = torch.device('cpu')
# Simple ISO 8601 timestamped logger
def log(s):
print('[' + str(datetime.now().strftime('%Y-%m-%dT%H:%M:%S')) + '] ' + s)
def load_memory(memory_path, disable_bzip):
if disable_bzip:
with open(memory_path, 'rb') as pickle_file:
return pickle.load(pickle_file)
else:
with bz2.open(memory_path, 'rb') as zipped_pickle_file:
return pickle.load(zipped_pickle_file)
def save_memory(memory, memory_path, disable_bzip):
if disable_bzip:
with open(memory_path, 'wb') as pickle_file:
pickle.dump(memory, pickle_file)
else:
with bz2.open(memory_path, 'wb') as zipped_pickle_file:
pickle.dump(memory, zipped_pickle_file)
# Environment
env = Env(args)
env.train()
action_space = env.action_space()
# Agent
dqn = Agent(args, env)
# If a model is provided, and evaluate is fale, presumably we want to resume, so try to load memory
if args.model is not None and not args.evaluate:
if not args.memory:
raise ValueError('Cannot resume training without memory save path. Aborting...')
elif not os.path.exists(args.memory):
raise ValueError('Could not find memory file at {path}. Aborting...'.format(path=args.memory))
mem = load_memory(args.memory, args.disable_bzip_memory)
else:
mem = ReplayMemory(args, args.memory_capacity)
priority_weight_increase = (1 - args.priority_weight) / (args.T_max - args.learn_start)
# Construct validation memory
val_mem = ReplayMemory(args, args.evaluation_size)
T, done = 0, True
while T < args.evaluation_size:
if done:
state, done = env.reset(), False
next_state, _, done = env.step(np.random.randint(0, action_space))
val_mem.append(state, -1, 0.0, done)
state = next_state
T += 1
if args.evaluate:
dqn.eval() # Set DQN (online network) to evaluation mode
avg_reward, avg_Q = test(args, 0, dqn, val_mem, metrics, results_dir, evaluate=True) # Test
print('Avg. reward: ' + str(avg_reward) + ' | Avg. Q: ' + str(avg_Q))
else:
# Training loop
dqn.train()
T, done = 0, True
for T in trange(1, args.T_max + 1):
if done:
state, done = env.reset(), False
if T % args.replay_frequency == 0:
dqn.reset_noise() # Draw a new set of noisy weights
action = dqn.act(state) # Choose an action greedily (with noisy weights)
next_state, reward, done = env.step(action) # Step
if args.reward_clip > 0:
reward = max(min(reward, args.reward_clip), -args.reward_clip) # Clip rewards
mem.append(state, action, reward, done) # Append transition to memory
# Train and test
if T >= args.learn_start:
mem.priority_weight = min(mem.priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
if T % args.replay_frequency == 0:
dqn.learn(mem) # Train with n-step distributional double-Q learning
if T % args.evaluation_interval == 0:
dqn.eval() # Set DQN (online network) to evaluation mode
avg_reward, avg_Q = test(args, T, dqn, val_mem, metrics, results_dir) # Test
log('T = ' + str(T) + ' / ' + str(args.T_max) + ' | Avg. reward: ' + str(avg_reward) + ' | Avg. Q: ' + str(avg_Q))
dqn.train() # Set DQN (online network) back to training mode
# If memory path provided, save it
if args.memory is not None:
save_memory(mem, args.memory, args.disable_bzip_memory)
# Update target network
if T % args.target_update == 0:
dqn.update_target_net()
# Checkpoint the network
if (args.checkpoint_interval != 0) and (T % args.checkpoint_interval == 0):
dqn.save(results_dir, 'checkpoint.pth')
state = next_state
env.close()