"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import random import numpy as np from torch.utils.data.sampler import Sampler class PriorityTree(object): def __init__(self, capacity, fixed_weights=None, fixed_scale=1.0, init_weight=1.0): """ fixed_weights: weights that wont be updated by self.update() """ assert fixed_weights is None or len(fixed_weights) == capacity self._capacity = capacity self._tree_size = 2 * capacity - 1 self.fixed_scale = fixed_scale self.fixed_weights = np.zeros(self._capacity) if fixed_weights is None \ else fixed_weights self.tree = np.zeros(self._tree_size) self._initialized = False self.initialize(init_weight) def initialize(self, init_weight): """Initialize the tree.""" # Rescale the fixed_weights if it is not zero if self.fixed_weights.sum() > 0 and init_weight > 0: self.fixed_weights *= self.fixed_scale * init_weight * self.capacity \ / self.fixed_weights.sum() print('FixedWeights: {}'.format(self.fixed_weights.sum())) self.update_whole(init_weight + self.fixed_weights) self._initialized = True def reset_fixed_weights(self, fixed_weights, rescale=False): """ Reset the manually designed weights and update the whole tree accordingly. @rescale: rescale the fixed_weights such that fixed_weights.sum() = self.fixed_scale * adaptive_weights.sum() """ adaptive_weights = self.get_adaptive_weights() fixed_sum = fixed_weights.sum() if rescale and fixed_sum > 0: scale = self.fixed_scale * adaptive_weights.sum() / fixed_sum self.fixed_weights = fixed_weights * scale else: self.fixed_weights = fixed_weights self.update_whole(self.fixed_weights + adaptive_weights) def update_whole(self, total_weights): """ Update the whole tree based on per-example sampling weights """ lefti = self.pointer_to_treeidx(0) righti = self.pointer_to_treeidx(self.capacity-1) self.tree[lefti:righti+1] = total_weights # Iteratively find a parent layer while lefti != 0 and righti != 0: lefti = (lefti - 1) // 2 if lefti != 0 else 0 righti = (righti - 1) // 2 if righti != 0 else 0 # Assign paraent weights from right to left for i in range(righti, lefti-1, -1): self.tree[i] = self.tree[2*i+1] + self.tree[2*i+2] def get_adaptive_weights(self): """ Get the instance-aware weights, that are not mannually designed""" return self.get_total_weights() - self.fixed_weights def get_total_weights(self): """ Get the per-example sampling weights return shape: [capacity] """ lefti = self.pointer_to_treeidx(0) righti = self.pointer_to_treeidx(self.capacity-1) return self.tree[lefti:righti+1] @property def size(self): return self._tree_size @property def capacity(self): return self._capacity def __len__(self): return self.capacity def pointer_to_treeidx(self, pointer): assert pointer < self.capacity return int(pointer + self.capacity - 1) def update(self, pointer, priority): assert pointer < self.capacity tree_idx = self.pointer_to_treeidx(pointer) priority += self.fixed_weights[pointer] delta = priority - self.tree[tree_idx] self.tree[tree_idx] = priority while tree_idx != 0: tree_idx = (tree_idx - 1) // 2 self.tree[tree_idx] += delta def get_leaf(self, value): assert self._initialized, 'PriorityTree not initialized!!!!' assert self.total > 0, 'No priority weights setted!!' parent = 0 while True: left_child = 2 * parent + 1 right_child = 2 * parent + 2 if left_child >= len(self.tree): tgt_leaf = parent break if value < self.tree[left_child]: parent = left_child else: value -= self.tree[left_child] parent = right_child data_idx = tgt_leaf - self.capacity + 1 return data_idx, self.tree[tgt_leaf] # data idx, priority @property def total(self): assert self._initialized, 'PriorityTree not initialized!!!!' return self.tree[0] @property def max(self): return np.max(self.tree[-self.capacity:]) @property def min(self): assert self._initialized, 'PriorityTree not initialized!!!!' return np.min(self.tree[-self.capacity:]) def get_weights(self): return {'fixed_weights': self.fixed_weights, 'total_weights': self.get_total_weights()} class MixedPrioritizedSampler(Sampler): """ A sampler combining manually designed sampling strategy and prioritized sampling strategy. Manually disigned strategy contains two parts: $$ manual_weights = lam * balanced_weights + (1-lam) uniform_weights Here we use a generalized version of balanced weights as follows, when n limits to infinity, balanced_weights = real_balanced_weights $$ balanced_weights = uniform_weights ^ (1/n) Then the balanced weights are scaled such that $$ balanced_weights.sum() = balance_scale * uniform_weights.sum() Note: above weights are per-class weights Overall sampling weights are given as $$ sampling_weights = manual_weights * fixed_scale + priority_weights Arguments: @dataset: A dataset @balance_scale: The scale of balanced_weights @lam: A weight to combine balanced weights and uniform weights - None for shifting sampling - 0 for uniform sampling - 1 for balanced sampling @fixed_scale: The scale of manually designed weights @cycle: shifting strategy - 0 for linear shifting: 3 -> 2 - > 1 - 1 for periodic shifting: 3 -> 2 - > 1 -> 3 -> 2 - > 1 -> 3 -> 2 - > 1 - 2 for cosine-like periodic shifting: 3 -> 2 - > 1 -> 1 -> 2 - > 3 -> 3 -> 2 - > 1 @nroot: - None for truly balanced weights - >= 2 for pseudo-balanced weights @rescale: whether to rebalance the manual weights and priority weights every epoch @root_decay: - 'exp': for exponential decay - 'linear': for linear decay """ def __init__(self, dataset, balance_scale=1.0, fixed_scale=1.0, lam=None, epochs=90, cycle=0, nroot=None, manual_only=False, rescale=False, root_decay=None, decay_gap=30, ptype='score', alpha=1.0): """ """ self.dataset = dataset self.balance_scale = balance_scale self.fixed_scale = fixed_scale self.epochs = epochs self.lam = lam self.cycle = cycle self.nroot = nroot self.rescale = rescale self.manual_only = manual_only self.root_decay = root_decay self.decay_gap = decay_gap self.ptype = ptype self.num_samples = len(dataset) self.alpha = alpha # If using root_decay, reset relevent parameters if self.root_decay in ['exp', 'linear', 'autoexp']: self.lam = 1 self.manual_only = True self.nroot = 1 if self.root_decay == 'autoexp': self.decay_gap = 1 self.decay_factor = np.power(nroot, 1/(self.epochs-1)) else: assert self.root_decay is None assert self.nroot is None or self.nroot >= 2 print("====> Decay GAP: {}".format(self.decay_gap)) # Take care of lambdas if self.lam is None: self.freeze = False if cycle == 0: self.lams = np.linspace(0, 1, epochs) elif cycle == 1: self.lams = np.concatenate([np.linspace(0,1,epochs//3)] * 3) elif cycle == 2: self.lams = np.concatenate([np.linspace(0,1,epochs//3), np.linspace(0,1,epochs//3)[::-1], np.linspace(0,1,epochs//3)]) else: raise NotImplementedError( 'cycle = {} not implemented'.format(cycle)) else: self.lams = [self.lam] self.freeze = True # Get num of samples per class self.cls_cnts = [] self.labels = labels = np.array(self.dataset.labels) for l in np.unique(labels): self.cls_cnts.append(np.sum(labels==l)) self.num_classes = len(self.cls_cnts) self.cnts = np.array(self.cls_cnts).astype(float) # Get per-class image indexes self.cls_idxs = [[] for _ in range(self.num_classes)] for i, label in enumerate(self.dataset.labels): self.cls_idxs[label].append(i) for ci in range(self.num_classes): self.cls_idxs[ci] = np.array(self.cls_idxs[ci]) # Build balanced weights based on class counts self.balanced_weights = self.get_balanced_weights(self.nroot) self.manual_weights = self.get_manual_weights(self.lams[0]) # Setup priority tree if self.ptype == 'score': self.init_weight = 1. elif self.ptype in ['CE', 'entropy']: self.init_weight = 6.9 else: raise NotImplementedError('ptype {} not implemented'.format(self.ptype)) if self.manual_only: self.init_weight = 0. self.init_weight = np.power(self.init_weight, self.alpha) self.ptree = PriorityTree(self.num_samples, self.manual_weights, fixed_scale=self.fixed_scale, init_weight=self.init_weight) def get_manual_weights(self, lam): # Merge balanced weights and uniform weights if lam == 1: manual_weights = self.balanced_weights elif lam == 0: manual_weights = np.ones(len(self.balanced_weights)) else: manual_weights = self.balanced_weights * lam + (1-lam) return manual_weights def get_balanced_weights(self, nroot): """ Calculate normalized generalized balanced weights """ cnts = self.cnts if nroot is None: # Real balanced sampling weights cls_ws = cnts.min() / cnts elif nroot >= 1: # Generalized balanced weights cls_ws = cnts / cnts.sum() cls_ws = np.power(cls_ws, 1./nroot) * cnts.sum() cls_ws = cls_ws / cnts else: raise NotImplementedError('root:{} not implemented'.format(nroot)) # Get un-normalized weights balanced_weights = np.zeros(self.num_samples) for ci in range(self.num_classes): balanced_weights[self.cls_idxs[ci]] = cls_ws[ci] # Normalization and rescale balanced_weights *= self.num_samples / balanced_weights.sum() * \ self.balance_scale return balanced_weights def __iter__(self): for _ in range(self.num_samples): w = random.random() * self.ptree.total i, pri = self.ptree.get_leaf(w) yield i def __len__(self): return self.num_samples def reset_weights(self, epoch): if not self.freeze and self.fixed_scale > 0: if epoch >= self.epochs: e = self.epochs - 1 elif epoch < 1: e = 0 else: e = epoch self.manual_weights = self.get_manual_weights(self.lams[e]) self.ptree.reset_fixed_weights(self.manual_weights, self.rescale) if self.root_decay in ['exp', 'linear', 'autoexp'] and epoch % self.decay_gap == 0: if self.root_decay == 'exp': self.nroot *= 2 elif self.root_decay == 'linear': self.nroot += 1 elif self.root_decay == 'autoexp': # self.nroot *= self.decay_factor self.nroot = np.power(self.decay_factor, epoch) bw = self.get_balanced_weights(self.nroot) self.ptree.reset_fixed_weights(bw) def update_weights(self, inds, weights): """ Update priority weights """ if not self.manual_only: weights = np.clip(weights, 0, self.init_weight) weights = np.power(weights, self.alpha) for i, w in zip(inds, weights): self.ptree.update(i, w) def get_weights(self): return self.ptree.get_weights() def get_sampler(): return MixedPrioritizedSampler