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Abstract

Individual head-related transfer functions (HRTFs) can be used to gen-
erate virtual sound sources over headphones. According to the model of
HRTF individualization using Principal Components (PCs), a Principal
Component Weight (PCW) set is sought that when multiplied with a PC
basis results in an HRTF set that yields good localization for a number of
given directions of sound incidence. Although this is a promising model,
the extent to which listeners can perform the individualization by hearing
is debatable. The process requires adjustment for each location and PC
of interest. In this work, the feasibility of a local and global method is
numerically evaluated by estimating the accuracy with which a given basis
component can model HRTF's regarding different kinds of input data. The
number of required adjustments for a given direction set is then reduced
by decomposing the PCW of individual users upon a Spherical Harmonics
Basis. Optimal spherical model parameters are sought, depending on the
order and reconstruction accuracy. In a listening test, subjects were asked
to identify changes in localization when weights of individual directions
are automatically modified. This allows a deeper inside into the usability

of each technique.



Kurzfassung

Mit Hilfe von Auflenohriibertragungsfunktionen (HRTFs) konnen bei bi-
nauraler Wiedergabe virtuelle Schallquellen im Raum generiert werden.
HRTFs konnen durch Kombination von Hauptkomponenten (PCs) und
deren Gewichte (PCWs) modelliert und adaptiert werden. Obwohl dieses
Modell fiir manche Quellpositionen sehr gut funktioniert, ist die Genauig-
keit und der Aufwand der Individualisierung noch nicht richtig erforscht.
Die Gewichte miissen fiir jede einzelne Position und Hauptkomponente
zeitaufwandig angepasst werden. In dieser Diplomarbeit werden zwei Me-
thoden zur Anpassung der Basiskomponenten Gewichte diskutiert und nu-
merisch fiir verschiedene Eingangsdaten ausgewertet. Um den Prozess der
Individualisierung zu erleichtern, wird ein Kugelmodell basierend auf den
Gewichten der Hauptkomponenten vorgestellt. Optimale Parameter fiir
das Kugelmodell werden durch die Ordnung der Basiskomponenten und
des resultierenden Rekonstruktionsfehlers berechnet. In einem Horversuch
bewerten die Probanden Unterschiede in Lokalisation wenn die Gewichte
fiir individuelle Richtungen automatisch adaptiert werden und geben die
wahrgenommene Quellposition an. Auf diese Weise wird ein Einblick in

die praktische Handhabung beider Techniken gegeben.
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Chapter 1

Introduction

1.1 Motivation

Individual head-related transfer functions (HRTFs) can be used to generate virtual
sound sources over headphones. Describing the acoustic transmission path from a
sound source to the ears, an audio stream can be reconstructed in a virtual audio scene
by a simple filtering with the corresponding pairs of impulse responses. Nowadays,
HRTF's are essential components of military environments, training simulations, room
acoustic simulations, game consoles, augmented reality and many more consumer
entertainment products.

Usually, a high spatial resolution for accurate source discrimination is required
for 3D sound rendering. That is why recent research uses generalized HRTFs from
an existing database to avoid expensive and long measurement procedures. More-
over, in most situations, a measurement is not acceptable. However, such averaged
HRTFs suffer from perceptual problems, such as difficulty perceiving source elevation
and front/back confusions. The same happens if an HRTF set is used by someone
else. Since each person has different pinna, head and torso dimensions, the resulting
transfer functions vary greatly between individuals. Therefore there is a strong need
to adapt existing HRTFs to individual ones.

A large number of HRTF models have been proposed, above all using Principal
Component Analysis (PCA) to decompose transfer functions into orthogonal com-
ponents (PCs) and associated weights (PCWs). Other methods manipulate the fre-
quency spectrum by scaling [Mid99b] or altering the energy in certain frequency
bands that are crucial for spatial hearing [TG98, SL11]. Many approaches have the
drawback only working in certain restricted areas, such as in the median plane or in

the front region. To overcome this limitation, the thesis investigates in an applica-



ble HRTF customization tool that compromises the whole sphere, except the region
directly below the head.

The main hypothesis can be stated as follows: Is it possible to adjust the local-
ization of an existing arbitrary source position to another one and which parameter
have to be changed? Secondly, can someone benefit from adjusting one specific source
position to another one, thus is there a customization method to allow a global and
consequently more efficient adjustment?

Another motivation is the lack of detailed comparisons of possible algorithms in
HRTF models, such as PCA and Spherical Harmonic Decomposition (SH) and their
combination with different input data. A detailed numerical evaluation of several
model parameters is given. The applicability of the PCA model is verified trough a
discrimination and localization test adapting the principal component weights.

Based on the findings and developments of the PCA model, a more effective way
for adapting PCWs is inspected. A Spherical Model is introduced which projects
the PCWs onto a sphere. By using the inherent properties of SH functions, the
customization procedure can be enhanced through parameter reduction since not
each single source positions has to be adapted.

Figure 1.1 indicates the main steps described in this work. Intentionally no de-
tailed information on the type of transformation can be seen here because there are
several options. While the analysis and transformation of the database can only be an
offline process due to the large amount of data in an HRTF database, the processing

of the modified parameters is implemented so that it can be used almost in real-time.

Data : User . Sound
Prep essing ransformation Modification etransformation Re pri juction

offline online

Figure 1.1: Overview of the key features in the HRTF model.

1.2 Thesis Layout

This document is organized as follows. Chapter 2 goes through the fundamentals

and properties of HRFTs and their importance in localization. Chapter 3 gives



an overview of two basis function representations of HRTF's, namely Principal Com-
ponent Analysis and Spherical Harmonic Decomposition, with underlying mathe-
matical and statistical fundamentals. Chapter 4 summarizes and discusses recent
HRTF individualization techniques. Particular attention is paid to the commonly
used minimum-phase and delay approximation in time domain. In Chapter 5, a
numerical evaluation of the PCA Model indicates the reconstruction error and seals
the model parameters. The focus is on processing and analysis of large data vol-
umes and different kinds of input data. Chapter 6 discusses a spherical method for
global adaptation of the principal weights. An informal listening test for the PCA
Model and evaluation of the experimental data is presented in Chapter 7. At least,
Chapter 8 summarizes the main hypothesis followed by concluding remarks and
outlook on further work.

Appendix A demonstrates a graphical user interface which was initially created
to test the HRTF model and analyze certain model parameters. In Appendix B,
a chart overview of the implementation is given. Appendix C provides a graphical

and tabular overview of different structures of the model input data matrix.



Chapter 2

Head-Related Transfer Functions

Head-related transfer functions are crucial for localization in azimuth and elevation
over headphone. The encoded binaural cues give listeners the perception of a 3D
sound display. While the HRTF H (s, 0, f) refers to the frequency domain, the Head-
Related Impulse Response (HRIR) h(s,0,t) denotes the counterpart in the time do-
main. For each subject s and source position # on a dense sampling grid, a pair of
HRIRs is stored. Miniature microphones in the ear canals record the impulse response
that are transmitted through a loudspeaker at a fixed distance of typically 1 meter
to the head. While typically each acoustic transmission path must be processed indi-
vidually and is therefore very time consuming, recent measurement environments are
based on e.g. multiple exponential sweep method [MBLO7] and automatic processing
to decrease the total measurement time (see Figure 2.1). Such a method may speed
up the whole process, however, the measurement still requires an anechoic chamber
and expensive apparatus which both is not available for consumers. That is why
several HRTF individualization techniques are proposed by researchers to circumvent
the need of a measurement.

Typically, HRTFs are diffuse-field equalized prior further processing to exclude
both ear canal resonance and measurement system response. This leads to the so
called Directional Transfer Function (DTF), which mainly includes the direction-
dependent spectral parameters and is responsible for spatial hearing. Contrary, the
Common Transfer Function (CTF) averages the spectrum across all directions NV,
which comprises subject dependent and position independent spectral information,
such as the diffuse part and the ear canal resonance between 2 and 4 kHz. The latter
is not desired in binaural processing because when using headphones for playback, the
subject would listening in fact through two ear canals. Also through hearing tests,
Middlebrooks et al. [MMG89] and Mgller [M@l92] confirmed that the propagation in

the ear canal is not dependent on directions.
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The magnitude of the DTF, which is frequently used in this work, can be calculated
in logarithmic frequency domain by subtracting the CTF from an HRTF set,

N
20log | D(5,6, )| = 20log (5,6, /)l - 3 D los | H(s,6,0) . (2)

=1

Whereas HRTF's incorporate the effects of the whole body, Pinna-related Trans-
fer Functions (PRTFs) indicate only the contribution of the pinna and reduce the
dependence with respect to azimuth. They can be calculated by applying a 1 ms
Hann window at the beginning of the HRIR signal in order to eliminate reflections by
torso and shoulders [SGA10] and then transformed into frequency domain. The use
of these functions might be helpful when relating features in the magnitude spectrum
to particular anthropometric dimensions.

Furthermore a critical band filter can be applied to smooth the spectrum of HRTFs
and remove smaller features from the spectrum that humans are not sensitive to

[HZK99).

2.1 Localization Cues

Binaural hearing is based on three basic localization cues. Interaural Time Difference
(ITD) and Interaural Level Difference (ILD) are the primary cues for localization
in azimuth. Their mechanism is formerly described in the Duplex Theory [MMO02]
by John William Strutt in 1907 that specified the relationship between sound prop-
agation and the geometrical arrangement of the head. Later, Stevens and Newman
[SN36] extended this theory and specified the effect of the physical properties within
the frequency axis. Since the ITD can only be processed without ambiguity of the
wavelength, time difference is limited to about 1.5 kHz when assuming a standard
head diameter of 17 cm. Frequencies below 1.5 kHz are diffracted around the head
whereas high frequencies above 1.5 kHz are shadowed, consequently the ILD becomes
more dominating. That is why localization in the range of 1.5 and 2 kHz leads to the
greatest inaccuracies because I'TD as well as ILD information is not optimal. The
binaural cues can be estimated by listening tests or computed from a pair of HRIRs.
However, since the 70s, some studies have refuted that time differences are only lo-
calization cues for low frequencies. In fact, also the slow fluctuating frequencies of
the sound envelope of higher-frequency stimuli can be evaluated by the binaural sys-
tem [Gra95, Zim04|. Moreover, despite ITD is a frequency dependent parameter it is
commonly simplified as a constant time delay [KW92, KC98].
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(a) Anechoic chamber [Maj13]. (b) Spatial resolution (1550 directions).

Figure 2.1: Measurement setup at Acoustic Research Institute (ARI) in an anechoic
chamber (a) and resulting spatial resolution (b).

According to the duplex theory, the interaural cues ITD and ILD can not pro-
vide vertical information. This is due the existence of the so called Cone of Confusion
and Torus of Confusion which are solids centered on the sagittal plane with indefinite
positions that have same I'TD and ILD respectively. Consequently, they produce am-
biguous perceptual coordinates that make it impossible to distinct between front /back
or up/down. By slight movement of the head this confusion can be easily resolved
in real environment because additional information about the source is obtained. In
3D simulation through headphone this is not always possible. Suitable time-variant
filters and head movement detection must be applied. This additional judgment for
localization, namely the energy division of the spectrum and spectral cues, is one of
the most challenging issues in current HRTF models.

Monaural spectral features of the magnitude spectrum provide crucial localization
cues for front /back and up/down discrimination [Bla70, HW74, LB02]. These are gen-
erally spectral peaks and notches between 4 and 16 kHz that are mainly effected by
the shape of the outer ear. Spectral parameters below 3 kHz are mainly produced by
head diffraction and torso reflections [Shi08]. Several studies [HW74, ST68| support
the fact that a prominent 1-octave notch centered between 5 and 11 kHz in the fre-
quency spectrum changes systematically with the vertical source location. However,
the mechanism that filters the incoming sound and generates spectral features has not
been fully understood, because the pinna shape is too complex and individual. Fact

is, that pinna-based filtering only effects higher frequencies above 5 kHz because of



the small dimensions of the ears. In HRTF databases that also collect anthropometric
dimension (e.g. CIPIC and ARI), currently up to 12 different pinna parameters are
extracted.

Summing up, there are several interaural and spectral parameters that are crucial
for localization of sound sources. Since the introduction of the duplex theory, major
improvements in understanding binaural hearing has been established. However, as
yet no comprehensive model for the spectral influence of the pinna was placed. Other

promising studies based on analysis of the neural system will hopefully be of use here.

2.2 Directional Bands

Frequency bands describe certain parts of a spectrum. For the purpose of this work,
an overview of frequency bands that are relevant for localization was prepared.

Among the first, Blauert [Bla70] discovered that the perceived source localization
of 1/3 octave band noise was mainly affected by their center frequency. He described
four different frequency bands that influence front/back discrimination and called
them Directional Bands. By subtracting the HRTF spectrum of a rear sound from a
frontal one, he analyzed the average differences and realized that a positive average
difference indicates forward direction and a negative one perception from backwards.
These bands are also known as Positive or Negative Boosted Bands. Hebrank and
Wright [HW74] conducted three experiments including various filters to classify rel-
evant frequency bands. For each of the directions of interest (frontal, behind or
above) an equivalent peak or notch could be identified. Myers [Mye89] continued to
investigate in this topic and classified four relevant frequency bands. Similarly, Tan
and Gan [TG98| amplified and attenuated energy in five bands by +8 to +12 dB.
Asano et al. [ASS90] also investigated the role of spectral cues and approximated
the spectrum with an pole-zero model where poles represent resonances and zeros
denote anti-resonances. By reducing the parameter of the model from 40 to 10 poles
and zeros, relevant frequency regions were discovered in which the judgement errors
dramatically increased. The authors concluded that spectral cues for front/rear dis-
crimination are basically below 2 kHz, but also in some high frequency regions while
vertical cues are located above 5 kHz.

Unfortunately, studies do not agree which frequencies are crucial for localization.
Whereas Blauert reported that sounds between 280-560 Hz and 2.9-5.8 kHz are more
likely to be perceived from front, Hebrank and Wright [HW74] claimed that spectral

manipulation below 3.8 kHz does not affect front/back discrimination. Langendijk



and Bronkhorst [LB02] specified that important localization cues for front/back dis-
tinctions are mainly between 8-16 kHz. Asano [ASS90] et al. mentioned that spectral
details above 2 kHz as well as unspecified high frequency components are important
for this. Also Musicant and Butler [MB84] confirmed that frequencies below 1 kHz
do not contribute to sound localization. The directional bands found in the litera-
ture are presented in Figure 2.2. It can be seen that the studies agree broadly, there
are, however, several disagreements in the high frequency region. Moreover, except
Blauert, the band modifications to make a sound event coming more from rear are

exact the opposite to the front region.

Directional Bands for frontal Perception Directional Bands for backward Perception
: .
Blauert (boosted bands) Blauert (boosted bands)
= Blauert (directional bands): = Blauert (directional bands)]
3 3
: : -
= =
-
10° 10” 10* 10” 10° 10"
frequency [Hz] frequency [Hz]
(a) Front. (b) Back.

Figure 2.2: Comparison of different studies: Blauert [Bla70], Myers [Mye89], Tan and
Gan [TG98], So et al. [SL11]. Manipulation of Directional Bands for frontal (a) and
backward (b) perception. Orange and yellow colors indicate amplified and attenuated
bands respectively.

2.3 Learning and Adaptation

Although in this work the focus is on adapting HRTF's to the individual subjects, it
is worth noting that recent research shows that the human binaural auditory system
can adapt to changes in HRTFs. An experiment with ear molds by Hofman et al.
[HVRVO98] confirmed that within several weeks, a person can learn the HRTF set
from another person resulting in an localization accuracy almost comparable to their
original ones. Remarkably, the original inherent HRTF set is still usable without loss

of accuracy, so the subjects can switch from one to a second, adopted HRTF.



Parseihian et al. [PK12| analyzed the process of adaptation by examining local-
ization with virtual sound sources. They quantified the effect of training by assessing
the improvement of localization accuracy over time. It was shown that a rapid adap-
tion to a non-individual HRTF set through feedback is possible within three sessions
of twelve minutes. These results can be applied to minimize front/back and up/down
confusions.

Besides, when synthesizing HRTF's, filters and models should take into account
the non-uniform resolution of the human auditory system [HZK99]. For example,
a weighting function could be applied in spectral magnitude to incorporate the log-
arithmic amplitude resolution. From a psychoacoustical viewpoint, several distance
measures using frequency smoothing or band-pass filters, such as Bark scale or Equiv-
alent rectangular bandwidth (ERB) scale.

2.4 Spatial Coordinates

Several studies ([KP12], [PK12]) use the interaural polar coordinate system instead
of the standard spherical coordinates. The first considers a lateral [-90°, 90°] and
polar angle [-90°, 270°] which indicates the interaural axis while the latter denotes
an azimuth [0°, 360°] and elevation angle [-90°, 90°]. Each point on a plane can be
specified by an angle and radius r, but in HRTF processing typically the radius is
neglected and set to one. The advantage of the interaural polar coordinate system is
that the primary cues, which relates to I'TD and ILD, can be expressed by the lateral
angle while the monaural spectral cues are presented by the polar (or rising) angle.
Therefore all front/back and up/down confusions are isolated in the polar angle.

In some cases, the cartesian coordinate system is applied [Zaall]. However, in
this work, the standard spherical coordinate system is used because the existing
HRTF databases are specified therein. The cartesian coordinates are transformed

into spherical coordinates [Wil99] by

r = /$2+y2+22,
[2 2
0 = arctan <ﬂ> ,

z

p = arctan (%) , (2.2)

with radial distance r, azimuthal angle # and polar or zenith angle ¢. The trans-

formation back to cartesian coordinates can be performed by



z =7 -sin(0) - cos(p)

y =1-sin(f) - sin(p) ,
z=r-cos(f) . (2.3)

In this work, the zenith angle ¢ is commonly replaced by the elevation angle
which is set to zero at the horizontal plane. The measure of the azimuthal angle is

counter-clockwise and starts in the frontal plane.
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Chapter 3

Basis Function Representations of
HRTFs

Orthogonal basis function representations of HRTFs have been widely used for un-
derstanding HRTFs and reducing their dimensionality, however, the application of
such models in HRTF individualization has been limited due to the absent un-
derstanding of the perceptual nature. The most common basis functions used to
decompose HRTFs are Principal Component Analysis and Spherical Harmonic De-
composition. Recent studies relating these techniques indicate that typically mea-
sured HRTFs contain a significant amount of data that is perceptually irrelevant.
The aim of an efficient and compact HRTF model is to include only data that
is relevant for localization in a certain way. Several researchers have attempted
to model HRTF's using a small subset of orthogonal basis function decompositions
and subsequently adapting HRIRs or HRTFs using the models. Most often, Princi-
pal Component Analysis [KW92, QE98, HP08| and Spherical Harmonic Transform
[EAT98, ZKA09, ZAKD10] have been used for this purpose. Such decompositions
often reduce the high-dimensionality of HRTF sets and also serve as a basis for the

investigation of their numerical but also perceptual properties.

3.1 Principal Component Analysis

Principal Component Analysis is a robust statistical method for data representa-
tion. The technique projects an original dataset on an orthogonal subspace that is
estimated by taking the covariance of the data into account. The technique can be
used to unveil relationships between the independent variables in a dataset and in
this way reduce a high-dimensional dataset into a more meaningful, low-dimensional

space. It has been widely used in computer vision and pattern recognition to find

11



relevant structure in data and neglect redundant information. Usually the input data
is pre-processed and aligned prior PCA to increase the performance. The resulting
model parameters can be calculated directly from the input data through Singular
Value Decomposition (SVD). Through a linear combination of the new basis and their
corresponding principal weights, the original dataset can be reconstructed with a con-
trollable accuracy, because the orthogonal principal components are sorted according

to their variance describing the original data.

3.1.1 Methodology

Before calculating the PCA, data need to be centered by subtracting their mean. This
process is related in the case of an HRTF dataset to the calculation of the DTF, which
also averages out specific singularities of test persons as well as measurement setup
and recording artifacts. When each row of the input data represents a single DTF,
actually the input data is already centered. However, as described in Chapter 5.2.3,
there are several options for the structure of the input matrix, so it might be the case
that DTFs need to be extracted from the HRTF set prior to subsequent analysis.
Principal Component Analysis is normally applied onto a two-dimensional matrix,

with columns defining the independent variables and rows containing observations.

Adjusted Dataset. The column mean Z (1 X n) of the input matrix X (m x n),
with m as the number of data points and n dimensions in the data set, can be

calculated by

K
Il
S|

Zﬁ, (3.1)

A centered input matrix Y is computed from X by subtracting off column

means,

Y=X-X, (3.2)
with matrix X (m x n) containing Z as rows.
Eigenvectors and Eigenvalues. Mathematically, PCA is related to the well known
singular value decomposition which splits the real-valued centered input matrix
Y (m x n) into
Y=USV", (3.3)

12



with U (m x n) and VT (n x n) as orthogonal matrices including left and
right eigenvectors u;, and vy, respectively. S (n x n) is a diagonal matrix with
nonzero elements only on the diagonal, so that S = diag(si, ... ,s,). These are
nonnegative and real values, also known as singular values which are sorted in
descending order of magnitude from top to bottom. Assuming that the matrix
Y has a rank r leads to sy > 0 for 1 < k < r and s = 0 for (r +1) <
k < n [WRRO03]. This means that if some eigenvalues are very close to zero,
one can neglect those values and the corresponding eigenvectors to reduce the

dimensionality of the new basis.

It has to be mentioned that SVD is not the only way to perform PCA. The
singular values and associated eigenvectors also can be obtained directly through

the covariance matrix Cvy that is formed as

Cy = ﬁ Y'Y, (3.4)
with Cy as a symmetric, real-valued, square matrix. What the matrix actually
says is that the diagonal elements are the variance and the off-diagonal elements
are the covariance between the independent variables. For that reason, a large
value in an off-diagonal element indicates a high redundancy whereas a large
value in the diagonal potentially indicates an important pattern or reflects a sig-
nificant dynamic in the data set. Consequently, an optimal and non-redundant
structure of Cy would minimize off diagonal elements. This can be achieved
by eigendecomposition. Since the covariance matrix is symmetric, the matrix

is diagonalizable, which follows

Cy V=VD, (3.5)

with a diagonal matrix D (m x m) containing the eigenvalues of Cy and V as
an orthonormal eigenvector matrix including the right eigenvectors as columns.
The eigenvectors of the covariance matrix Cy are termed as the principal com-
ponents of Y. When applying Y = U S V7 to calculate the covariance matrix,
and multiplying YT on the right side, it follows

YYT=(UsVH usvhH, (3.6)
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which leads to

YY'=USs*U". (3.7)

Consequently, the square root of the eigenvalues of YYT are the singular values
of Y. In fact, using SVD is more efficient and robust because the formation of

the covariance matrix is costly in terms of computational resources.

Transformation. The columns of V contain the principal components. So, the
original centered data Y set can be transformed to the new basis by projecting

it on the eigenvector basis,

W=YV, (3.8)

where W represents the principal weight, or score matrix with the same di-
mensions as the input matrix, containing the loadings that when applied to the

principal components would recreate the original data matrix.

Reconstruction. Finally, an approximation X! to the input matrix X can be ob-
tained through applying the PC weights on a basis of lower dimensionality [ < N

and adding the subtracted mean X' again:

l
Xl:Zuk spvi +X. (3.9)
k=1
In fact, some information is lost in the reconstruction when using only [ dimen-
sions, however, through a good choice of [, a good reconstruction accuracy can be
obtained. A reasonable value for [ is usually obtained by calculating the percent-
age of the explained variance that can be explained using the lower dimensionality

representation. This can be done by

_ 22:1 Sk
- N

k=1 5k

-100 [%] , (3.10)

var(l)

where s is the k" singular value, [ is the number of a particular PC and N

is the total number of components. The singular values correspond to the variance

In MATLAB®, the function princomp() automatically centers the input data and returns PCs,
PCWs and variance. It is highly recommended to calculate the subtracted mean before using this
function, because otherwise one will loose this information.
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explained by each component. Commonly, the number of principal components that
are necessary to achieve 90 percent of the explained variance are used. Figure 3.1a
illustrates the relative (yellow bars) and cumulative (green bars) explained variance
for the first ten PCs and Figure 3.1b shows the resulting reconstruction accuracy for
the corresponding PCs. It can be observed that the first PC already accounts for 80
percent of the total variance whereas the remaining ones only little by comparison.
The variance explained by higher principal components in this case decreases rapidly
and that they can be omitted without major loss of information. The difference in
explained variance is not always as high as in this example, it depends on the type of
the input data. More often than not, though, once components are sorted in terms of
decreasing variance, the higher components contribute less to the explanatory power
of the model.
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(a) Total (green) and relative (yellow) variance (b) Reconstruction accuracy.

of first 10 PCs.

Figure 3.1: Reconstruction of one left ear DTF (340° azimuth, —39° elevation) in
CIPIC database by including different numbers of principal components.

For the sake of completeness, it should be mentioned that a SVD of matrix Y
is not unique, consequently, the principal components are not unique too. If one
removes or adds records of the input matrix, it may happen that the components
are mirrored because the dataset has some rotational symmetries. This can be easily

discovered when comparing the same components in different HRTF databases.

3.1.2 Modelling HRTFs using Principal Components

A head-related transfer function set can be modeled by a set of common orthogonal
basis functions and their associated principal component weights. This modeling ap-
proach can be used as an HRTF individualization method if PCWs are appropriately
modified to yield the desired HRTF set. The number of the participating components
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in the reduced model has however to be selected carefully, as this is directly linked to
the success of the individualization process and affects its duration.

Most of the studies agree that using the first 4-5 components is enough [Mar87,
KW92, Shi08], because they can explain about 90 percent of the variance in an
HRTF set and capture the relevant properties for localization. However, the studies
are not always comparable, as the HRTF sets used differ with respect to the number
of subjects and measurement directions included (vary from 2 to 52 subjects, 1 to
1550 directions). They are usually preprocessed in different ways, while variations
also exist in how the data matrix that is subjected to PCA is constructed. All these
choices can affect the compression efficiency as well as the generalizability of the
resulting model. A detailed overview of reasonable ways to construct this matrix can
be found in Chapter 5.2.3.

Nevertheless, principal components obtained from variable HTRF datasets vary
little as long as the number of measurement directions and subjects is reasonable. This
invariance is more evident for components explaining a large amount of variance, as
components of smaller variance reflect specificities that might not be shared across
datasets. Middlebrooks and Green [MG92] were among the first who compared basis
vectors calculated from their own measurement data (8 subjects, 360 positions) with
an existing database by Kistler and Wightman [KW92] (10 subjects, 265 positions)
and indeed confirmed a high correlation between the components, which however de-
creases with rising principal component order number. Similar results were observed
with the databases used in this thesis.

A common difference is that some studies attempt to apply PCA directly on
HRIRs [Shi08, HP08, HPP10] while others are focusing on HRTFs [KW92, MG92,
CvVH93, QE98, GV07, XLS09, Xiel2]. The HRIR approach has the advantage of
including phase information in the model. Moreover, effects of pinna, head or shoul-
der can be better extracted in the time domain. In contrast, when PCA is applied in
frequency domain, these effects are coupled. Beside the advantage that the logarith-
mic magnitude spectrum might be better related with the logarithmic sense of human
hearing, minimum-phase reconstruction is most commonly used to transfer the recon-
structed signal from frequency to time domain. Another difference is that sometimes
PCA is applied simultaneously to all source positions in a database [KW92, Xiel2],
while in others to each direction separately [Shi08]. It is highly recommended to in-
corporate all directions for PCA because otherwise no relevant phenomena according
direction dependency can be discovered. Table summarizes 3.1 individual differences
in modeling HRTFs through PCA in the literature.
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rections, [850 x 400]

HRIR (200 samples)

Author Database | Structure Data Format PCs
Martens [Mar87] | own 2 subjects, 36 24-point log DTF 4
directions
Kistler own 10 subjects, 265 150-point log DTF )
[WK91, KW92] directions, (0.2-15 kHz)
5300 x 150]
Middlebrooks own 8 subjects, 360 133-point log DTF 5
MG92] directions (3-16 kHz)
Chen [CvVH93] | KEMAR | - magnitude and phase | -
and own
Wu [Wu97] own 2 subjects HRIR -
Qian [QE9S] Tucker- 26 subjects, 360 di- | HRTF 6
Davis rections
Grantham Wightman | 1 subject, 19 HRIR (256 samples) | 90
[GWFAO5] directions in
azimuth
Rodriguez CIPIC 5 subjects, 1250 64-point PRTF 20
[RRO5a, RRO5D] directions
Grindlay [GV07] | CIPIC 45 subjects, 1250 181-point HRTF 10
directions, (0.5-16 kHz)
[45 x 1250 x 181],
(tensor SVD)
Hwang [HPOS, CIPIC 45 subjects, 49 di- | median plane HRIR | 12
HPP08, HPP10] rections, [67 x 2205] | (first 1.5 ms after
time delay)
Shin [Shi0§] CIPIC 45 subjects, 9 left ear HRIR (first | 4
directions, [10 x 45] | 10 samples after time
for each direction | delay)
Xu [XLS09] CIPIC 45 subjects, 1250 log HRTF 10
directions
Rothbucher CIPIC 30 subjects, 1250 200-point HRTF 10
[RDS10] directions (tensor
SVD)
Xie [Xiel2] own 52 subjects, 493 di- | 59-point HRTF 35
rections
Fink [FR12] CIPIC 34 subjects, 25 di- | horizontal plane 25

Table 3.1: Overview of parameters for the PCA input matrix used in literature. Last
column presents the proposed number of PCs for reconstruction.
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Outliers or measurement errors in the dataset may have a serious effect on the
PCA output, therefore a control mechanism is suggested. The sample mean and
resulting covariance matrix is very sensitive to outliers. Several algorithms for outlier
detection or missing data were proposed in literature [LC85, Che02, CMMO09] to make
PCA processing more robust and susceptible to outliers or missing data. A visual
inspection of the input data can prevent further processing problems. However, this
is practically impossible in HRTF databases because of the large amount of data.

In the preliminary work [Hol12], outliers were identified by checking if an individ-
ual weight is outside the normal range of the PCW distribution. Here, the intention
was rather to find outliers in individuals as positions. PCA was applied on the dataset
and an iterative implementation of the Grubbs” Test was applied separately on each
of the first five principal weights. This procedure actually tests if the minimum and
maximum values belong to the main population. According to this, the corresponding
individuals have been removed from the dataset and the PCA was calculated again
until no outlier was detected. Since the preprocessing of the HRTF model features
is an off-line computation, this can be appropriate. In this work, for the proposed
model, a visual inspection of the most relevant PCWs in ARI database did not reveal
any outliers. However, subject ID 1034 in IRCAM database was detected as an out-
lier for PCW1 when using the dimension of Structl [subjects X (signal * positions)]
with logarithmic frequency magnitude for the PCA input data (see Chapter 5.2.3,
Page 40).

In literature, a more robust version of PCA to handle missing data and out-
liers was proposed by Roweis [Row98] and Chen [Che02]. The algorithm avoids the
computationally intensive calculation of the covariance matrix and instead uses an
expectation maximization (EM) algorithm. Similarly, Lee et al. [LYW13] proposed
an Online Ouversampling Principal Component Analysis (osPCA ) algorithm to detect
outliers. The idea is that the direction of the basis component are changing when an
outlier is added to the covariance matrix. To enhance the computational performance
during online detection not the entire covariance matrix is calculated. However, this is
beyond the scope of this work. From experience in HRTF databases, as long enough
measurements are presented, outliers can be detected on the weights, with not so
much influence on the resulting PCs.

The requirements of the PCs may be different depending on the application. For
example, one would obtain statistically independent components. Independent Com-
ponent Analysis (ICA) is such an algorithm which also can be used for HRTF decom-
position [HLO09]. Similar to PCA, it is a projection technique but the major difference
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is that ICA returns statistically independent components that are not orthogonal be-
cause ICA minimizes both second-order and higher-order dependencies [BDBS02]. In
contrast, PCA only decorrelates second-order statistics [CPK06]. However, a draw-
back of ICA is a clearly higher computing power, which sometimes leads to problems
with large datasets such as HRTF databases. PCA and ICA can also be combined to
enhance performance, for example Berg et al. [BBL'05] proposed a blind source sep-
aration algorithm that first computes PCA to decorrelate the data and then performs
ICA to separate the data.

PCA is not a continuous representation of HRTF's, because the principal weights
for directions outside the dataset measurement do not exist. Obviously, locations that
are not originally included in the dataset, can be estimated by involving PCWs of
surrounding measured directions and apply one of many interpolation methods such

as inverse-distance weighting or spherical splines [HBS99].

3.2 Spherical Harmonic Decomposition

Spherical Harmonic Decomposition, primary intended for the modeling and approxi-
mation of continuous functions on the sphere, has also been applied to model HRTFs.
As HRTF measurements occur for positions distributed on a sphere, or spherical sec-
tions, such an approach is inherently appropriate. The dataset is projected onto
spherical basis functions of a desired order, whose weighted combination can be used
for modeling or approximation purposes. In contrast to PCA, where the basis func-
tions are computed from the dataset, the spherical harmonic functions are fixed and
defined hierarchically. On the basis of the Fourier Transform which decomposes a
function f(z) into an infinite sum of sin(nz) and cos(nx), the spherical harmonic
decomposition expands a function f(f,¢) into an infinite sum of spherical harmon-
ics. In this way, usually a better parametric description of a geometric body can be
obtained [KSG99]. The spherical harmonics originate by solving the angular part of

Laplace’s equation in spherical coordinates.

3.2.1 Methodology

Spherical harmonic functions can be complex or real. In this work, the real valued
spherical harmonics are used. Here, the notation is based on [Jar08]. The orthonormal

real valued spherical harmonics Y, (6, ¢) with polar angle 6 [0, 7], azimuthal angle ¢
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0, 27], order [ and degree m [—[, ] are defined as

V2K[™ cos(me) P (cos ) m >0,
Y™ (0,9) =< K P’(cosb) m=0, (3.11)
V2K sin(—meyp) P (cos) m <0,

with K" as normalization constant,

B TR
Ki _\/ I (1 jm])! (312)

that ensures that the inner product of the basis functions with itself is one. FP™
denotes the associated Legendre function which is described in detail in [PZ08]. Figure
3.2 depicts all real valued spherical harmonic basis functions up to order [ = 2. The
spatial complexity increases with the number of orders from top to bottom whereas
the degree m is plotted horizontally. For each order [, 2/ + 1 basis functions exist,
which leads in this case to a total of (I + 1)* = 9 different functions. Sometimes a
single index i is used, such as i = I(l 4+ 1) +m. Then, the orthogonality of the basis

functions is demonstrated by

| @) do = (3.13)
Q47'r

with d;; as the Kronecker delta.

x
z z z
*v y b\y
X X X
Z z z z
X X X X X

Figure 3.2: Real-valued spherical harmonics up to order [ = 2. The color of the
surface represents the value of the function. Each row illustrates a spherical order [
whereas each column represents the corresponding degrees m [, [].
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A direction vector o using spherical parametrization can be defined as

W = (sin# cos p, sin @ sin p, cos ) . (3.14)

Spherical Harmonic Transform (SHT). Given a function f(w) on the sphere,
f7™ as the expansion coefficients can be obtained by the inner product of f(w)

with each of the basis functions,

= | ) s i (3.15)

The basis functions are orthonormal and ordered in spatial frequency [LH02].
Any real-valued function f(w) on the sphere can be factored as a weighted linear

combination of the basis functions by

0 l
Fa) =>"3"vm@) fm . (3.16)

=0 m=—I
Theoretically an unlimited number of spherical harmonics is required, but in
practice, the coefficients are truncated to order [ = N, resulting in a lower

angular representation, thus band-limiting.

Discrete Spherical Harmonic Transform (DSHT). In most cases a discrete-point
presentation is required because of an infinite number of discrete sample points
on the sphere. DHST allows to calculate a spherical wave spectrum computed
by a set of spatially discrete points. Therefore, a set of discrete SH expansions

has to be formulated and Equation 3.16 can be expressed as

fv=Yn Un, (3.17)

with f as a function at discrete points on the sphere, Y as a matrix containing
(N + 1)? sampled spherical harmonics and 1y as a position-independent vector
with the corresponding SH coefficients [NZ11]. In order to calculate 1y, the
spherical harmonic matrix Y y has to be inverted. If the number of the discrete
directions does not coincide with (N +1)?, un under- or overdetermined system
of equations has to be solved [Zaall]. An optimal solution would be a regular
sampled spherical surface. However, all HRTF databases are suffering from
a measurement lack in the lower hemisphere. There even no exists a database

with source positions exactly below the head. Consequently, the sampling points
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are not homogeneous distributed resulting in biased models and mathematical
regularization problems, like an ill-conditioned matrix Y. A relevant property
of Y is the condition number giving information about the ratio between the
smallest and largest singular value and furthermore indicates the robustness

and stability of its inverse.

The Truncated Singular Value Decomposition (TSVD) is a method for matrix
regularization [Han87, HF(09] yielding a reduced rank approximation. According
to the standard SVD in Equation 3.3 (Page 12), neglecting the smallest singular
values of the diagonal matrix S and using the truncated orthogonal matrices \Y%
and U7, the pseudoinverse of Yy is regularized with Y = VS-1UT. Finally
the SH coefficients are obtained by

Uy =Y fn . (3.18)

3.2.2 Modeling HRTF's using Spherical Harmonics

As with PCA, modeling using Spherical Harmonics has been attempted both in the
time and the frequency domain. In such cases, the Spherical Harmonic Decomposition
is applied either on each time sample of the HRIR, or each frequency bin of the HRTF'.
Again, the basis functions of the model are orthonormal and are usually ordered in
spatial frequency. Similar to PCA, by truncating the SH series to certain degree, the
accuracy of the model is affected. Each direction on the sphere is weighed differently
by each spherical harmonic. The weight each spherical harmonic obtains, reveals
to a certain extent the contribution of the associated dimensions on the original
dataset. An advantage of the discrete spherical harmonic decomposition is that it
approximates a continuous function on the sphere, it is therefore theoretically possible
to obtain estimators for arbitrary points on the sphere, given a well-estimated model.
Consequently, an HRTF representation in the spherical domain has been also used to
estimate HRTF's in positions outside a given initial HRTF set.

Among others, Evans et al. [EAT98, EA98| described an HRTF representation
using spherical harmonic expansion of HRIRs with and without onset time delays as
well as magnitude and unwrapped phase in frequency domain. A dataset of 648 direc-
tions was analyzed whereas 32 additional directions that were not used for processing
were measured in order to evaluate the accuracy of the model for interpolation. The
authors suggested to use a 17th-order SH model (yielding 324 basis functions) to
reproduce 90 percent of the HRTF energy and synthesize a pair of HRTFs at any
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direction. The removal of I'TD has improved the accuracy, and data representation
in frequency domain showed a significant higher accuracy on reconstruction as in
time domain. Most relevant spectral parameters for localization were included in the
three first-order spherical harmonics. The authors concluded that highly efficient and
compact representations of HRTF's are possible and the spherical harmonic functions
would enhance our understanding of HRTFs. However, no psychoacoustic validation
was carried out.

Romigh [Rom12] used the logarithmic magnitude instead of the linear one which
has the side effect that the zero-order SH coefficients compose the diffuse-field part of
the HRTF. In a localization experiment he confirmed that using an SH representation
of order greater than four does not significantly affect localization accuracy. Romigh
proposed a novel HRTF estimation method based on SH coefficients using only a small
number of spatially distributed measurements. He claimed that only 12 measurement
locations are necessary for adequate localization performance.

The success of spherical harmonic decomposition depends on the number and
the distribution of the points on which the function has been approximated on the
sphere as well as the spatial frequency with which changes in the function appear.
Based on the spatial Nyquist criteria, at least N? measured source positions are
required for an SH representation of order NV, when assuming uniform distribution of
measurement points on the sphere. Such a uniform distribution is not easy to achieve
when considering HRTF measurement, as it is impossible to obtain measurements
for points directly under the head for example. Finding an estimation technique
that works well for an arbitrary measurement grid is still an open research question.
To suppress problems caused by irregular sampled grids, one solution is to perform
approximation by icosahedron subdivision [KSG99]. The use of a platonic solid that
does not have a sampling point directly below can improve general model accuracy.
Zhang et al. [ZKO08|] developed an iterative algorithm for extrapolating signals over
the whole sphere when only a limited number of measurement points exist. Despite
the lack of a quarter on the grid, the entire dataset could be successfully reconstructed
with a 4th-order model. Zotkin et al. [ZDGO09] addressed the limitation of under-
sampled grids that are often used in HRTF databases. Several different grids (e.g.
closed/open and high /low resolution grids) were tested and compared. They proposed
a Least-Squares Fitting method that operates on any arbitrary grid. A Thikonof
regularization was found to compensate in a satisfactory manner, when the problem

of inverting arising in least-square estimation of SHWs is ill-posed.
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Avni and Rafaely [AR10] studied the effect on the binaural cues ITD and ILD
when using an incomplete representation with a finite order of HRTFs in the spherical
harmonic domain. Original and several manipulated versions of the CIPIC HRTF
database were used for analysis. On the basis of just-noticeable differences (JND)
of ITD (10-20 us) and ILD (1 dB), and r as the average human head radius, it was
shown that the order N ~ kr with k£ = (2nf)/c as the wavenumber, is sufficient
for reconstruction in order to preserve most of its spatial attributes. However, some
directions in front or back of the head need more coefficients. Using this formula
(N ~ kr) and assuming a human head with radius r = 9 cm and f = 20 kHz, a 33th-
order model is required resulting in more than 1000 coefficients. Not every HRTF
database has so many measured directions (see Table 5.1, Page 38).

In summary, SH expansion is a promising technique to produce continuous func-
tions in spite of having only a small number of sampled positions. The difficulty is
rather to bring the dataset into a suitable form that fits SH transformation. Almost
all models are focusing on the frequency domain, since the use of HRIRs needs a
higher spherical harmonic order. The dimensionality can be reduced while still main-
taining relevant localization cues. This confirms the fact that a typically-measured
HRTF includes a lot of perceptually-irrelevant data. Studies are in agreement that
the first four SH coefficients are essential for understanding localization cues. They
capture the information to distinguish between left/right, up/down and front/back.
Also interesting is the fact that the expansion coefficients contain all HRTF infor-
mation so a comparison between different databases and measurement methods is
much easier than with other methods. However, currently no HRTF customization

procedure where subjects adapt spherical harmonic weights was found.
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Chapter 4

HRTF Individualization Methods

In last two decades, a variety of different methods for obtaining non-individualized
HRTFs from a generalized HRTF set or an HRTF set of another individual have
been proposed. The methodologies vary from short simple selection tasks to time-
consuming tuning applications in which the subject has to adapt or compare several
parameters. In almost all studies, before and after individualization, a short auditory

localization test is carried out in order to validate the performance of the method.

4.1 Literature Review

4.1.1 Identifying a Near-Optimal Set

Qian et al. [QEI8| proposed an HRTF individualization method that allows subjects
to select the best-matching HRTF from an HRTF set by judging localization per-
formance, coloration and externalization. Stimuli from an HRTF set that included
12 positions on a circle parallel to the horizontal plane, at three fixed elevations
(-30°, 0°, 60°), were presented over headphones. Subjects evaluated externalization
(yes/no), the form of the circle in azimuth and the vertical accuracy using a scale from
1 to 10. After 35 minutes, from the existing 26 HRTF sets, the six best-matching sets
could be extracted. Then paired comparison were conducted on the best-matching
ones, in which each position was presented by two different HRTF sets and the subject
chose the best-matching one. Finally, through a cyclical presentation of the six HRTF
sets, the test persons reevaluated the virtual sources only by a single criterion (scale
from 1-10). By combining the results of these two examinations, a best-matching
HRTF was identified. After the procedure, a subsequent hearing test confirmed some

improvements in localization accuracy.
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Seeber and Fastl [SF03] presented a fast method for selecting a best-matching
HRTF set from 12 existing ones by evaluating localization, spatiality and external-
ization. In a preselection task, 5 of 12 sets could be extracted by neglecting HRTFs
that suffer from in-head localization or front/back confusions. Within ten minutes,
the subjects found an HRTF through several objective and subjective selection tasks.
The authors also suggest to use direct comparison because the differences in HRTF
sets are often very small to identify. Although subjective selection has proven useful in
minimizing inside-the-head localization and front/back confusions, however, selecting
from a larger database with more than 50 sets, results in increased test-time, which
can yield listener fatigue. Furthermore an HRTF set from another person might only
be valid on some local positions and this has not been examined by the authors. For

this reason alone, such a method has limitations.

4.1.2 Anthropometry based Individualization

Other individualization methods operate by relating the physical anthropometric di-
mensions of the ear to specific HRTF parameters. Since measurement of anthropo-
metric dimensions is not as expensive and tedious as measurement of HRTFs, this
might be good alternative approach for automatic HRTF individualization. For ex-
ample, the characteristic of a listener’s outer ear can be used to predict certain spec-
tral features. Positions in azimuth can be derived from the head circumference and
consequently the resulting diffraction or shadowing effects. The physical parameters
can be measured either manually by hand or automatically extracted from a pinna
photography. Rodriguez and Ramirez [RR05a, RR05b| correlated PCWs and central
frequencies of pinna notches (NCFs) with existing dimensions of the pinna. Instead
of HRTFs, they used 64 pinna-related transfer functions (PRTFs) because the fea-
tures of the pinna might be better related to them. The most important parameters
turned out to be cavum concha height, pinna height and pinna rotation angle. To
further improve the correlation factor, linear regression was applied. The goal was to
estimate PCWs and NCF's from existing anthropometric parameters and model the
resulting PRTFs. Similarly, Zotkin et al. [ZHDDO03| proposed using a head-and-torso
model for this task. This method could be useful for automatic extraction of pinna
parameter from an image of the outer ears.

Xu et al. [XLS09] used the CIPIC database to extract local and global key anthro-
pometric dimensions. The former describes parameters that vary for each position,
while the latter provides general information about the subject. The synthesized

HRTFs could reduce the reconstruction error by about nine percent compared to the
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average HRTFs. Xie et al. [XZR07] and Watanabe et al. [WOIT07] put their focus on
the estimation of the ITD. Xie claimed that the ITD varies through different ethnic
groups. Watanabe used I'TD estimation by physical dimensions to improve localiza-
tion accuracy in the horizontal plane. Satarzadeh [ADS07] and Hu et al. [HCWO0S]
continued this work and established pinna models as well as multiple regression mod-
els between the characteristic parameters of HRTFs and the anthropometric parame-
ters. Also very common is the use of Higher-order Singular Value Decomposition, also
known as Tensor SVD [GVO07] [RDS10] to obtain a better determination between the
eigenvectors and the three dimensions (subjects, directions, frequency) of a dataset.
Results indicate a reduced reconstruction error than the models with PCA.

Boundary Element Method (BEM) has been used to calculate the HRTFs from
a given 3D scan of an individual head. Through a finite number of small triangu-
lar elements, the physical model approximates the anthropometry. A fine grid and
therefore high computational cost is necessary to simulate frequencies up to 20 kHz
and all important individual features. Sottek [Sot99] compared measured and simu-
lated HRTF's and concluded that the physical modeling of some pinna dimensions is
still inaccurate. Similarly, Chen et al. [CK07] described that spectral features below
7 kHz can be estimated with good accuracy whereas peaks and notches in higher
frequencies are still poorly represented.

On the whole, the introduction of the physical dimensions is a good approach,
but the measurement is still lawed. Only a small measurement error of the anthro-
pometric dimensions can lead to large discrepancies in the model, especially for high
frequencies. Beside that, the correlation between anthropometric features is low,
therefore it is not possible to predict a feature from knowledge of another one. Ad-
ditionally, the simplified geometric models lead to inaccuracy, since the theoretical
computation of more complex parameters is quite difficult and computationally ex-
pensive. For this reason a mixture of using anthropometric parameters as a starting

point and additional subjective adaption would be a more robust procedure.

4.1.3 Frequency Band Adjustment

Several psychoacoustic studies investigated the role of spectral manipulation in cer-
tain frequency bands and their effect on sound localization. Silzle [Sil02] described
an individualization process that considers smoothing and equalization of frequency
magnitude as well as phase modification of two HRTF sets. A tuning expert adjusted
each of the five directions in the horizontal plane (-135°, -90°, 0°, 90°, 135°) individ-

ually. Ten subjects participated the subsequent listening test with regard to in-head
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localization, distance, coloration and localization accuracy. The results confirmed im-
proved performance of the adapted transfer functions. However, the tuning process
is very time consuming and the individual differences of the subjects could not be
handled by the expert.

Middlebrooks et al. [Mid99b, MMOO0] took a different approach to individualize
HRTFs. Subjects scaled non-individual DTFs along the frequency axis to shift spec-
tral peaks and notches and consequently minimize inter-subject variability. He even
tried to estimate the optimal scaling factor through physical dimensions [Mid99a].
However, the number and location of spectral cues in frequency spectrum is often
very different for individuals, so this method is not always successful. Anyhow, when
a small subset of good-matching HRTF's is already chosen, this approach could be
appropriate.

Tan and Gan [TG98] proposed a 2-step customization process. In the first part,
the user chose a best-matching HRTF set, then fine tuning is carried out through ITD
adjustment and spectral manipulation. A bank of four parallel bandpass filters and
one high pass filter simulate the directional bands and the energy in each frequency
band can be amplified or attenuated. In an localization test, ten subjects reported a
reduced number of front/back confusions compared to non-individualized HRTFs.

So et al. [SL11] manipulated the energy in six frequency bands in the magnitude
spectrum to enhance forward or backward perception. By altering the energy levels
(£0, £12, 18 dB) in these six bands, subjects had to judge several directions based
on front/back discrimination. Using manipulated HRTFs, a sound could be coming
more likely to be perceived from the front or back. Consequently, the localization er-

ror was reduced by 54 percent and the number of front/back confusions by 45 percent.

4.1.4 Principal Component Analysis

The number of studies investigating subjective adaptation of HRTFs using a PC
model is small, the majority of them focusing on sounds on the median plane. PCA
has been explored more as a modeling rather than a individualization process. Figure
4.1 indicates the main idea for using PCA as an adaptation tool. The individualization
process assumes that by adjusting the weights of the principal components, one can
eventually find a combination that results in the desired auditory impression.
Hwang et al. [HPPO8] extracted 12 PCs of median plane HRIRs in the CIPIC
database. Prior to PCA, the initial time delay was neglected and only the first

1.5 ms were included to extract effects of torso, shoulder, head and pinna. Principal

28



Desired
Position

e £

no

Completed
S

Start PCA Model 2 Adapt PCWs

Figure 4.1: Overview of the adjustment process for the PCA model.

components were calculated for each position independently. Components were sorted
in terms of the variability of the associated weights, which is directly related to the
standard deviation of the PCWs. Participants were asked to adjust the weights of
the first three components for nine source positions (-30° to 210°). The remaining
PCWs (4-12) contributed to the reconstruction as a mean value over all individual
weights. Three subjects participated the customization procedure by changing sliders
using a graphical user interface (GUI). The range of the sliders was set to be mean
+3 standard deviation. In a subjective listening test, the subjects reported enhanced
front /back and up/down discrimination compared to the KEMAR HRTF set. Since
also the original HRIRs were measured for the test subjects, no statistically significant
difference in localization error was found between customized and measured impulse
responses. Unfortunately, no information about the time needed for customization
was given.

In [HPP10] they continued the work and proposed an individualization procedure
for three source positions (0°, 70, 180°) in the median plane that are endpoints of
two sectors. Participants adjusted three PCWs for each position, yielding a total of
nine parameters. Weight values for the rest of the positions in the median plane were
interpolated on the grounds of the adjusted PCWs. Nine subjects tuned their HRTFs
taking on average 17 minutes, the results were consistent with the previous study.

Shin and Park [Shi0O8] applied PCA on the left ear HRIRs of the pinna response in
the CIPIC database. On reconstruction, the right ear signal was estimated by the left
ear and subjects could change the balance to center the sound. Nine positions in the
median plane were adjusted by five PCWs respectively. A subsequent localization test

of the four participants confirmed enhanced vertical and front/back discrimination
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although the spectral features of individual and customized HRIRs were not matching.
No indication about the duration of the test was made.

Fink and Ray [FR12] proposed a tuning model in the horizontal plane incorporat-
ing 34 left and right ear HRIRs of the CIPIC database. The data was arranged so that
a principal component involves both ears. The five PCWs with the highest standard
deviations were extracted (2, 4, 7, 8, 3) and tuned in three rounds. In the first exper-
iment, the average HRTF's of five source positions in the frontal region were adjusted
by the subject, after this the PCWs of the same HRTF have to modified so that the
sound is perceived rotated by 180 degrees. In this way, front/back discrimination was
analyzed. A GUI with six sliders indicates the five PCWs and the interaural time
delay. Subsequent listening tests confirmed reduced front/back and average azimuth
perception errors, however, only one subject participated in the tuning experiment.

In addition, no further details were given about the slider range or test duration.

4.2 'Technical Aspects

Beside the challenge of subjective adaption, several technical aspects have to be con-
sidered when synthesizing HRTF's or HRIRs in particular. Two important issues are
discussed here in more detail. First the computation of the phase response and sec-
ondly the influence of the headphone transfer function to the frequency spectrum of

HRTF's.

4.2.1 Phase Reconstruction

Almost all of the aforementioned techniques operate on the magnitude spectrum
of HRTFs. During the individualization process, HRIRs are typically transformed
into the frequency domain, manipulated and transformed back into time domain by
Fourier Transform pairs. Since the spectrum magnitude has been changed in fre-
quency domain, the original phase can no longer be used for reconstruction of the
HRIR. Consequently, the phase information must be either estimated or approxi-
mated. Usually the HRTF phase is divided into a minimum-phase and an excess-phase
component. Whereas the minimum-phase component contains all relevant spectral
cues, the excess-phase part considers the time related cues for localization [Toll0],
therefore this term is commonly estimated only by a constant time delay.

Each transfer function can be separated into a minimum-phase filter and a corre-
sponding all-pass part. The former contains all poles and zeros that are within the

unit circle on the z-plane which follows that also its inverse function is stable. All
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zeros that lie outside the unit circle, however, are shifted to the all-pass system. In
order to obtain a constant magnitude spectrum for the all-pass system, the zeros must
be equalized by poles that are inside the unit circle, so the all-pass remains stable.
Finally these extra poles have to be cancelled by adding zeros at the same position
in the minimum-phase system to fulfill the original transfer function.
A complex spectrum H (jw) at frequency w can be separated into magnitude and
phase response by
H(jw) = |H(juw)] - €0 (4.1)

with the phase ¢(jw) calculated as
oy S{H(jw)}
p(jw) = arctan {?R{H(gw)}} : (4.2)

The original phase is usually divided into two parts,

@(jw> = @min(jw> ) @em(jw) ) (43)

with a minimum-phase and excess-phase term. The latter is described by

Pex(JW) = Pip(Jw) * Pap(jw) (4.4)

containing a linear-phase and an all-pass phase term. Commonly, the all-pass term
is neglected because the auditory is sensitivity to absolute HRTF phase seems to be
low [LEW10]. The remaining linear component is a simple frequency independent
shift in time, which corresponds to the interaural delay. Consequently, an HRTF

under minimum-phase assumption can be denoted by

H(jw) = Hyin(jw) - €777 . (4.5)

The phase response and logarithmic magnitude frequency response of a minimum-
phase system are related through the Hilbert Transform. Thus, the desired minimum-
phase @i, (jw) can be estimated through the logarithmic Fourier transform of the

magnitude response,

Pmin(jw) = Im {H [=in(|H (jw)]]} - (4.6)

Figure 4.2 shows a decomposition of left and right ear HRIRs into their minimum-
phase versions and the subsequent time alignment. It must be pointed out that this
relation can only be imposed when assuming causality of the minimum-phase system.

Thus, the fact that HRTF's are almost minimum-phase can be an attractive quality.
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Figure 4.2: Minimum-phase and delay decomposition for a pair of left (top) and
right (bottom) ear HRIRs. Red line indicates the resulting interaural time difference
calculated by the maximum of the cross-correlation between left and right ear HRIR.
Sound source is given at azimuth 80° and elevation 0°.

Decomposition of HRTF's into a minimum-phase part and an excess-phase term is
widely applied and verified through subjective hearing tests [KW92, KC98, KIC99,
POMO00, NKAO08]. Kulkarni and Colburn [KC98] claimed that the remaining all-pass
term can be neglected because the auditory sensitivity to the absolute phase spectrum
is low, thus I'TD can be modelled as a frequency independent time delay. Contrary,
Mehrgardt and Mellert [MM77]| emphasized that HRTFs are nearly minimum-phase
only up to 10 kHz. Similarly, Nam et al. [NKAO0S8| calculated the maximum cross-
coherence between original and minimum-phase HRTFs and showed that HRTFs are
essentially minimum-phase. A majority of the dataset had a cross-coherence greater
than 0.9.

Since a minimum-phase HRIR is truncated in relation to the original one, the
effect of truncation in relation to localization must also be examined. A welcome
side effect is that the energy of the resulting impulse response is concentrated at
the beginning, leading to shorter filter lengths and reduced computational complex-
ity. Senova et al. [SMMO02| investigated how truncated HRIRs effect localization
accuracy. The spectral resolution of an HRTF magnitude is reduced when the corre-

sponding HRIR is truncated in time domain. Several different durations ranging from
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0.32 to 20.48 ms were tested and they found that the accuracy is affected even at
modest smoothing. Localization performance was affected below a HRIR duration of
5.12 ms, but dramatically below 0.64 ms. This is in contrast to Kulkarni and Colburn
[KC98] who claimed that extreme smoothing from 256 to only 16 coefficients does not
significantly effect localization performance. Senova interpreted the different results
so that Kulkarni has involved only four source positions in the interaural horizon-
tal plane whereas 354 directions were tested by Senova. Consequently, some crucial
spectral details that are necessary for localization judgments in 3D were not tested in
Kulkarni’s experiment. It has to be noted that in contrast to Senova, Kulkarni per-
formed smoothing in frequency domain by truncating the Fourier series expansion of
the logarithmic power spectrum (power cepstrum) which results in low-pass filtering.
However, despite the different processing of the signals, the resulting psychophysical
effect tend to be the same. Senova suggested to use at least a duration of 10.24 ms or
even 1.28 ms when a slight decrease in accurateness is acceptable. Similarly, Zahorik
et al. [ZWK95| investigated in differences between free-field and truncated virtual
sound stimuli and concluded that from a spectral resolution of 195 Hz or higher the
pairs are distinguishable.

Concluding, the majority of independent studies are in agreement that the de-
scribed phase separation can be used without any significant impact on the local-
ization accuracy. The HRTF model presented in this thesis is also based on this

assumption.

4.2.2 Headphone Transfer Function

Many HRTF models and virtual acoustic simulation try to reproduce the spectral
signal at the eardrum as coming from a natural sound source. Studies agree that
headphone equalization is necessary, especially in synthesis of sound sources in vertical
plane. Before each hearing test, first the transfer function should be measured and
then compensated in the experiment. This is more true for closed cup headphones,
open headphones are less susceptible to this.

Whereas the headphone transfer function (HPTF') does not include any directional
or distance information, the function depends on how the apparat is placed on the
head relative to the ear. Kulkarni and Colburn [KC00] pointed out that the HPTF
also differs for each listener, because of the anatomical structures of the outer ear. In
a study they described the large variability of the headphone transfer function using
the KEMAR (Knowles Electronic Manikin for Acoustic Research) dataset and the

widely-used headphone Sennheiser HD520. 20 different measurement were executed
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and after each one the headphone was taken down and put back on again in order
so simulate variability in headphone placement. They confirmed that using a mean
HPTF to compensate differing headphone placements is not suitable. Moreover,
the spectral characteristics of the headphone transfer function have almost the same
properties as the directional features in HRTFs, that is why additional undesirable
perceptual effect may be introduced.

However, no general solution for this issue has been proposed. For this work, the
HPTF was measured once with a dummy head for the headphones AKG K271 Studio
and AKG K272 HD.

4.3 Conclusion

HRTF individualization is still an open research but promising techniques have been
proposed in recent years. The majority of the studies are based on selection of HRTF
from an existing set, individualization using anthropometry and individualization
using orthogonal basis function models.

Selecting an HRTF from a given set is interesting as it only takes little time to
complete for example 10-20 min [SF03]. While this addresses the problem of finding
an optimal HRTF within a dataset, it is not solving the problem of HRTF individ-
ualization. Such solutions could work for certain directions, however, the degree of
individualization of HRTFs makes it difficult to assume that such a solution would
work in general.

Anthropometric methods are interesting, however, a simple relation between the
physical parameters and the HRTF's or the weights of basis function models has not
been established yet. This makes it still a research method which is not ready to
be taken to HRTF individualization experiments and needs to be examined further.
Another problem with this method is that taking measurements of the ear is not
simple and large problems with the accuracy of measurements exist that make this
method difficult to apply especially in high frequencies. Related to this, through
Boundary element method an HRTF set can be calculated from an 3D scan of the
head. However, to obtain accurate results, this numerical approach still suffers from
computational limits.

Individualization using adaptation of the energy in frequency bands has also been
shown to be promising. However, given the lack of agreement and quite likely the

individual nature in defining the frequency bands that determine the localization cues,
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this method is also difficult to apply in practice and can be only considered to be
partially successful.

Individualization using adjustment of the weights of orthogonal basis functions was
found to provide interesting results in psychoacoustic experiments. Certain problems
that emerge there is that the transformations that have been used do not yield weights
that can be unambiguously associated with spatial perception. The obtained principal
components have only been partially correlated to the variables in a cartesian or
spherical coordinate system, such as the one that is use to describe spatial experiences.
This is not always due to a small database or an incomplete measurement set, the
difficulty is in extracting meaningful parameters that are in some way related to
perceptual effects. Even if HRTF individualization could in principle be done using a
basis function model, such a process could quickly become exhaustive, if all individual
positions are to be adjusted. Given that the performance of the subjects may fall
appreciably after hour of concentration, such a procedure would be infeasible. For
this purpose, it also must be mentioned that in the literature individualization for
only a small subset of directions s commonly investigated. Mostly the focus is on few
positions in the median plane to start initial investigations and avoid estimation of
the interaural time delay. The current state of the art is still far away from a global
adjustment for all positions in a tolerable test time.

Currently, there is still no method being clearly superior to the others. Probably
an efficient individualization technique has to combine different methods presented
here. For this work, the focus is on Principal Component Models. This was done
because they have been shown to be promising in the process of individualization of
HRTFs and also because they have the inherent capability to describe in detail the
individual nature of HRTFs. However, given the variability of the methods used in
the literature, it was not possible to proceed further without examining in detail the
impact of design and implementation aspects in estimating a PCA basis. In the next
chapter, a first step into analyzing numerically the impact of design choices in the
formation of PCA input matrix on the reconstruction accuracy and the feasibility of

individualization is conducted.
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Chapter 5

Numerical Evaluation of the PCA
Model

In this section, a decision is made how to structure the principal component analysis
model. To this end, design choices are evaluated, pertaining to how the HRTF dataset
can be restructured and preprocessed to allow for PCA to be performed. In order to
establish to what extent the results are reproducible across databases, three different
HRTF databases were used that are available online for academic use. Due to the
large number of parameters involved in constructing an appropriate PCA input matrix
based on the HRTF data, a first screening among possibilities is done on the basis
of the PCA compression efficiency (defined as the number of principal components
required to maintain 90 percent of the variance in the data) and the applicability
of the possible input structures for the purpose of individualization. Based on these
results, an HRTF representation is selected which is then subjected to a more detailed
investigation that considers the HRTF reconstruction error.

Numerical simulations were performed in MATLAB®. The software that was
developed for this purpose offers certain flexibility in defining the parameters entering
the simulations. It is possible to define: 1. a dataset containing some or all of the
HRTF data, 2. the representation of the input data (time, frequency, logarithmic
or linear), 3. smoothing and filtering preprocessing options, 4. the structure of the
PCA input matrix and 5. the way HRTF data from the two ears are represented in
the input matrix. The parameters are presented in detail in Section 5.2. Figure 5.1

summarizes the main processing steps.
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Figure 5.1: Numerical evaluation of input parameters.

5.1 HRTF Databases

Three open access HRTF databases from the Acoustics Research Institute (ARI)
at Vienna, Institut de Recherche et Coordination Acoustique/Musique (IRCAM) at
Paris and University of California at Davis (CIPIC) were used. Figure 5.2 and Table
5.1 display the number of subjects and the measurement positions in each database.
ARI and CIPIC have the largest number of measurement positions (a total number
of 1250 and 1550 positions respectively). ARI has the largest number of participants
and the database grows continuously’. However, two subjects were excluded from
calculations because impulse responses were not measured for all sound directions. In
addition, subject ID 1034 in IRCAM database was detected as an outlier in several
computations and therefore excluded from further processing.

In the following, most of the analysis results presented concern the ARI and CIPIC
databases because: 1. they contain a large number of subjects and measurement
directions, 2. to increase the consistency with other studies and 3. the ARI database
was used in the listening experiment described in Chapter 7. It is worth mentioning
that all existing HRTF databases contain few measurements in the lower hemisphere.

The lowest elevation measurements in CIPIC and IRCAM are at -45 degrees.

Majdak et al. [MIC*13] proposed a standardized but flexible format called Spatially Oriented
Format for Acoustics (SOFA) for storing measured impulse responses which should overcome the
incompatibility of current HRTF databases and enhance the exchangeability of measured data.
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Figure 5.2: Spatial resolution of HRTF databases. Each blue point indicates a mea-
surement, thus a pair of HRIRs.

Identifier | Department Subjects | Positions | Range
ARI Acoustics Research Institute | 85 1550 Az [0 360]
El [-30 80]
CIPIC University of California at 45 1250 Az [-80 80]
Davis El [-45 230]
IRCAM Institut de Recherche et Coor- | 50 187 Az [0 360]
dination Acoustique/Musique El [-45 90]

Table 5.1: Open access HRTF databases used for data analysis.

5.2 Simulation Parameters

Here, an overview of the various signal representations and their prefiltering used for
PCA in literature is given. Particular attention is paid to the structure of the input

matrix, since it mainly effects the application for HRTF individualization.

5.2.1 Variations in the Literature

In the literature, both time (HRIRs) [Wu97, GWFA05, FR12] and frequency [KW92,
MG92, CvVH93, QEI8, GV07, XLS09, Xiel2] representations (HRTFs) have been
subjected to PCA. Considering time representations, minimum-phase HRIRs have
also been used [Shi08, HP08, HPP10]. In the case of HRTFs, PCA has been applied
to both linear [QE98, RDS10] and logarithmic [Mar87, WK91, KW92, MG92, XL.S09,
Xiel2] magnitude representations. Besides, PCA has not been always performed on
the complete HRIR/HRTF dataset. Decomposition has been applied on the whole
database [KW92, Xiel2], smaller subsets, such as the median [HP08, HPP08, HPP10]
or horizontal plane [FR12] and on single sound directions [Shi0§].
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The way the signals from the left and right ears enter the PCA input matrix has
also been treated in different ways in literature. Sometimes only one ear is modelled
and the second one is considered to be symmetric and therefore duplicated by the
modelled one [Shi08, HPP08]. This solution is somewhat sub-optimal, especially
given the lack of perceptual evaluation studies, however, there is currently no model
that explains the differences of HRTFs across the two ears. Alternatively, it can be
attempted to use PCA to explain the variability across the two ears. This can be
done either by using the time/frequency signals from the second ear as independent
variables in columns or expanded as observations in rows [WK91, KW92] in the PCA
input matrix (Section 5.2.3).

Since databases of various sizes (2-85 subjects, 1-1550 directions) are used in the
literature, it might be also relevant to investigate this. For that reason, a comparison
in regards to compression efficiency between PCA of all sound directions and a smaller
subset until only a single direction is done in the numerical evaluation. In addition,
the impact of different numbers of subjects is inspected.

As there is a lack of comparison between the different studies, it is difficult to
establish which representation is most useful for the purpose of individualization.
To reach a conclusion, the impact of four different input data formats (raw HRIRs,
minimum-phase HRIRs, DTFs with linear magnitude, DTFs with logarithmic magni-
tude), dataset structure as well as the way ears are inserted in the PCA input matrix

on compression efficiency was investigated in the simulations that follow.

5.2.2 Spectral Smoothing

Kulkarni and Colburn [KC98] showed that smoothing the HRTF magnitude spectrum
does not significantly affect localization performance. Smoothing was done by first
taking the logarithm of the spectrum, performing FFT and then limiting the number
of the Fourier coefficients that contributed in the spectrum reconstruction and trans-
forming back to the linear domain. Even as few as 16 coefficients within a spectrum
of 512 coefficients were found to yield satisfactory localization. This corresponds to
a smoothing factor of 1/32 for effectively 512 frequency bins corresponding to an
impulse response of 1024 samples. The impact of smoothing on PCA compression
efficiency has not been evaluated per se. It can be expected, however, that as details
of HRTF magnitude are smoothed out, compression efficiency will increase. For this
reason, the smoothing factor was also included as a parameter in the simulations.

In order to achieve an equivalent smoothing for impulse responses of different

length in the simulations, HRTF spectrum was smoothed by keeping N/32 spectral
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coefficients upon reconstruction, where 2N is the impulse response length. For exam-
ple, ARI database includes impulse responses of 256 time samples. Smoothed versions
using 64, 32, 16, 8 and 4 coefficients upon spectrum reconstruction have been used.

The resulting spectrum is shown in Figure 5.3.

magnitude [dB]

-60 i i i j
0 5 10 15 20

frequency [kHz]

Figure 5.3: Spectral differences between unprocessed (128 coefficients) and smoothed
DTF magnitude spectrum (with 64, 32, 16, 8 and 4 coefficients) in ARI database.

5.2.3 Structure of the PCA Input Matrix

Generally speaking, PCA works equally well on different realizations of a 2D input
matrix with columns as variables and rows as observations. As the problem of HRTF
modeling is multidimensional, because of the variability observed across subjects,
time samples/frequency bins, sound directions and the two ears, the arrangement of
the HRTF data in a two-dimensional matrix is open to different interpretations. Es-
sentially, such an input matrix can be created based on, to a certain extent arbitrary,
permutations of the four dimensions that appear typically in an HRTF dataset. The
dimensions appear either in columns or rows of the input matrix. Considering the
major trends in the literature as well as other possible arrangements, five structures
which might be relevant for HRTF data decomposition were identified. These are
called input data structures Structl to Struct5 in the following. These structures
yield different principal components and corresponding weights, which need to be

understood and made relevant to HRTF individualization.
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In structure Structl [subjects x (signalxsound directions)], the complete dataset
consisting of the aggregated data (either in frequency or time domain) in the different
measurement positions are used as independent variables in columns, while the ob-
servations from different subjects are deployed in rows (Figure C.1, Page 102). PCA
returns one weight that can be used to recreate the entire HRTF dataset for each
person or two weights to recreate the HRTF dataset for each ear, depending on how
ears are handled in the input matrix.

Structure Struct2 [(subjects x sound directions) x signal] is a pattern that has
been used by Kistler and Wightman [WK91, KW92|. Here, signal bins (in frequency
or time domain) are the independent variables in columns, while replications for the
different subjects and measurement directions are used as observations in rows (Figure
5.4, Page 49). Four different realizations can be distinguished, depending on whether
a single ear is used and on whether both ears are included as independent variables
in columns or replicated as observations in rows. PCA returns PCs that weigh the
contributions of each frequency bin differently and either PCWs for each direction
and subject when data for the second ear are blocked in each column, or PCWs for
each direction, subject and ear when ears are included as observations in rows.

In structure Struct3 [signal x (subjects x sound directions)] (Figure C.2, Page
103), the subjects and positions under consideration are used as independent variables
in columns and the time or frequency domain signal bins are used as observations
in rows. One obtains PCs that weigh the contribution of each subject and sound
direction differently. Depending on how data from the second ear are included in
the matrix, this can either be modelled using a single PCW (when ears are blocked
as independent variables in columns) or one obtains one PCW for each ear. The
resulting PCWs for each frequency bin or time sample can be used to recreate the
variability of each frequency bin for a specific subject and sound direction.

Structure Struct4 [(signal * sound directions) x subjects| (Figure C.3, Page 103)
deploys subjects as independent variables in columns whereas signal bins (in frequency
or time domain) of all source positions are listed as observations in rows. PCA returns
PCs that weigh the contribution of each subject or ear differently, depending on the
handling of the ears. The PCWs can be used to recreate the contribution of a signal
bin for a particular sound direction for each subject. When the data of the second
ear are blocked as observations in rows, there are additional PCWs for each ear,
otherwise ears are considered as independent variables and the PCWs take both ears

into account.
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Structure Structb [(subjectsx signal) X sound directions| (Figure C.4, Page 104)
was also used by Xie [Xiel2] and lists each position on the columns as independent
variables while frequency or time samples from all subjects are considered to be
observations in rows. PCA of this representation is applied in the spatial domain,
unlike previous structures in subject, frequency or time domain. One obtains principal
components that weigh the contribution of each position and ear differently when ears
are listed as independent variables in columns. The corresponding weights can be used

to recreate each frequency or time bin for a given position for a specific subject.

5.3 Impact on Compression Efficiency

Table 5.2 presents the results of the manipulation of the main independent variables
used in the simulations on the compression efficiency of a PCA model using the ARI
database as input. Both ear signals are considered in the results. In Appendix C.2,

a complete tabular analysis is also given for single ears and other databases.

HRIR | Min HRIR | DTF lin | DTF log
E/]IE—-|E|] E—~|E] E—|E||E—
S/1 192 55 | 56 | 52 | 28 | 47 | 40 | 62
_'S/2 192 55 [ 56 | 52 | 26| 46 | 35 | 61
SS/A 92 55 [ 56 [ 52 |24 45 [ 28| 59
2S/81 92155 [ 56 | 52 | 18] 39 [ 19 | 55
S/16| 92 | 55 | 56 | 52 | 9 | 30 | 9 | 50
S/32|1 92 | 55 [ 56 | 52 | 6 | 24 | 5 | 46
S/T | 15| 29 [11 ] 20 | 7 [ 12 | 6 | 10
ol S2 115 20 11 ] 20 | 6 | 12 | 5 8
SIS/ 1529 [ 11|20 [ 6 | 11 | 4 7
ElS/8 1529 [11 ] 20 | 5 9 3 6
S/16| 15 | 29 | 11 | 20 | 3 6 3 1
S/32 15 [ 29 | 11 | 20 | 2 4 2 2
TIS/A[29] 15 [12] 7 8 6 2 1
=[S/2 129 15 [ 12| 7 8 5 2 1
wal|S/A[29 15 [ 12] 7 7 5 2 1
continued on next page
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continued from previous page
HRIR Min HRIR DTF lin DTF log

EJ
S/8 129 15 [ 12] 7 6 5 2 1
S/16| 29 | 15 | 12 | 7 3 3 2 1
S/321 29 | 15 [ 12| 7 3 3 2 1
S/1 48] 8 [13] 19 | 6 8 1 2
S/2 48] 8 [ 13] 19 | 6 7 1 2
~|S/M4 48] 8 [13] 19 | 5 7 1 2
SsSB4 8 [13] 19 [ 4] 5 1| 2
2[S/16] 48 | 85 [ 13 [ 19 | 2 3 1 2
S/32] 48 | 8 | 13| 19 [ 2 3 1 2
S/1 [ 151 174 | 9 8 5 6 2 1
| S/2 | 151 | 174 | 9 8 5 6 2 1
S[SAJIL] 174 [ 9 8 5 5 2 1
Z[S/8 1151 174 [ 9 8 4 5 2 1
S/16 | 151 | 174 | 9 8 3 3 2 1
S/32] 151 174 | 9 8 2 3 2 1

Table 5.2: Number of PCs required to yield 90 percent variance for different realiza-
tions of a PCA input matrix based on the ARI dataset. S/1 refers to no smoothing
and S/2 ... S/N to different degrees of HRTF spectrum smoothing (see Section 5.2.2).
Horizontally, the input signal representations are given and whether ears are blocked
in rows (EJ) or columns (E—). Five different input structures and variations of
spectral smoothing are listed vertically.

5.3.1 Impact of Input Structure

By observing Table 5.2, it can be seen that the structure of the input matrix has a
great impact on compression efficiency. The effect of the input structure seems to
be the same across different configurations of the other parameters. Using Structl,
28 to 92 PCs are required to explain 90 percent of the variance on reconstruction,
depending on the ear configuration and whether ear-transfer functions are in the time
or the frequency domain. The number of components is less when using DFT's instead
of HRIRs, but still too high. This is not surprising, since one PC weigh the data of
all listening positions of a subject, consequently the variability of the corresponding
component weights is very high. However, this greatly restricts the application of
such a representation.

For Struct2, only 6 to 12 PCs are essential to express 90 percent variance when
transfer functions are represented in the frequency domain. Only about half of the

components (1-8 PCs) are necessary for Struct3. Interestingly, with logarithmic DTF
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and ears blocked in columns, only one component is required. Apparently, the varia-
tion through subjects, positions and ears for each frequency bin can be well described
by only one component.

Similarly, in Struct4, 1-8 components are necessary to achieve 90 percent variance
in frequency domain whereas only 1-2 component are required with the logarithmic
version. For Structb, 90 percent variance is obtained in frequency domain using
5-6 components in the linear case and only 1-2 in the logarithmic version. This
reveals that the variability observed in the different directions can be well presented
by a smaller number of components, which, however, weigh the contribution of each

direction in a way that optimally explains the variance in the dataset.

5.3.2 Impact of Ear Handling

Table 5.2 provides us with insight on the impact of the different ways to include ears
in the database. In general, it can be seen that when ears are blocked in columns more
components are required compared to the case in which ears are used in rows. This
is to be expected as the dimensionality of the problem increases. Structures Structl,
Struct2 and Struct4 in both domains need more components when ears are listed as
independent variables in columns. The increase of the required components is not
surprising, since the signals from the two ears are stringed together. Consequently, a
particular principal component must describe the double amount of data. Therefore
the difference between the components is up to twice the number.

However, representation in time domain with input structure Structl indicates less
components for ears blocked in columns whereas the opposite is the case in frequency
domain. Similarly, structure Struct3 the number of components is decreased when

ears are blocked in columns but this is consistent for all signal representations.

5.3.3 Impact of Dataset

Seven subsets of subjects, starting with only two up to the maximum number of
individuals in the HRTF database, were used for PCA. Results for Struct2, Struct3
and Structb indicate that the usage between 2 and 10 individuals has an impact on
compression efficiency, such as about 3-5 components can be saved with a smaller
set of individuals. However, when using more than 10 subjects, there are hardly any
differences. In contrast, when using Structl and Struct4, also great differences are

evident for the entire range of subjects.
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The number of sound directions was manipulated starting with only one direction
and increased in six steps until the total amount of positions. For Struct2 and Struct3,
a reduced number of sound directions leads to a worse compression efficiency whereas
for the remaining structures the compression efficiency improves. In the same way
as with subjects, differences are only visible on very small numbers, up to about ten
positions. If one uses more than ten positions, there are no differences with respect

to the compression efficiency for all structures.

5.3.4 Impact of Signal Representation

In general, time domain compared to frequency domain signals need more basis func-
tions to explain the same variance due to the extensive nature of the data including
both magnitude and phase. However, there are also great differences between the two
representations in time domain, worth mentioning is the difference between HRIRs
(174 PCs) and their minimum-phase versions (8 PCs) using Struct5. Above all, the
removal of the onset delay before computing the PCA greatly reduces the amount of
principal components.

Leung and Carlile [LLC09| also investigated the PCA compression efficiency and
came to the conclusion that the optimal format for PCA decomposition in terms of
compression is the linear amplitude form in frequency domain. They used an HRTF
dataset of 393 directions, but the number of subjects was not specified. Moreover, the
structure of the PCA input matrix was not defined. From their results (5 PCs for 90
percent variance in linear magnitude), one can conclude that all described structures
except Structl come into consideration.

Table 5.2 only indicates a better performance of the linear over logarithmic ver-
sion for Structl. A closer analysis of the remaining structures reveals that in general
the logarithmic amplitude outperforms the linear version. Note that these results are
not consistent over HRTF databases, because simulations with CIPIC and IRCAM
produce fewer components with the linear representation. This can be seen in Figure
5.5 (Page 50), which indicates a better performance of ARI database (black line) with
logarithmic spectrum than other databases. In addition, Table 5.2 shows that the
more you smooth the frequency spectrum, the better results in the logarithmic spec-
trum. This is because of the nature of logarithmic compression. To this, Breebaart
[Brel2] pointed out that despite a linear representation is more efficient in regards
to the explained variance, using the logarithmic domain yields a smaller root mean
square error (RMSE). Consequently, the total explained variance for a particular set

of PCs does not always reveal the error in magnitude spectrum.
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5.3.5 Impact of Frequency Smoothing

Spectrum was smoothed according to the rationale presented in Section 5.2.2. By
observing Table 5.2, it can be seen that smoothing greatly reduces the number of
components required for representing 90 percent of the variance for all manipulations
of the other independent variables. In general, each time the Fourier coefficients are

reduced by 50 percent, 1-2 components can be saved.

5.3.6 Conclusion

Concluding this investigation, the choice of a particular kind of HRTF representation
in time or frequency domain indeed has impact on the performance of subsequent
procedures. Assuming that minimum-phase HRTFs can provide sufficient auditory
impressions, choosing a PCA model that operates on spectral data seems an obvious
choice as one can explain more variance with fewer components.

The results were not clear enough to obtain insight on whether a linear or a
logarithmic spectrum is more appropriate. For the majority of the input structures
investigated and in the case of the ARI database, best compression efficiency was
obtained for a PCA model based on logarithmic HRTF magnitude in contrast to
other HRTF databases (see Table 5.2, Page 43), where linear magnitude offers some
advantage. It is worth mentioning that using a linear magnitude can cause problems
of HRTF magnitude undershoot (i.e. values smaller than 0) upon reconstruction with
few components and/or interpolation between different principal component weights.
This means that it is easier to obtain a stable way of interpolating between principal
component weights using a logarithmic representation. In the case of ARI database,
a compression efficiency advantage emerges as well, but for other databases the gain
in explained variance when using linear magnitude is relative small.

Spectral smoothing seems also useful to use, up to the point where no important
information is lost. Kulkarni and Colburn [KC98| proposed keeping 1/32 of the
spectral coefficients, that is 8 coefficients in the case of the ARI database. This led to
audible coloration in informal hearing tests that were performed, and for this reason,
32 of 128 coefficients were preserved, which led to no audible coloration, and a small
increase in the explained variance due to a smoother spectrum.

The goal of this model is to capture and analyze individual differences, therefore
all available subjects in the HRTF database were used. Similarly, all sound direc-
tions were included to obtain a spatial relationship between the principal component

weights.
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The appropriate PCA input structure is a choice that needs to balance two pa-
rameters. On one hand, it should lend itself easily to individualization and on the
other, enough variance should be explained. Structure Structl refers to a global mod-
ification of all subject’s positions and PCA returns PCWs for each subject (and ear
when using ears as observations in columns blocked). That could be used to recreate
the signal at all listening positions, thereby decreasing the overhead of an adjustment
process. However, this does not seem to be very flexible because a single parameters
modifies all directions simultaneously. More than 20 components are required to de-
scribe 90 percent variance of the dataset. An implementation of this was done and in
fact, it appeared that such an adjustment is not useful. Most variance is explained
with Structures 3/4/5. However, the weights one obtains from these structures can-
not be easily used for individualization as they correspond to different frequency bins.
Adjusting neighboring frequency bins is a task that is difficult to perform by hear-
ing. In addition, the number of frequency bins that need to be adjusted even for a
single position is quite high. For this reason, although the few components needed to
explain variance for these structures is an interesting finding, the obtained model is
difficult to be subjected to a perceptual adaptation task. An interesting alternative is
structure Struct2, which requires relatively few components to explain a large propor-
tion of the variance, in practice 10 PCs for 90 percent variance on reconstruction. At
the same time, using this structures, one obtains a PCW set that can be easily used
for individualization. As with this structure each PC is a function of frequency, by
adjusting the weights one effectively interpolates between the PCW for each subject
and sound direction. This is a task that can be easily translated to be used within a
listening test.

Choosing an appropriate way to include both ears in the model is a difficult task.
One obtains best results when only one ear is used or both ears are included as
observations in rows, however, it was not possible to find neither subjective tests not
a model that can sufficiently explain how data for the second ear can be obtained from
data from the first ear. In addition, obtaining different weights for each ear leads to
the situation where one needs to adjust HRTFs for both ears, which effectively doubles
the number of adaptations one needs to perform. This naturally forms an interesting
problem, which is, however, not investigated further in the thesis. In the following,
the decision was made to combine left and right ear data by concatenating each pair
of DTF's into a single vector, so that ears are blocked in columns. Consequently, both

ears can be adjusted simultaneously using one PCW, albeit to an (unavoidable at
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this point) sacrifice in the number of components required to explain 90 percent of

the data variance.

5.4 Detailed Analysis of the selected Structure

Here the selected structure Struct2 is analyzed in a similar way as before, however,
the analysis is replicated across the three databases and the reconstruction error
for difference PC subspaces is also calculated. Figure 5.4 illustrates the selected
structure and how information from the second ear could be handled. In the analysis
and for the reasons explained before, both ears are used as independent variables
in the calculations that are presented. In order to facilitate the comparison between
databases, differences in the level of the measured HRIRs which affect the distribution
of the PCWs, have been dealt with by applying global normalization of the raw data
HRIRs in the databases to the amplitude of one. In this way, the distribution of
the resulting PCWs becomes consistent across databases. This has no effect on the
performance of the PCA, it facilitates though the comparison of the results between
the databases.

5.4.1 Signal Representation

Figure 5.5 shows the explained variance as a function of the components used for
four signal representations that are typically used in PCA for three HRTF databases.
Consistent with previous analysis, PCA on raw HRIRs does not perform well in terms
of compression efficiency, because of the direction-dependent onset delay (ITD) and
the higher input variability of the time domain signal. Minimum-phase HRIRs need
significantly fewer components to express 90 percent variance than their original ver-
sions. Best compression efficiency is achieved for frequency domain representations,
where only the magnitude spectrum is taken into account. The choice of the database
has an influence on the results. ARI with logarithmic magnitude yields the best com-
pression efficiency, therefore this representation was chosen for the model.

In addition, spectral smoothing has a higher influence on DTFs with logarithmic
than linear magnitude (Table 5.2, Page 43). When the Fourier coefficients are reduced
to a quarter, the number of components for 90 percent variance can be reduced by

three components in the logarithmic and only by one component in the linear case.
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Figure 5.4: Dimension of input matrix Struct2 [(subjects*positions) x signal] when
choosing ears in columns (first line) or rows (second line) blocked.

5.4.2 Local or Global PCA

It also must be considered whether all positions are processed simultaneously [KW92,
Xiel2], or PCA is applied separately for each position [Shi08]. The common approach
is the first one, because the latter yields different components for each sound direction
and therefore the relationship between the directional weights in different positions
is not possible to establish. This is an important limitation for the purpose of un-
derstanding the influence of PCW on perception, makes the development of PCW
interpolation techniques difficult, but also complicates the construction of an individ-
ualization algorithm as PC sets for each direction of interest need to be available.
One could argue that as a particular position might share some spectral patterns,
the decreased variability of the PCA input data might enhance the compression ef-
ficiency. However, as Figure 5.6a shows, this in not the case. For most practical
applications, the number of principal components required is higher in the case of
local compared to global PCA applied to logarithmic frequency magnitude of the

structure under consideration.
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It has to be noted that there are also great differences in compression efficiency
comparing PCA of all single positions. Figure 5.6b indicates the required components
to yield 90 percent variance for logarithmic magnitude. Up to 32 components are
necessary for lateral directions below 40 degrees in elevation. In contrast, 20 PCs are

required for sound directions above and behind the head.

5.4.3 Reconstruction Accuracy

In order to reduce the adaptation time, an PCA based HRTF model will necessary
operate on a subspace of the principal component basis. Consequently, a reconstruc-
tion error is expected. To investigate this, the number of PCs for reconstruction was
manipulated as shown in Figure 5.1 from only one to all PCs in five steps and the
reconstruction error in time and frequency domain was estimated. In the simulation,
the parameters in Table 5.3 (Page 58) reflecting the initial model choice were used to
define the PCA input matrix.

5.4.3.1 Error Metrics

A measure for objective assessment of HRTF reconstruction in frequency domain is
Spectral Distortion (SD). The error metric for an arbitrary subject s and position 6

between synthesized and real HRTF's is calculated by

SD(s,0) = %Z [2010g10 M] : (5.1)

j=1

where H(s, 0, f;) and H(s,0, f;) are measured and estimated HRTF logarithmic
magnitudes respectively, f; refers to the frequency index and N is the total number
of frequency bins. The synthesized signal is more similar to the measured one when
a small SD is obtained.

For a PCA HRTF model that operates on the magnitude spectrum, a relevant error
measure in time domain is the reconstruction accuracy of the minimum-phase HRIR.
When phase is neglected, the difference between original HRIR and reconstructed
HRIR will be too large, which not necessarily reflects a high perceptual difference.
Comparing to the minimum-phase functions reflects better the model reconstruction
capacity as phase information is ignored. PCA is applied and reconstructed in fre-

quency domain, afterwards HRIRs are synthesized using minimum-phase assumption
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and compared to the minimum-phase functions of the measured HRIRs. Signal-to-
Distortion Ratio (SDR) is defined as

N
> h*(s,0,n)
n=1

SDR(s,0) = 10log, (5.2)

9 )

il [h(s, 0,n) — ﬁ(s, 0,n)

with h(s, 6, n) as original and h(s, 0, n) as reconstructed impulse response. Index
n indicates the time sample with a total number of N. Note that the higher the
value, the better is the reconstruction. When the two signals are equal, the metric is

infinite.

5.4.3.2 Results in Frequency Domain

The first row of Figure 5.7 shows the spectral distortion when using linear and log-
arithmic magnitude spectrum as input signal. Spectral distortion was calculated by
comparing the original preprocessed HRTF dataset to the reconstructed one in which
a different number of PCs has been used. For each of the PC subspace dimensionali-
ties, a box plot based on the reconstruction error of all subjects, positions and ears is
presented. The median value is indicated by the central mark, the edges of the boxes
are the 25th and 75th percentiles and the whiskers extend to the most extreme data
points. Outliers are plotted separately as red markers.

The results are consistent overall databases and indicate that at least five PCs are
essential for an average error of about five decibel. As already mentioned by Breebaart
[Brel2], the error is lower for processing in the logarithmic domain. To this, it should
be noted that the difference between the average error values in linear and logarithmic
magnitude is not great, but the range of the distribution and especially of outliers
decreases in the logarithmic case.

The second row of Figure 5.7 shows the probability density function (pdf). It
indicates the distribution of the error for linear and logarithmic magnitude when using
ten components for reconstruction and generally indicates a skewed distribution in
the case of linear amplitude and a normal distribution in the case of the logarithmic
one.

The bottom row of Figure 5.7 displays the mean error for each position when ten
components are used for synthesis. The values were averaged across subjects and ears.
Clearly, the error distribution follows a precise pattern. Both linear and logarithmic

version indicate a higher error for the lateral region between -20° and 20° elevation.
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Figure 5.7: Spectral distortion (SD) between PCA input matrix and reconstructed one
when using linear (left column) and logarithmic (right column) frequency magnitude

in ARI database.

Using a logarithmic amplitude again provides an advantage in reducing the spread

error across the different directions.

Closer analysis revealed, that the higher the

number of components, the narrower is the shape of this pattern.
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Figure 5.8: Average SD across subjects for each position and ear when using 10 PCs
and logarithmic magnitude in ARI database.

Although the magnitude of the ears were simultaneously processed, the error can
be plotted separately. Figure 5.8 shows the SD for left and right ear, averaged across
subjects. Logarithmic magnitude for PCA and 10 PCs were used for reconstruction.
For sound directions ipsilateral to the ear, SD is low whereas for sound directions
contralateral to the ear SD is much higher up to four decibel. In general, due head
shadow effect, the signal-to-noise ratio of the contralateral ear in the PCA input data
is lower, therefore also modeling through PCA with a limited number of PCs leads to
a higher reconstruction error. It has been shown, that the more components are used,
the smaller is the difference between contra- and ipsilateral errors. However, for source
elevations higher than 40 degrees, SD for the contralateral directions significantly
improves. In practice, for lateral directions of more than 40 degrees, the contribution
of the contralateral ear is far less important than that of the ipsilateral one [HB8S].
Consequently, there should be only a small influence on localization performance.

Figure 5.9 indicates the error distribution over subjects and positions for each
frequency bin in ARI and CIPIC database when 10 PCs are used for reconstruction.
The median value is indicated by the white circle with a black point, the edges of
the blue boxes are the 25th and 75th percentiles and the white whiskers extend to
the most extreme data points. Outliers are plotted separately as blue points. An
inspection of the figure reveals an increasing average error in higher frequencies. At
first glance, it looks as if many outliers were included. However, one must bear in
mind that for each frequency bin, more than 128 thousand (1550 positions x 83
subjects) points for ARI and 56 thousand (1250 positions x 45 subjects) points for
CIPIC are represented. The results are almost the same with IRCAM database. The
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error increases for frequencies above 5 kHz, because the higher spectral variability in

this range can not be modeled by the limited number of 10 principal components.

5.4.3.3 Results in Time Domain

The first row of Figure 5.10 shows the signal-to-distortion ratio. The average SDR is
about 8 dB when using 10 PCs. Compared to Xie [Xiel2], who used 35 basis functions
and reached an average SDR across all positions of 21 dB, the SDR in this model is
decreased to about 11 dB. However, as already mentioned, Xie used structure Structb
for the PCA input matrix, this might also enhance the SDR. For example, Keyrouz
and Diepold [KDO08| proposed an HRTF interpolation method and indicated a SDR
between 30 and 72 dB. In general, SNR of about 20 to 70 dB are specified in literature
for acoustical measurements [WI03, NC10].

Unlike to the frequency domain, using linear data as input results in a small
advantage in reconstruction error compared to using logarithmic magnitude. Similar
findings were obtained when examining the envelope of the reconstructed and original
minimum-phase HRIRs was compared.

The second row of Figure 5.10 shows the distribution of the error when using
ten components for reconstruction, and similar to the frequency domain, a skewed
distribution is obtained for linear and a normal one for logarithmic input. The bottom
row of Figure 5.10 displays the SDR for each position when ten components are used
for synthesis. The values were averaged across subjects and ears. As in the frequency
domain, also in time domain a clear pattern for the error with respect to source

positions is visible. Results are consistent with the frequency domain representations.
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Figure 5.9: Distribution of spectral distortion (SD) over positions and subjects for
each frequency bin when 10 PCs are used for reconstruction.
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Figure 5.10: Signal-to-distortion ratio (SDR) between original and reconstructed
minimum-phase HRIRs in ARI database.

5.5 Conclusion

In this chapter, different parameter sets that affect how the HRTF set can be trans-
formed into a 2D matrix for PCA were described and evaluated through a numerical

simulation. Based on the results of compression efficiency and also by considering
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their suitability for HRTF individualization, the matrix structure Struct2 was cho-
sen. In addition, it was decided to model ears independent variables in columns, as
this yields a PCA model that allows the simultaneous adaptation of HRTF's for both
ears, a very flexible approach for HRTF adjustment.

It was decided to construct a PCA model that operates on the logarithmic mag-
nitude spectrum, because this yielded the maximum compression efficiency for a rea-
sonable number of components in the case of the ARI database. Ten components
are required for describing 90 percent variance of the dataset. Through smoothing of
the frequency magnitude, the components could be reduced to seven. However, the
results are not always consistent over HRTF databases. Therefore, for each database
it must be considered separately whether linear or logarithmic signal representation
leads to an adequate compression efficiency.

The reconstruction error in frequency and time domain was investigated for the
selected structure. Using the proposed model configuration in Table 5.3, minimum
seven components are required to yield 90 percent variance of the data, which leads
to an average reconstruction error below five dB. In general, the error increases for
higher frequencies since the spectral variability in this regions is increased.

In contrast to this, interpretation of the error in time domain is more complicated
because some modifications of the PCA input matrix are not visible at the time
domain error. Beside that, a large error in time domain is not directly linked to
a degradation of localization performance [Rom12]. The difference between original
and reconstructed HRIRs can not be used as an objective measure since the shape
of the signal is completely altered by the minimum-phase approximation. Therefore,
the reconstruction of the minimum-phase impulse responses was tested and indicate
an average signal-to-distortion ratio of about eight decibel for reconstruction with 10
PCs.

Concluding this numerical evaluation, for the individualization process, the numer-
ical results indicate that the modification for the first seven components is adequate
since they describe about 90 percent variance of the dataset and yield an average
reconstruction error of about 5 decibel.

The selected structure provides the possibility for adjustment of a single position
by adjusting PCW for a PCA model using 7 components. Such a process can, however,
be tedious as one needs to perform the individualization process separately for each
sound direction of interest. The next chapter focuses on how the model could be
extended to allow for a global HRTF individualization process. Finally, Table 5.3

summarizes the parameters of the PCA model.
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Model Parameter

Value

Database

Acoustics Research Institute (ARI)

Dataset

All subjects and source positions

Matrix Structure

Struct2 [(subjects * positions) X signal]

Signal Representation

DTF with logarithmic magnitude

Ears

Both

Ear Handling

Ears added as independent variables in columns

Frequency Smoothing

Reducing the Fourier coefficients to a quarter (re-
sulting in 32 coefficients)

Table 5.3: Input matrix properties of the PCA model.
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Chapter 6

Global Model of HRTF
Individualization

Up to this point, existent HRTF models and their technical principles were discussed
and a PCA analysis model was selected based on the results of a numerical evalua-
tion. As mentioned earlier, these classes of models are most suitable for local HRTF
individualization, in the sense that each position needs to be adjusted individually.
This is a consequence of the fact that the algorithm returns a single PCW for each
position and subject in the dataset. Such a practice has been used in the literature in
the works of [HPP08, Shi08, HPP10, FR12| and will be referred as local adjustment in
the following. After reviewing briefly the rationale of this methodology, this chapter
attempts to investigate how such a model could be extended to allow for a global
HRTF individualization, in which multiple sound directions are adapted simultane-
ously. To this end, a new HRTF individualization method is proposed which operates
on a spherical harmonics model of the principal component weights. The model is
evaluated numerically in order to understand how the order of the spherical harmon-
ics representation affects the reconstruction accuracy of the HRTFs. The chapter
concludes with a discussion on the feasibility of the technique and the possible use of

regularization techniques.

6.1 Local Adjustment

In previous work [Hol12], a simple graphical interface for adapting PC directly for each
source position or trajectory of interest was presented. Usually a trajectory includes a
small subset of positions arranged parallel to the horizontal or median plane. Figure
6.1 depicts the method. The individualization process assumes that by adjusting

the weights of the principal components, one can eventually find a combination that
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Figure 6.1: Local adjustment of source positions or trajectories.

results in the desired auditory impression. To this end, a simple model of the PCW

distributions is used that employs the range of the weight distribution as estimated
by the PCA. Consequently, the PCWs can be modified by

Wy =Wy £ 0 %1, , (6.1)
with
e w,, as the adapted PCWs for one position,
e W, as the mean value of w, for a particular position over subjects,
e 0 as the standard deviation of w, over subjects and
e v, as an adaption vector that essentially defines the allowable adaptation limits

(typically between -3 and 3).

Note that using v = 0 leads to a generalized HRIR sample with average weight

values. The unbiased sample standard deviation is given by

N

1 a7 )2
o=\ 77 2w )2 (6.2)

s=1
with w, as the sample value, w, as the mean value and N as the total number of
subjects. In order to enhance customization of particular components, the adaptation
limits could be extended (for example v = 10).

Assuming a normal distribution of principal component weights, the range of
w, £ 30 contains 99.73 percent of all subjects weights. Hwang and Park [HPPOS,
HPP10] also used this range in their approach. Typically, the weights of the subjects

should be very close to a normal distribution, but this is not always the case and
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also depends on the signal representation used for the PCA input matrix. Without
loss of generality, however, one could alternatively base the adaptation process on
particular percentiles of the distribution (e.g. 1st, 12.5th 25th, 50th, 75th, 87.5th,
99th), where 25th and 75th percentiles are the first and third quartiles respectively,
and the 50th percentile corresponds to the median value. The method essentially

interpolates between the existing HRTF's in the dataset for a given position.

6.2 Global Adjustment

Although the approach of local adjustment is very flexible and powerful, an adaptation
of each of the weights for every position of interest is time consuming. One way to
overcome this problem is to provide a model of principal component weights. An
important advantage of the selected structure for the model is that PCW are obtained
for each subject and sound direction in the dataset. It is therefore straightforward to
seek a spatial model of the principal component weights. Given the location of the
sound directions on sphere, it would seem appropriate to use the spherical harmonic
transform to create such a model. This transform has been used successfully to model
and synthesize HRTFs [EAT98, EA98, ZDG09, AR10, Rom12]. The focus here is,
however, not the same, rather it is on applying the transform to provide a model
of the PCWs on the sphere. Thus, the spherical domain only serves to simplify the
adaption of the PC weights.

6.2.1 Formulation

Assuming an HRTF dataset Dy, comprising Ng subjects with HRTF's of signal length
L, measured at Np directions. The PCA input matrix H [Ny x Mpy] is constructed
according to Struct2 definition (Chapter 5.2.3, Page 40) as Ny = NpNg and My =
2L.

In order to allow proper PCA processing, first, the column mean of H is subtracted
resulting in a new input matrix G [Ny x My] and a matrix M [1 x My] including the
mean data. PCA is applied on G, resulting in a matrix V [My x My]| containing the
eigenvectors of the covariance matrix of G, also called the principal components, and a
corresponding principal component weight matrix W [Ny x My|. The decomposition
fulfills W = G V.

Matrix Yy [Np x (N +1)?] includes the spherical harmonics of order N, sampled
at Np positions on a sphere. The two-dimensional principal weight matrix W is

reshaped to obtain three dimensions according to subjects Ng, positions Np and
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principal components Mpyg. The weights for each subject is presented by the matrix
W [Np x Mpyg]. As described in Chapter 3.2, the spherical harmonic coefficients

Wy g for each subject are given by

Tys=Yl Wg, (6.3)

with YT [(V+1)% x Np] as the pseudo-inverse of Y. Similar as for the principal
component weights, the idea for adjusting the spherical harmonic weights is based
on the assumption of a normal distribution of the individual weights for each basis
function. Therefore, the range for the individualization process can be set to the
mean value 4+ 30 across all subjects.

Going back to the PCA domain, the principal weights for each subject that are

modeled through spherical harmonics are reconstructed by

Ws=Yy Opns. (6.4)

Afterwards, the individual principal weights are collected and formed again to
the two-dimensional weight matrix W. Finally, the desired HRTF dataset H is
reconstructed from the PCA decomposition and the subtracted mean matrix M is

added again by

H=W VM. (6.5)

The whole process is finished by reshaping H to the original four-dimensional
structure in order to evaluate the differences between original and reconstructed
dataset. The accuracy of the model is based on the limitation of the PCs as well
as the SH order.

6.2.2 Matrix Regularization

As already mentioned, the condition number of a matrix describes the ratio between
smallest and largest singular value and is an indicator for the accuracy of its inverse.
In general, it measures the sensitivity of a function in regards to how much error
results in the output for only small changes in the input. A condition number of
close to one means a matrix is well-conditioned and its inverse can be calculated
with adequate accuracy. In contrast, a high value is referred to numerical errors
computing its inverse and if the condition number is infinite, the matrix is singular
and no inverse can be computed. For the numerical evaluation of this global HRTF

model, the condition number of the spherical harmonic matrix, which contains the
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Condition Number of the Spherical Expansion Matrix
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Figure 6.2: Condition number of the spherical harmonic expansion matrix in regards
to the spherical harmonic orders in three different HRTF databases.

spherical harmonic expansion, was inspected for each SH order. Figure 6.2 indicates
the rising condition number in regards to the SH orders for three databases with
different sampling grids (cf. Figure 5.2, Page 38). For a better view, only 1st to 7th
order are plotted, but the calculation was done until 20th order.

From the 3rd order, the number increases sharply in ARI whereas CIPIC has
values above 7 until 4th order. In contrast to ARI database with -30°, the elevation
values in CIPIC are sampled down to -45°, which results in a more stable inverse.
Similarly, IRCAM database covers almost the same range of directions as CIPIC, but
the number of 187 sound directions is significantly lower than in other databases with
more than 1000 directions. Apparently, the arrangement of the sampling grid has a
larger impact on the condition number compared to the total number of the positions.

The condition number increases rapidly for all databases after a certain SH order.
The start of the rapid increase agrees roughly with the relationship N = 360/s with
N as the SH order and s as the expansion in degrees of the open grid in the lower
hemisphere of each HRTF database. In general, such an increase of the condition
number is not avoidable due to the lack of measurements below the head. So to keep
the condition number as low as possible, it must be considered whether a higher SH
order for the modeling of PCWs is necessary at all. To this, an investigation in the
reconstruction error of the PCWs and the resulting HRTF dataset must be carried
out, which is done in the next section.

A better choice of the sound directions could decrease the condition number, but

this was not further investigated here. Assuming an uniformly distributed density
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grid of sampled sound directions, best results can be achieved when the number of
sound directions equals the number of spherical basis functions. For other cases, an
under- or overdetermined system of equations has to be solved. According to Zaar
[Zaall], a good sampling scheme for HRTF databases would be a high density in
lateral direction and a lower density in polar plane direction. Actually, this is the
case in ARI and IRCAM database, but in CIPIC the number of azimuthal sampled
positions does not vary in respect to the vertical plane. In addition, the prominent
spatial gap below the head in HRTF databases should be replaced with mirrored
positions from above. This could avoid regularization problems and enhance the
performance of spherical harmonic decomposition. However, no such replacement

was carried out here.
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Figure 6.3: RMS error between original PCWs of a particular PC and PCWs when
they are modeled with a different SH order in the IRCAM database. The inverse
spherical harmonic expansion matrix is computed through the pseudo-inverse (solid
lines) or through matrix regularization (dashed lines).

Compact Singular Value Decomposition (SVD) is commonly used for inverse prob-
lems. Only eigenvalues above a certain amplitude are involved for further processing.
Chapter 3.2.1 (Page 19) deals with this topic briefly. In the weight model, the regu-
larization process was implemented in such way that the condition number does not
exceed the value of 5. This was done by neglecting all smallest eigenvalues that do

not fulfill this requirement and calculating the inverse matrix by

Yl =vStoT. (6.6)
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Figure 6.3 indicates the RMS error between original PCWs and their modeled
versions with and without regularization for different SH orders and for a single PC
in the IRCAM database. The RMS error across positions was averaged over subjects.
The solid lines indicate the usage of the pseudo-inverse whereas the dashed lines
indicate the usage of the matrix regularization. PC2 has the highest error across all
SH orders. The limited difference between the two types of matrix inversion can be
explained that for points already existing in the dataset, regularization does not alter
much. However, if interpolation is used in the spherical harmonic domain to estimate
the weights of a missing position, then it is quite likely that without regularization
problems appear (e.g. huge overshooting) when estimating the true weight of the

missing position.

6.2.3 Numerical Evaluation of the Global Model

A numerical analysis is carried out, to evaluate the global HRTF model. Figure 6.4
depicts the main steps for processing. The principle of the calculation is similar to
the PCA model, but the simulation parameters were fixed to the values in Table
5.3. After PCA, SH decomposition is applied to the principal weights and they are
reconstructed with a limited SH order. Consequently, the error of the PCWs and the
error of the reconstructed HRTF dataset is inspected and leads to the decision which

SH order is necessary for an adequate reconstruction.
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Decomposition (| Reconstruction with different | Ear Handling |
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Figure 6.4: Numerical evaluation of PCA input parameters and SH order.
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6.2.3.1 Reconstruction of the PCWs

Figure 6.5 indicates original and modeled PCWs of PC1, PC2 and PC4 of a subject
ID3 in CIPIC database for different SH orders. Obviously, at first sight, the usage
of the spherical functions smooths the PCW distribution. Using the first order,
the variation of the PCWs is oversimplified, but the main localization cues, that
is left/right (PCW1), front/back (PCW2) and up/down (PCW3), can be modeled.
From the 2nd order, the weights are modeled more or less sufficiently. Results from
the other two databases show that an SH order of 2 or 3 is adequate to preserve the
main distribution of the PCWs.

6.2.3.2 Dataset Reconstruction Error

The first two rows of Figure 6.6 indicate the spectral distortion for different SH orders.
As a reference, also the error without the SH model is given. The error measure was
calculated by comparing the original preprocessed HRTF dataset to the reconstructed
one in which a different number of PCs and SH orders have been used. For each of
the PC subspace dimensionalities, a box plot based on the reconstruction error of all
subjects, positions and ears is presented.

Naturally, the reconstruction error depends on both the number of principal com-
ponents used in the model as well as the spherical harmonics order of the PCW model.
Starting with only the first SH order, the error is on average 6 dB with 1 PC. This
is about the same as the reference error. Probably the weights of the first PC can be
modeled sufficiently by a 1st order SH model. For higher order PCs, the error drops
to under 5 dB and remains on this value. This is in contrast to the reference, where
an increase of the PCs significantly reduces the error. Similarly, by using SH order
of 2 and 5, the error reduces to about 4 dB for 10 PCs. This is likely because the
weights of higher PCs need a higher order SH model.

The bottom line of Figure 6.6 indicates the average spectral distortion across
positions and subjects with respect to SH order of the PCW model and the number
of PC used. Basically, when only a small SH orders are used, the error is only little
dependent on the number of principal components. For example, when only the 1st
SH order is used, it has no significant influence if 5 or more PCs are used. Similarly,
when only 1 PC is used, the number of SH orders has no great influence on the error.
This is related to a need for different SH orders depending on the PC number used,

as weights become more complex for higher PCs.
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Figure 6.5: Original (first row) and reconstructed PCWs of the subject ID3 in CIPIC
database when they are modeled through spherical harmonic functions with order
[ =1 (second row), [ = 2 (third row) and [ = 5 (fourth row). The black arrow points
at the frontal region.
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Figure 6.6: Spectral distortion (SD) between PCA input matrix and reconstructed
one for different PC and SH orders in ARI database. First two rows: The median
value is indicated by the central mark, the edges of the boxes are the 25th and 75th
percentiles and the whiskers extend to the most extreme data points. Outliers are
plotted separately as red markers. Third row: Mean SD over subjects and positions.
The label Ref indicates the corresponding error of the PCA model.
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Figure 6.7 indicates the variation of spectral distortion along the frequency axis.
For each frequency bin, the distribution across subjects and positions is given. Using
only the first SH order, frequencies up to 5 kHz are modeled with an average error of
about 5 dB. For higher frequencies a greater number of PCs are required, therefore

these regions also need higher SH order to model the higher variability of the PCWs.

PCA Reconstruction Error PCA Reconstruction Error

R

¥y [T FRI i
" H .
||||||n||||||||||||||||||||||||| 5o s Ul
s S |||||||||IIII m ||||||||||||||||||||||||| A

i LR

LR

; ‘s!l‘!!mammmw I f.!»ﬂ((!((((t(((((((t((((((t((((((:(t!(:((:((((((t((((x(((((((:(((x((t((((:(((u«((((aao
0> of H

1 15 20 1 15 20

’ frequenég [kHz] 5 frequency [kHz]

(a) SH Order 1. (b) SH Order 5.

Figure 6.7: Distribution of spectral distortion (SD) over positions and subjects for
each frequency bin when 10 PCs are used for reconstruction in CIPIC database. The
median value is indicated by the white circle with a black point, the edges of the blue
boxes are the 25th and 75th percentiles and the white whiskers extend to the most
extreme data points. Outliers are plotted separately as blue points.

Figure 6.8 indicates the error in time domain. The first two rows indicate the SDR
for different SH and PC orders. As a reference, also the SDR without the SH model
is given. Using 10 PCs for reconstruction, the reference error is on average 3 dB. This
can not be achieved with SH order 1 and 2, no matter how many components are
used. Using the fourth SH order, the error is on average 4 dB for 10 PCs.

The bottom line of Figure 6.8 indicates the average SDR across positions and
subjects and ears in reference to SH and PC order. In addition, the error of the PCA
model is given as a reference. Also here it is evident that when modeling with only
the first SH order, the choice of the PC number does not influence the resulting SDR.

6.2.4 Insight on the Operations of the Model

When operating on a spherical model of PCWs, one is essentially using PCA as a ve-
hicle to reach a frequency independent representation of HRTFs. The dimensionality
reduction achieved is depending on the number of positions to be adjusted. Instead
of having to perform X P adjustments where X corresponds to the dimensionality
of the PC subspace used and P to the number of positions of interest, one needs to

adjust (Nx + 1)2X adjustments, where Ny is the order of the spherical harmonics
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Figure 6.8: Signal-to-distortion ratio (SDR) between original and reconstructed
minimum-phase HRIRs for different PC and SH orders in ARI database. First two

TOWS!:

The median value is indicated by the central mark, the edges of the boxes

are the 25th and 75th percentiles and the whiskers extend to the most extreme data

points.

Outliers are plotted separately as red markers.

Third row: Mean SD over

subjects and positions. The label Ref indicates the corresponding error of the PCA
model.
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Figure 6.9: Two different display options for customizing spherical weights using
sliders.

weight model for PC X. As long as (Nx + 1)* < P, the total number of adjustments
is smaller in the case of the spherical harmonics model. Thus, such a model could
be useful in modifying large numbers of positions simultaneously, or even a complete
HRTF set. Figure 6.9 illustrates two different options to arrange sliders in a GUI.
Either all spherical harmonics are sorted by principal components or vice versa.

A second advantage of using spherical weights instead of directly adapting the
principal weights is, that the balance of the weighting of principal components can be
adjusted in different areas of the dataset, which leads to a faster and more effective
adaptation procedure. The shape of the areas is determined by the spherical harmonic
function whose weighting is adjusted at each instance. As can be seen from Figure
3.2 (Page 20), spherical harmonic functions for degree m = 0 (center column) are
independent on lateral directions so they only represent vertical variation. In contrast,
all basis functions which order equals the absolute value of degrees (m = |l|), only
change in horizontal plane. For example, global scaling of the influence of each PC can
be achieved by scaling the Oth spherical harmonic. First order spherical harmonics
could be useful in adapting the weight of each component in front/back, left/right
and up/down directions. By understanding the form of each spherical basis function,
the weighting of each component in specific regions on the sphere can be increased or
reduced.

However, the psychoacoustic impact of the adaptation is not yet understood, which
means that a change that is applied for one position is not necessarily valid for other
positions that are automatically adapted by the SH model. To this, it must be first
considered which perceptual changes are caused by each principal component. An

initial investigation into this with a listening experiment is given in the next chapter.
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6.2.5 Conclusion

As a further development of the PCA model, a global model was presented. To
overcome the position dependency of the PCWs, they are decomposed in spherical
harmonic functions and corresponding weights, which can then be used to lead to
adjustments over larger regions of the sphere. Depending on the number of positions
being adjusted and the spherical harmonics order used for each PC, the proposed
model could enable faster adjustment of the principal component weights, since a
broader region is effected by the spherical harmonic weights. With only the first SH
order, the localization cues for left /right, front/back and up/down can be modeled in
general, but the individual variability of the PCWs can not be considered. Using the
second SH order, the accuracy of the reproduction of the individual principal weights
greatly improves.

Beside this advantage, the downside is calculation of the inverse of the spherical
harmonic expansion matrix. Since in practice there are more or less spherical har-
monic functions than sampled positions, this results in an under- or overdetermined
system of equations. Consequently, a regularization method has to be applied to en-
sure a correct decomposition of the PCWs on the sphere. To this, the impact of the
sampling grid on the reconstruction error has to be investigated further. As long as no
interpolation needs to be done, the usage of the pseudo-inverse should be adequate.

Analysis of the Spectral Distortion and Signal-to-Distortion-Ratio, in comparison
to a PCA model without SH modeling of PCWs, reveals that modeling the PCWs
with an SH order of 2 or more leads to an average spectral distortion below 5 dB,
which is promising result. This is an important finding because it greatly simplifies
the complexity of the weight model. Consequently, assuming an SH order N, for each

2 spherical weights have to be adapted which is much

principal component (N + 1)
less than adjusting PCWs for each position. For the sake of completeness it should
be mentioned that also a single source position can be adjusted through this spherical
model, however, in this case it might be more effective to adjust the corresponding
principal weights directly.

Summing up, it has been shown that the model is promising but the process of
adjustment has to be further inspected. Providing a thorough explanation of the
way the model works perceptually, would require a series of experiments that were
beyond the scope of this work. It is worth mentioning that the perceptual outcome
of even simple adaptations of PCWs is not fully understood. For this reason and
before proceeding further, a step inside this area is attempted by investigating how

simple adaptations of the weights of a PC model affect the perceptual outcome. the
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results of a listening test on four positions on the median plane is presented in the

next chapter.
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Chapter 7

Subjective Evaluation

In order to validate the PCA model described in Chapter 5 and to get a deeper insight
into the process of HRTF individualization, a listening experiment was carried out
which investigates the perceptual impact of the PCWs adaptation. This was done
though an discrimination and localization test. Before presenting the methodology
and results of the experiment, a short introduction is given about the variation of the
PCWs in the database because this is the issue to be examined. Ideally, the results of
the experiment and the findings of the variation of the PCWs in the database should

coincide.

7.1 Variation of PCWs in the Database

Although the emerging PCs are mathematically orthogonal, they are not necessarily
perceptually independent. Until further evidence is provided, one cannot assume that
changes in the auditory percept as a result of changes in the weighting of the prin-
cipal components reflect systematic changes within a spatial coordinate system. The
emerging auditory percepts have been to a limited extend investigated analytically
only for the first few components, there is, however, a lack of perceptual studies. In
the first case, the variation of the PCWs across all angles can give further information
on how particular principal components affect localization of the synthesized sound.

Hwang and Park [HP0S8] applied PCA on a dataset including 45 subjects and 49
directions in the median plane and interpreted the resulting weights of the 12 PCs.
They found front/back and up/down cues in all of the first six PCWs whereas only
inter-subject variations and no clear trend in respect to the median plane was found in
the remaining 7-12 PCWs. In contrast, here all directions for data decomposition are

included and a brief overview of the main findings for the first five PCs is presented.
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Figure 7.1 shows the distributions separately for median and horizontal plane
in the ARI database. Through this contrasting comparison, it should be easier to
inspect the variation of the PCWs in reference to the two planes. The left column of
Figure 7.1 indicates the first five left and right ear PCs that explain a total variance
of 87.2% calculated using the input matrix Struct2 and ears in column blocked. The
contribution of the remaining components is often too small to be noticed, or the
resulting percept is too difficult to categorize. This happens when the inter-subject
variability of the PCWs is greater than the variability with respect to the horizontal
or median axis. In general, the higher the principal component number, the more
difficult to define a direct relationship to spatial perception. Note that to provide
a better illustration, the right ear basis function was plotted together with the left
ear one, although the left and right ear basis functions are stringed together in the
calculation. The middle and right columns of Figure 7.1 show the variation of the
PCWs in the horizontal and median plane respectively.

The coordinate system that is used for the plots is described as follows. The
azimuthal value is set to zero at the frontal side and increases counter-clockwise.
Similarly, the elevation angle is set to zero at the frontal side, has its minimum at -90
degrees below the head and 90 degrees above the head. Finally it increases up to 270
degrees at the rear section below the head. Since the ARI database has only source
positions until -30 degrees below the head, the elevation angle in the plots is limited
from -30 to 210 degrees.

PC1. Clearly, the first component has no influence on elevation. PCW1 amplifies
and reduces the corresponding component on the ipsilateral and contralateral
side respectively, which basically controls the ILD. Due to the symmetry of the
left and right ear basis function, one can well understand how a synthesized

sound is affected differently for each ear through this component.

PC2. The weights have mainly positive values between azimuth of +45° and negative
values at other azimuths. In addition, along the median plane, positive weights
are obtained for sounds in front (i.e. in [-30°,90°] elevation) and negative
weights in [90°,230°] elevation). The fact that the left and right ear compo-
nents are almost identical and their weights are symmetric with respect to the
median plane supports the hypothesis that this component relates to cues sup-
porting front/back discrimination and their variation in different azimuths and

elevations.
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PC3. The variation of the weights indicates a systematic variation with elevation.
Roughly speaking, positive weights are obtained for sounds below and negative
for sounds above the horizontal plane. In addition, the almost identical left and
right ear basis functions and the relative invariance with azimuth indicate that

this component has little impact on azimuth perception.

PC4. The weights change slightly in the median plane up to maximum value above
the head. In the horizontal plane little systematic variation could be found.
The basis function are not identical, although similar in shape, and the weights
seem to affect the two ears in a slightly different weight. It is not clear what
exactly is the influence of this component, although it appears to affect the

energy balance between the ears as a function of azimuth and elevation.

PC5. In the horizontal plane, a slight variation of the weights is visible. Due the fact,
that no variation in the median plane could be found, and the symmetric nature
of the basis functions for the two ears, it appears as if this component might
support PC1 for lateral discrimination, and its influence concerns more sounds
in the very lateral directions i.e. in the areas between [45°,135°] and [225°, 315°].
The symmetric nature of the left and right ear principal component support the

hypothesis of an influence to azimuthal perception through ILD manipulation.

More difficult is the description of the remaining components due to the large
variability of the distribution. An additional post processing step after PCA, which
rotates the PCs into an alternative linear coordinate system in such a way that inter-
pretation might be easier, could help. For example, Varimaz Rotation can be applied.
Hence, a rotation matrix 7' to maximize the varimax criterion can be constructed to
rotate the components and corresponding weights. It has to be noted, that the ro-
tation does not change the explained variance proportion. For this analysis, such an
additional rotation was applied on the PCA output with the MATLAB® function ro-
tatefactors() but as at first inspection the interpretation was not simplified, therefore
the original unrotated data was used here.

It is important to notice that the obtained PCs and PCWs are different when only
a subset of certain positions such as the horizontal or median plane is used, since the
PCA input matrix involves a different kind of dataset. Therefore, the prominent first
principal component might not model left /right discrimination but up/down because
no HRTFs with varying lateral information for left and right ears are included in

the dataset. When a consistent model is used however, results are consistent as
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calculations with the other databases IRCAM and CIPIC yielded reproducible results
and confirm the fact that PCA is to a certain extent invariant with respect to the

data source when the same type of measurements exist.

7.1.1 Research Questions shaping the Listening Test

When considering HRTF' individualization using PCWs, two questions arise from
the analysis on the PCWs in the dataset, which are essential for the development

individualization methods and are investigated in the experiment:

e To what extent are changes in the principal components weights audible, and
what range of PCW adaptation is necessary to obtain consistent results across

participants?

e What is the impact on localization induced by a change the principal weights

for the first five components and is this consistent across participants?

Two related tasks were used in the experiment to answer these questions. The first
task measured the sensitivity to changes in PCWs whereas the second one, measured
the perceived position of the stimuli for similar changes to the PCWs. Based on the
numerical evaluation and considerations in regards to HRTF adjustment described in
previous chapters, the properties given in Table 5.3 (Page 58) were used for the PCA
input matrix. PCA of the entire ARI database was computed, but only four positions
in the median plane (elevation at -30°, 0°, 30°, 60°) were used in the experiment.
Therefore no estimation of the interaural time difference was applied. Only the first
five PCWs were adapted in the experiment, Table 7.1 lists the explained variance in

the dataset of their components, which is in total 87 percent.

PC | Relative Variance | Total Variance
1 64.5 % 64.5 %
2 16.6 % 81.1 %
3 2.8 % 83.9 %
4 1.7 % 85.6 %
5 1.6 % 7.2 %

Table 7.1: Relative and total variance of the first five principal components in the

ARI database.
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Figure 7.1: First five PCs (left column) and variation of the corresponding PCWs
across all subjects in the horizontal plane (middle column) and median plane
(right column) in ARI database. The median value is indicated by the central mark,
the edges of the blue boxes are the 25th and 75th percentiles and the whiskers extend
to the most extreme data points. Outliers are plotted separately as small circles.
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7.2 Discrimination Test

7.2.1 Methodology

The goal of the discrimination test was to measure how much the principal component
weights need to be adjusted to evoke a perceptible change in localization. Apart from
providing calibration for the subsequent localization test, this experiment could also
serve to inform local individualization algorithms. In each trial of the experiment,
participants listened to a pair of sound samples: one was a reference sound, corre-
sponding to one of the four tested locations, and the second an adapted version of it.
The order with which the reference and test sounds were presented in each trial was
randomized. The experiment included four reference positions in the median plane

(elevation at -30°, 0°, 30°, 60°).
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Figure 7.2: Theoretical Gaussian distribution of the individual principal component
weights for each position and principal component. The adapted percentile values in
percent for the discrimination test are marked in red.

The reference stimulus for each position and component was generated by adapting
the PCWs of the first 5 PCs of a specific person in the database (ARI subject ID
NH2) and setting them to the median value of the distribution of the corresponding
PCWs for each PC and position. The weights for the remaining PCs (6-514) were
not adapted to median values. The idea here was to start with principal weights
of a measured subject, since the use of average weights lead to an unnatural sound.
The test stimulus was generated by again adapting the weights of a single PC, out of
the 5 principal components in the test, but this time in steps corresponding to seven
different percentile values (1st, 12.5th, 25th, 50th, 75th, 87.5th, 99th) calculated
from the distribution of PCWs for the particular reference position and PC. Figure

7.2 depicts the theoretical distribution of the individual weights and the choice of
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the adaption values which results in a modified HRTF spectrum. The experiment
included four positions, five principal components and seven degrees of adaption for
each principal component weight yielding a total number of 140 sound pairs. As the
50th percentiles were used both to calculate the reference and one adaptation of the
test stimulus, for each position and component a sound pair without any difference
exists. Hence, a total of 20 catch trials were included in the experiment.

Although in another study the PCs to be adapted were determined by sorting them
according their variance of the distribution of the corresponding weights [HPPOS§], here
PCs were chosen by sorting them in terms of the total variance explained. To this, it
must be mentioned that the standard deviation of the individual weights can not be
a single indicator for the sorting process, without first establishing that adaptations

of the weights of a particular PC lead to perceptible changes.

7.2.2 Procedure

Figure 7.3 shows the GUI in MATLAB®. Listeners were instructed to indicate
whether they could detect a difference in the location of the two sounds in each
trial pair by the answer yes or no. They were able to replay the stimuli as often as
they wanted. The answer could be given either by clicking the buttons in the GUI
or using the keyboard shortcuts which was much faster. The test stimuli was white
noise amplitude with a duration 450 ms and a sampling rate of 44.1 kHz. 11 subjects
participated in the task. In order to obtain more accurate results, the experiment was
repeated once by each of the subjects. The test time for one repetition varied from
6 to 12 minutes, but two subjects required about 20 minutes. The subjects were in-
structed to set the playback level to a comfortable value, but more on the louder side.
Diffuse-field equalized headphones (Sennheiser HD600 Avantgarde (8 subjects) and
AKG K240 DF (3 subjects) were used and no headphone equalization was applied.

7.2.3 Results

Figure 7.4 depicts the percentage of trials, corresponding to a sampling of the associ-
ated psychometric function, in which participants detected a difference in the location
of the stimuli, for each position, principal component and adaptation step. Depicted
values were averaged across all test subjects. This function indicates how well a dif-
ference between the two stimuli was recognized with respect to different adaptation

values.
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Figure 7.3: Graphical user interface for the discrimination task.

Obviously, in all four positions most differences are detected at PC1 and PC5.
At the limits of adjustment (1th and 99th percentiles) about 70% of the stimuli are
detected with PC1 and about 60% with PC5. Especially in the area between 25th
and 75th percentile, the detection of differences with PC2, PC3 and PC4 is worse
in contrast to PC1 and PC5. Especially striking is that PC5 has better results than
PC2, PC3 and PC4, although they describe more variance in the dataset, as listed
in Table 7.1. With few executions, there is a monotonic change with respect to the
adaption strength. However, PC3 at the source position of 60° elevation decreases to
0% at 75th percentile. Also PC2 decreases to approximately 6% at 12.5th percentile.

A closer look at the median values reveals that in spite of the fact that the signal
pairs at 50% percentile were the same, subjects answered up to 11% that a difference
was recognized. This bias is different for each position and was at 8% for the lower
position (-30°) and up to 11% for the two upper positions. However, only 4% bias
was detected at the source position 0°.

In general, for PC1, modification of the weights at least to the 10th respectively
90th percentiles are necessary to report a change in sound location at 50% of the
psychometric function. For the remaining components, a greater modification up to
1st and 99th percentile is required or even in some cases the 50% mark is not reached.

The psychometric function only shows the percentage of detected differences but
it gives no information about the correctness of the answers. One can distinguish
between a liberal response bias where the participant more likely responds yes re-
gardless of the stimulus. In contrast, a more conservative response criterion biasses
the data towards the response no. The presence of bias is predicted in Signal Detec-
tion Theory (SDT), therefore a sensitivity measure has to be calculated to exclude

bias from data. Two major measures in SDT include the response bias, namely the
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Figure 7.4: Psychometric functions of the discrimination test for each position and
principal component.

hit rate that considers adjustment of PCWs and subject detected it and false alarm
that covers no adjustment of PCWSs but the subject detected a difference.
According to this, the sensitivity index d’ is an performance indicator for the differ-
ence between the signal and noise distribution and actually measures the proportion
of the adapted sound pairs that are correctly identified as such. d’ is measured in stan-

dard deviation units and can be estimated by the difference between the z-transform

of signal and noise distribution,

d = Z(hit rate) — Z(false alarm) , (7.1)

with Z(p) as the normal inverse cumulative distribution function of probability p. If
the test subject is more sensitive to the adaptation, the difference between the two
distributions is greater. However, a hit rate or false alarm of extreme values of 0 or
1 leads to a problem for the calculation of d’, because the z-transform corresponds

to negative or positive infinity. Therefore, for hit rate and false alarm, the minimum
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and maximum values are set to be 1/(2/V) and (N — 0.5)/N respectively, with N as

the total number of signal and noise trials [MK85].
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Figure 7.5: Resulting sensitivity measures of the discrimination test pooled over
subjects for each position and principal component.

Figure 7.5 presents pooled sensitivity measures across subjects in reference to each
position and PC. Similar as in the psychometric function, a clear trend in terms of
adaptation steps is visible. The approximate values required to reach d = 1 depend
heavily on the components but only little dependent on the positions. In general, PC1
and PC5 have the highest sensitivity in all positions. For 1st and 99th percentiles
at the lower source elevations, a sensitivity value of 3 can be reached whereas for
the two positions at a higher elevation the values are between 2 and 3 for the lower
limit of modification. In contrast, PC2 has a lower sensitivity, most notably at source
elevation -30° at 7Hth percentile, at source elevation 0° between 25th and 87.5th
Also
PC3 has a low sensitivity of -0.5 in this sound direction when the PCWs are adapted
through the 75th percentile.

about -0.3 for source elevation 30° at 12.5th percentile.

percentiles and in source elevation 60° between 12.5th and 75th percentiles.

In addition, PC4 has a negative sensitivity value of
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According to Stanislaw and Todorov [ST99], also negative values for d’ can occur
through “response confusion”, which means that a participant responds yes when
he actually wants to response no and the other way round. Obviously, this might
happened between 12.5th and 87.5th percentiles or more likely when the subjects
detected a signal by mistake.

Apart from that, for all positions the values are above -0.5 for each adaption step,
expect PC3 at source position 60°, and increase at least up to 3 and sometimes 4
for the extreme adaptations. Apparently, the results are not always symmetric in
respect to the 50th percentile. This is likely the case for higher order components.
Good sensitivity values of more than 2 are reached in almost all positions by PC1,
PC3 and PC5. PC2 could reach the value of 2 at the source elevations 0°, 30° and

60° for the 1st percentile. The values for PC4 were below 2 for almost all positions.

7.2.4 Statistical Analysis

Three-way Analysis of Variance (ANOVA) was applied which considered the three
factors (position, component and adaptation) with different number of levels. The
test investigated the within-subjects contrast. For the evaluation, a significance level
of p = 5% was considered.

Table 7.2 summarizes the main results of the analysis of variance. The factors PC
and adaptation were found to be significant whereas no significant effects could be
found for the positions. This is an expected result and shows that the model works in
the same way for different positions. Therefore, the null hypothesis which states that
there is no difference among the levels of adaptions and components, can be rejected.

In addition, the interaction between PC and adaptation was found to be sig-
nificant. This is obvious since each adaption of a particular PC produces different
localization effects, hence the influence on the adaption levels is different for the PCs.
In addition, also the interaction between position, PC and adaption is found to be
significant. Considering that the interaction between PC and position is not signifi-
cant, this can be explained that for some PCs the effect of adaption is also affected
by the sound position.

Also pairwise comparisons of the different levels of the two factors that significantly
influenced the results were analyzed. For the positions, no difference was found.
Sensitivity for PC1 was significantly higher than all other PCs. Then the sensitivity
in regards to PCs can be sorted by PC5, PC3, PC2 and PC4, the last three not being
significantly different to each other. Analysis of the adaption levels reveals that the
pairs 1st-99th, 12.5th-87.5th and 25th-75th have no significant difference within their
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Source Values

Position F(3,27) = 0.436, p=0.729
PC F(4,36) = 15.86, p=0.000
Adaptation F(6,54) = 85.703, p=0.000
Position * PC F(12,108)=0.926, p=0.524
Position *Adaptation F(18,162) = 1,613, p=0.062
PC * Adaptation F(24,216) = 2.571, p=0.000
Position * PC * Adaptation F(72,648) = 2.152, p=0.000

Table 7.2: ANOVA output for tests of within-subjects effects.

members, but each pair is significantly different to the others, since these pairs might
generate the same intensity in localization effect, but only in another direction. The

50th percentile is different to all another adaption levels.

7.2.5 Conclusion

Concluding the analysis of this discrimination task, modifications of the PCWs of the
first five PCs causes a change in perceived location of sounds. This is an important
result and crucial for the development of an HRTF adaption model based on PCA.
Therefore, also the effect of higher order components up to the tenth component
should be further investigated.

The greater the magnitude of the adaptation between the principal weights of the
stimuli pairs, the more likely test subjects are to detect changes in localization. This
is valid for all positions and generally for all components. The sensitivity for PC1 is
greatest at source position 0°. The component with the second highest sensitivity for
all positions is PC5, although PC2 to PC4 describe a higher variance in the dataset.
Apparently, the modification of the weights of PC2-PC4 must be greater to cause a
clear localization effect, or individual differences due to the individualized nature of
HRTFs, reduce the perceptual impact of these components.

Analysis of variance revealed a significant effect of the factors PCs and adaptation.
Since no effect could be found on the positions, this indicates a stable model imple-
mentation which is reproducible at each position that was tested. A closer look at
pairwise comparison of the different levels of a factor revealed that PC1 has a signifi-
cant difference to all other PCs, hence the sensitivity of PC1 was significantly higher
than all other PCs. Moreover, the adaption levels do have a significant difference
between themselves.

However, from this yes/no task, the exact localization effect can not be deter-

mined. Therefore, in the following, a localization test is carried out.
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7.3 Localization Test

7.3.1 Methodology

In this test, subjects were asked to indicate the perceived sound directions in response
to adaptions to the PCWs. As depicted in Figure 7.6, the modification of the weights
up to 25th and 75th percentiles in the previous experiment were excluded, and instead
the range of the distribution was enlarged. This was done by multiplying the absolute
weight values of 1st and 99th percentiles with 1.5 (or divide by 1.5 if the value for the
Ist percentile is positive) and adding them as additional adaption levels. The idea
behind was that a trend of a localization effect may be easier to assess with extreme
displacements, as sensitivity was relatively low for certain principal components in
the previous experiment. For that reason, the adapted weights closest to the median
value were neglected in order to keep a manageable number of test parameters and

test time.
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Figure 7.6: Theoretical Gaussian distribution of the individual principal component
weights for each position and principal component. The adapted percentile values in
percent for the localization test are marked in red.

7.3.2 Procedure

The 140 adapted samples, including the 20 catch trials (adapted with median value),
were played. Listeners were instructed to specify the perceived sound location in a
GUI in MATLAB® (Figure 7.7) and they were able to replay the stimuli as often
as they wanted. Through sliders, the judgment in azimuth and elevation could be
indicated.

The same white noise signal with a duration of 450 ms as well as headphones from

the first test were used. 8 of 11 subjects from the previous test participated in this
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Figure 7.7: Graphical user interface for the localization task.

task. No repetition was carried out. Test duration varied from 8 to 40 minutes, on
average 15 minutes. As in the previous test, the subjects were instructed to set the

playback level to a comfortable value, but rather on the louder side.

7.3.3 Experimental Results

As a start, the results of each subject, position and component was manually inspected
and the resulting localization effects were interpreted. For example, Figure 7.8 shows
the judgments for PC1, PC3 and PC5 at sound direction 0° azimuth and 0° elevation
of subject ID 4. From this, one can conclude that PC1 describes lateral variation
whereas PC3 mainly effects up/down and front/back cues. PC5 also supports PC1
for lateral discrimination. However, not all judgements are as clear as in the figure,
therefore through numerical analysis, it was investigated which components are more
sensitive to lateral, vertical or front/back discrimination.

Figure 7.9 provides an overview how the indicated source positions vary in respect
to the adapted values. For better interpretation, results are shown separately for
azimuth and elevation plane. Thus, the influence of the components can be better
determined in terms of these planes.

The left column of Figure 7.9 indicates the judgements averaged across all test
subjects for each PC and position in the horizontal plane. The centroid of the distri-
butions was calculated by taking the mean direction across all individual judgements.
For better readability, the markers for each position were staggered a little bit along
the adaptation levels.

The centroid S of the distributions was calculated according to the formulas pro-

posed by Leong and Carlile [LC98] and the following notation is based on them.
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(a) PCL. (b) PC3. (c) PC5.

Figure 7.8: Judgements of source positions (subject ID 4) in respect to the adapted
principal weights for the reference position 0° elevation. The green marker shows the
reference position in the median plane whereas the green point indicates the perceived
position adapted by the median value. Red points show the minimum and maximum
of the adapted weights, yellow corresponds to 12.5th and 87.5th and magenta to 1st
99th percentiles.

First, the azimuth and elevation angles, where a point directly in front of the head
corresponds to zero azimuth and elevation, were converted to the polar coordinates
(0 =90—el, ¢ = az). From a set of n data points on the sphere, the direction cosines

are given as

x; = sin(6;) - cos(y;) ,

y; = sin(6;) - sin(yp;) ,

z; = cos(0;) . (7.2)
The centroid of the distributions is computed as the vector sum of the unit vectors,

i=1

i=—1 i=1

The mean directions can be regarded as a measure of expansion and is given by

R= /824 52+ 52, (7.4)

with small values for a high expansion and large values for a low expansion. The

mean direction cosines are given by

_ S
s Z—E, (75)



and to convert them into the polar coordinates:

0 = arccos(z), ¢ = arctan(%) : (7.6)

When a sound direction was perceived to the back although the reference position
was in the front, these judgments were averaged across subjects and marked as a
cross. The upper table in each diagram indicates the number of times in percent
when a sound was judged to be at the back for each position an adaption level. It
has to be noted that there are no real termed “confusions” like in other localization
tests, because in this test one actually does not know the correct perceived sound
direction. Therefore, the judgments in the rear section that are shifted to the front
are referred to as corrected judgments. The error bar along the curve represents the
standard error across all individual corrected judgments.

For the first component, a clear trend in changing azimuth perception is visible,
also when the perceived sound directions were in the back. Beginning from the
minimum to the maximum adaptation level, the judgments go from -90 to 90 degrees.
To this, also PC5 has similar distinct tendency to affect azimuth perception, but in
the opposite direction of PC1. For the remaining principal components, the distance
is in general between -30 and 30 degrees and does not reveal any systematic pattern
in affecting azimuth perception.

A greater occurrence of corrected front/back judgments might lead to the inter-
pretation that this component models front/back discrimination. Table 7.3 presents
the percentage of sound directions that were perceived to be at the back although
the reference position was in the front, averaged across adaption levels. PC3 and
PC4 have the lowest percentage with an average of 16.5% across positions and PC1
and PC2 have the highest value with an average of 23.2% and 21.4% respectively. A
closer look at the percentages across all components for each position reveals that the
source position -30° has the highest value with 23.2%.

The right column of Figure 7.9 indicates the judgements averaged across all test
subjects for each PC and position in the median plane. A trend for PC2, PC3 and PC4
is visible. Whereas in PC2, the indicated sound directions only change significantly
for adaption levels above the 87.5th percentile to the upper direction, the moving
along the adaptation steps makes elevation judgments decrease for PC3 and increase
for PC4. As expected, PC1 and PC5 are did not influence vertical judgments.

Table 7.4 indicates the percentage of sound directions that were judged to be at
the lower hemisphere although the reference position was in the upper hemisphere

and the other way round, for different PCs and source positions in elevation, averaged
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Source Positions
-30° 0° 30° 60° Mean
35.7% | 25.0% | 14.3% | 17.9% | 23.2%
17.9% | 21.4% | 10.7% | 28.6% | 21.4%
23.2% | 125% 1 89% | 17.9% | 16.5%
21.4% | 19.6% | 54% | 14.3% | 16.5%
17.9% | 232% | 7.1% | 32.1%| 20.9%
Mean| 23.2% | 204% | 13.2% | 22.1%

PCs
o | ol b=

Table 7.3: Percentage of sounds that were judged to be at the back although the
reference stimulus was at the front for different PCs and source positions in elevation,
averaged across adaptation levels.

across adaptation levels. Note, that the source position 0° was not listed here since
no values can be evaluated for this position. The first component has a minimum of
4.1% averaged across the positions whereas the remaining components have almost
the same values. In terms of positions, the source elevation -30° has significant higher

percentage with 16.8% than the others.

Source Positions

-30° 30° 60° Mean

54% 1 3.6% | 3.6%| 4.1%
14.3% | 54% | 89%| 9.6%
17.8% | 54%| 3.6%| 89%
25.0% | 3.6%| 0.0%| 9.5%
21.4% | 1.8%| 54%| 9.5%
16.8% | 3.9%| 4.3%

PCs

[SNEGUIR My
=
Q

=

Table 7.4: Percentage of sounds that were judged to be at the lower hemisphere
although the reference stimulus was in the upper hemisphere and the other way
round, for different PCs and source positions in elevation, averaged across adaptation
levels.

7.3.4 Conclusion

Fortunately, a certain agreement between the interpretations of the principal weights
in the database and the results of the experiment was found. Basically, all the im-
portant localization effects for lateral and up/down discrimination were recognized.
Only front/back were difficult to inspect.

For two components, namely PC1 and PC5, the results show a clear trend to
azimuth perception. It has to be noted again that no alignment of the interaural time

delay was applied, since the four test positions were located on the median plane.
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Nevertheless, the maximum indicated distance values between reference and adapted
version were in the range of + 90 degrees. Consequently, this lateral localization
effect is only produced by the interaural level difference of the individual principal
component weights.

PC3 and PC4 influence vertical discrimination and do not appear to systemati-
cally affect azimuth perception. Less easy is the interpretation of the effects for PC2.
Analysis of the individual principal weights for this component in the database sug-
gest a front /back cue. However, the number of positions that were perceived from the
rear section is on average 21.4% and in the same range of PC1 and PC5. According
to Figures 7.1e and f, the distinction between front and rear section can be found in
variation of the principal weights in the horizontal plane. A closer analysis reveals,
that the PCWs are negative in the rear section and positive in front of the head. How-
ever, the PCWs in the experiment were only varied according the four test position
in the median plane and their PCW distribution is mainly positive. Therefore, no
clear effect in regards to front/back discrimination was found in the evaluation. Ap-
parently, the influence of this component should be further investigated with another
listening task.

This raises the question of whether the range between 1st and 99th percentile is
enough to cause a clear localization effect or the range should be enlarged which was
done in this experiment. This might be different for each component that was exam-
ined. For PC1 and PC5 which produce lateral movement of the source position, the
range between 1st and 99th percentile produced minimum and maximum judgments
of about + 50-80°. This is totally sufficient since only the individual weights of the
source positions in the median plane were used. The additional adjustment levels en-
hanced the localization effect up to + 90°. For PC3 and PC4 that modify the source
position in the elevation, the judgments for 1st and 99th percentile were between -20°
and 50°, depending on the source position. Here, the additional adjustment levels en-
hanced the localization effect especially in the upper hemisphere to additional 10° for
almost each source position. This is a clear improvement and could be strengthened.
Generally an increase of the adjustment range automatically means the inclusion of
the weights of the neighboring positions. However, it should be taken into account
that the PCA model only considers local adjustment, therefore a range beyond the
distribution of the individual weights for each position stored in the database is not
necessary.

To conclude, with only eight test subjects, the effect of lateral and up/down

discrimination was easy to reproduce. Only the effects for PC2 cannot be clearly
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classified into one of the three main localization effects of HRTFs. Consequently, a
different experiment in which subjects adapt the PCWs on their own to produce a

source position at the rear would be beneficial.
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Figure 7.9: Averaged judgements across subjects in respect to the horizontal
column) and vertical (right column) plane for each position and principal component.
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Chapter 8

Conclusion

8.1 Summary of the Results

The work investigated in individualization of HRTF since direct measurement is time-
demanding and requires special equipment and knowledge. This is a major research
area and different approaches are currently under investigation. To this, a summary
of current individualization methods, their advantages, disadvantages and technical
aspects was given. Two data decomposition methods, namely Principal Component
Analysis and Spherical Harmonic Decomposition were described and their potential
with respect to HRTF adjustment was discussed.

PCA is very suitable for the decomposition of HRTFs because the resulting PCs
and PCWs are reproducible for different databases with different sizes and measure-
ment conditions. One can specify the total variance describing the original dataset
which is directly related to the number of PCs used for reconstruction. The litera-
ture review has shown that PCA is used very differently for the modeling of HRTFs.
Since an HRTF database is multidimensional, there are not only differences in the
selection of signal representation, but also different realizations of a two-dimensional
input matrix.

Adequate parameters for the PCA model were extracted through a numerical
evaluation based on compression efficiency and suitability for HRTF individualization.
A meaningful selection of the structure for the PCA input matrix returns principal
component weights for each subject and position. In this way, adjustment of the
weights is applied by navigating through the distribution of the individual weights
for each position. Logarithmic frequency magnitude was used as signal representation
because it was found as an optimum for the PCA compression efficiency. In addition,
through spectral smoothing of the input data before PCA processing, only 7 PCs

are required to describe 90 percent of the variance in the dataset. Analysis of the
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reconstruction error in frequency domain reveals that at least 10 PCs are necessary
for an average spectral distortion of about 5 decibel. In time domain, the minimum-
phase HRIRs were used as a measure and reveals an average signal-to-noise ratio of
about 8 decibel with 10 PCs.

A listening experiment investigated the variation of the PCWs that is required
to produce a change in localization and provides reproducible results with respect
to the analysis of individual weights in the database. Listeners indicated lateral
localization effects when the weights of PC1 and PC5 were modified. PC3 and PC4
are important cues for up/down discrimination and PC2 is important for front/back
discrimination. The resulting minimum and maximum judgements of the source
positions in the localization test confirmed that an adjustment range between the 1st
and 99th percentile across all individual weights of a source position is adequate to
cause a clear localization effect. This is based on the fact that the individual weights
are sufficiently different for each position that were examined.

Spherical Harmonics are widely used for decomposition of HRTF's resulting in
weights for each frequency bin. However, in this work, the transform was used to
model the PCWs on the sphere. The SH model attempts to overcome the directional
limitation and enables global adjustment of all positions simultaneously. This is done
by decomposition of the PCWs that are structured for each position and subject in
spherical harmonic weights. Consequently, each PCW is modeled through a limited
number of spherical harmonic weights. As long as (N + 1)? < P, with an SH order
N and a total number of P source positions, the approach is more effective than
adjusting PCWs for each position, assuming that the same SH order is used for all
positions. In this way, adapting a spherical weight effects PCWs of particular regions
since each spherical basis function has different directional dependency. Analysis of
the reconstruction error in frequency domain indicates that at least an SH order of 2
is necessary. When doing this, for each principal component, 9 basis function weights
have to be adjusted which is in great contrast to adjusting the PCWs for each source
position separately. It has to be mentioned that this proposed model has not been
validated, perceptual studies are required to find an optimal model configuration.

Figure 8.1 depicts the main parts of the model implementation that was built in
MATLAB®. The core functions can be used for parameter testing or an individual-
ization process. To this, a GUI for adapting PCWs locally and globally was built and
is described in Appendix A. Since virtual auditory display is a significant application

in consumer products, this implementation is immediately interesting.
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Figure 8.1: Overview of the model implementation.

8.2 Outlook

Based on the fact that the SH model was not perceptually tested, a more detailed
investigation into this would be of interest. For this, a listening test to evaluate the
performance of the adaption in the spherical domain is necessary. Particular attention
must be paid to the usage and modification of the sampling grid in HRTF databases,
To this, matrix regularization for the sampled source position grid has to be further
investigated.

Two data decomposition methods beside PCA, namely Independent Component
Analysis (ICA) and Non-negative Matriz Factorization (NMF) which are not treated
in this work, can also be used to produce basis functions and corresponding weights.
In the model implementation these methods were integrated, but not tested. Through
a numerical evaluation, the resulting localization effects of the basis functions could
be further investigated. To this, also the relation between directional bands and the
modified HRTF spectrum that is adapted through the weights could be a fine step
forward to better understand up/down and front/back discrimination.

A future work could be a mobile application and a standardized data format in
which the individual adapted weights are stored and used in other application. As
already a standardized format for HRTF databases was initially created by Majdak
et al. [MIC*13], this could be a great symbiosis. The reduction in dimensionality
enables HRTF customization on mobile phones, because only few parameters that are
perceptual relevant have to be stored. Hence, using a clever test procedure to gather

relevant individual localization parameters could avoid measurement of HRTFs.
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Appendix A
HRTF Exploration Tool

For a better overview and understanding of the matter, a tool in MATLAB® was
initially created. It focuses on synthesizing HRIRs with different methods that are
described in this work and even more. All parameters of the input matrix for struc-
ture Struct2 that are described in Chapter 5 can be selected. Spherical Harmonic
Decomposition can be patched to convert the adjustment process into the spherical
domain. All directions and possible trajectories in azimuth and elevation can be
adapted locally or globally. Several adjustments for the stimulus can be made, such
as equalizing with a prior measured headphone transfer function and including several
room impulse responses. Adjusted weights can be stored in filesystem so that they
can be used or compared again later.

The variation of the spherical weights are categorized into three main groups:
shifting, rotation and diminution/widening. Prior knowledge of these transformation
effects can be used to overlay additional information in the GUI for each slider, e.g.
that the sliders shifts trajectory left /right. In the GUI, different background colors
were selected to distinguish between the transformation effects. It has to be noted
that no subjective evaluation to verify these effects on spherical weights has been
carried out. These overlay informations are only based on the subjective judgment of
the author, hence, these effects might may be different for other people.

The computation time for the reconstruction of the time signal when a slider is
changed is highly dependent on the number of the selected listening positions. For
the PCA model, 10 ms are required for listening a single position and increases up to
over 20 ms when a trajectory of source positions is selected. For the PCA-SH model,
the reconstruction process takes at least 30 ms for a single position and increases up

to 40 ms for several positions.
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Figure A.1: Graphical user interface for testing input parameters for the PCA and
PCA-SH model.
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Appendix B

Overview of the Model
Implementation

The implementation of the proposed model was done in MATLAB® and provides a
flexible way to analyze and synthesize HRTFs. The core of the model are several
functions (Figure B.1) that can be used to perform an error analysis of the entire
dataset without adjustment of PCWs or modify the PCWs through sliders in a GUI.
Table B.1 explains the possible model parameters. After calculation, the model data
can be stored automatically in the filesystem for further use. If precalculated model
data are available in filesystem, the file is imported automatically instead of comput-
ing the model again. This can save up to 10 minutes of computing time, depending
on the model parameters.

The author would like to thank his advisor Georgios Marentakis who was quite

involved in developing the model.
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Parameter Type Values Comment

Database string ari, cipic, ircam

Dataset

Subject Density float 1-100 in percent

Direction Density float 1-100 in percent

Ears integer 1,2, [1,2] only left and right or
both ears

Frequency Smoothing | integer 1,2, 3 .. until max. number of

Ratio frequency bins

Bandpass boolean 0,1

Model

Model Type string pca, ica, nmf

Model Order integer 1,2,3 .. number of basis
functions

Structure integer 1-5 dimension of the input
matrix

Signal Representation | integer 1-4 HRIR,
Minimum-phase
HRIR, DTF linear,
DTF logarithmic

Ear Handling integer 1,2 ears in rows or
columns blocked

Weight Model

Weight Model Type string local, global

Weight Model Order | integer 1,2, 3 .. number of spherical
basis functions

Matrix Regularization | boolean 0,1

Reconstructed Set

Order integer 1,2,3 .. until max. number of
time/frequency bins

Weight Order integer 1,2, 3 .. number of spherical
basis functions

Direction IDs integer 1,2,3..] vector of direction ids

Error Computation boolean 0,1

Sound Reproduction

Stimulus integer 1,2, 3, .. id of predefined
stimuli

Headphone EQ integer 1,2,3 .. id of predefined
inverse headphone
transfer functions

Room Impulse integer 1,2, 3, .. id number of

Response

predefined room
impulse responses

Table B.1: Explanation of the model parameters.
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Figure B.1: Overview of the HRTF model implementation in MATLAB®.
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Appendix C

Input Matrix Structures

C.1 Graphical Representation

A graphical representation of the five described structures allows a better overview of
the multidimensional HRTF data and the resulting PCA output. Matrix dimensions
for Struct2 can be found in Figure 5.4 on Page 49.
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Figure C.1: Dimension of input matrix Structl [subjects X (signal * positions)] when
choosing ears in columns (first line) or rows (second line) blocked.
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Figure C.2: Dimension of input matrix Struct3 [signal x (subjectsxpositions)] when
choosing ears in columns (first line) or rows (second line) blocked.
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Figure C.3: Dimension of input matrix Struct4 [(signal*positions) x subjects| when
choosing ears in columns (first line) or rows (second line) blocked.
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C.2 Variance Tables

Variance tables for three open access HRTF databases provide a full overview of

the required PCs to obtain 90 percent variance for different properties of input data

matrix.
HRIR Min HRIR | DTF lin DTF log
E/E—-|E|l]| E—-|E|]/]|E—-|E|] | E—
_ left ear 49 49 46 46 42 42 59 59
o | right ear | 50 50 46 46 41 41 60 60
both ears | 92 55 56 52 28 47 40 62
o left ear 49 49 46 46 40 40 58 58
o | right ear | 50 50 46 46 39 39 58 58
both ears | 92 55 56 52 26 46 35 61
- left ear 49 49 46 46 38 38 55 55
— | o5 | right ear | 50 50 46 46 38 38 56 56
§ both ears | 92 55 56 52 24 45 28 59
C% " left ear 49 49 46 46 32 32 51 51
o | right ear | 50 50 46 46 31 31 51 o1
both ears | 92 55 56 52 18 39 19 55
o | left ear 49 49 46 46 23 23 45 45
5 right ear | 50 | 50 | 46 | 46 | 22 | 22 | 45 | 45
both ears | 92 55 56 52 9 30 9 50
~ | left ear 49 49 46 46 17 17 40 40
g right ear | 50 | 50 | 46 | 46 | 16 | 16 | 40 | 40
both ears | 92 55 56 52 6 24 5 46
_ | left ear 15 15 10 10 7 7 6 6
o | right ear | 15 15 11 11 7 7 6 6
% both ears | 15 29 11 20 7 12 6 10
g o left ear 15 15 10 10 6 6 ) 5)
n | 5 | right ear | 15 15 11 11 6 6 ) D
both ears | 15 29 11 20 6 12 5 8
left ear 15 15 10 10 6 6 4 4
continued on next page
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continued from previous page

HRIR Min HRIR DTF lin DTF log
E/J]IE—-|E|]J]|E—-|E|] E—-|E]|E—

= | right ear | 15 15 11 11 6 6 4 4

2 | both ears | 15 29 11 20 6 11 4 7

" left ear 15 15 10 10 5 5 3 3

o | right ear | 15 15 11 11 D ) 3 3

% both ears | 15 29 11 20 5 9 3 6

= | o | left ear 15 15 10 10 3 3 3 3

N S |rightear | 15 | 15 [ 11 | 11 3 3 2 2

both ears | 15 29 11 20 3 6 3 4

~ | left ear 15 15 10 10 2 2 2 2

g right ear 15 15 11 11 2 2 2 2

both ears | 15 29 11 20 2 4 2 2

_ left ear 16 16 7 7 6 6 1 1

o | right ear 15 15 7 7 6 6 1 1

both ears | 29 15 12 7 8 6 2 1

o left ear 16 16 7 7 5 5 1 1

o | right ear 15 15 7 7 5 5 1 1

both ears | 29 15 12 7 8 5 2 1

- left ear 16 16 7 7 5 5 1 1

o | o5 | right ear | 15 15 7 7 D ) 1 1

E both ears | 29 | 15 | 12 7 7 5 2 1

(% " left ear 16 16 7 7 4 4 1 1

o | right ear 15 15 7 7 5 5 1 1

both ears | 29 15 12 7 6 5 2 1

o | left ear 16 16 7 7 2 2 1 1

% right ear | 15 | 15 7 7 3 3 1 1

both ears | 29 15 12 7 3 3 2 1

o~ | left ear 16 16 7 7 3 3 1 1

% right ear | 15 | 15 7 7 3 3 1 1

both ears | 29 15 12 7 3 3 2 1

. left ear 41 41 10 10 4 4 1 1

o | right ear | 45 45 11 11 5 5 1 1

both ears | 48 85 13 19 6 8 1 2

continued on next page
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continued from previous page

HRIR Min HRIR | DTF lin DTF log

E/] E—-|E| E—-|E|| E—-|E| | E—
o | teft ear 41 41 10 10 4 4 1 1
o~ | right ear | 45 45 11 11 D ) 1 1
both ears | 48 85 13 19 6 7 1 2
- left ear 41 41 10 10 4 4 1 1
o | right ear | 45 45 11 11 4 4 1 1
both ears | 48 85 13 19 5 7 1 2
% " left ear 41 41 10 10 3 3 1 1
= | o | right ear | 45 45 11 11 3 3 1 1
55 bothears | 48 | 85 | 13 | 19 | 4 5 1 2
o | left ear 41 41 10 10 2 2 1 1
% right ear | 45 | 45 | 11 | 11 2 2 1 1
both ears | 48 85 13 19 2 3 1 2
~ | left ear 41 41 10 10 1 1 1 1
g right ear | 45 | 45 | 11 | 11 2 2 1 1
both ears | 48 85 13 19 2 3 1 2
_ | left ear 99 99 5 5 4 4 1 1
o~ | right ear | 98 98 6 6 5 5 1 1
both ears | 151 | 174 9 8 5 6 2 1
o left ear 99 99 5 5) 4 4 1 1
o | right ear | 98 98 6 6 4 4 1 1
both ears | 151 | 174 9 8 5 6 2 1
- left ear 99 99 5 5 4 4 1 1
% o | right ear | 98 98 6 6 4 4 1 1
= both ears | 151 | 174 9 8 D ) 2 1
Al |leftear |99 [ 99 [ 5 5 3 3 1 1
o | right ear | 98 98 6 6 4 4 1 1
both ears | 151 | 174 9 8 4 5 2 1
o | left ear 99 99 5 5 2 2 1 1
% right ear | 98 | 98 6 6 2 2 1 1
both ears | 151 | 174 9 8 3 3 2 1
&3 | left ear 99 99 5 5 3 3 1 1
o [rightear | 98 | 98 | 6 6 3 3 1 1

continued on next page
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continued from previous page
HRIR Min HRIR DTF lin DTF log
both ears | 151 | 174 9 8 2 3 2 1

Table C.1: Number of PCs required to yield 90 percent variance for different realiza-
tions of a PCA input matrix based on the ARI database. S/1 refers to no smoothing
and S/2 ... S/N to different degrees of HRTF spectrum smoothing (see Chapter
5.2.2). Horizontally, the input signal representations are given and whether ears are
blocked in rows (EJ) or columns (E—). Five different input structures and variations
of spectral smoothing are listed vertically.

HRIR Min HRIR DTF lin DTF log
E/]IE—-|E|] E—-|E]/]| E—>|E||E—
_ left ear 30 30 29 29 27 27 36 36
o | right ear | 29 29 28 28 26 26 36 36
both ears | 58 32 39 31 25 29 40 36
o left ear 30 30 29 29 27 27 35 35
o | right ear 29 29 28 28 26 26 35 35
both ears | 58 32 39 31 24 29 37 36
- left ear 30 30 29 29 26 26 34 34
— | o | right ear 29 29 28 28 25 25 34 34
§ both ears | 58 32 39 31 23 28 33 35
8}; " left ear 30 30 29 29 24 24 33 33
o | right ear 29 29 28 28 23 23 33 33
both ears | 58 32 39 31 19 26 25 34
o | left ear 30 30 29 29 20 20 30 30
% right ear | 29 | 29 | 28 | 28 | 19 | 19 | 30 | 30
both ears | 58 32 39 31 11 23 11 31
~ | left ear 30 30 29 29 17 17 26 26
g right ear | 29 | 29 | 28 | 28 | 16 | 16 | 26 | 26
both ears | 58 32 39 31 6 20 4 28
_ left ear 19 19 10 10 6 6 9 9
o | right ear | 20 20 11 11 7 7 8 8
both ears | 20 38 11 20 7 12 8 15
continued on next page
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continued from previous page

HRIR Min HRIR DTF lin DTF log

E//E—-|E|]| E—-|E|]|E—|E]|E—
o left ear 19 19 10 10 6 6 8 8
o | right ear | 20 20 11 11 7 7 7 7
both ears | 20 38 11 20 6 12 7 13
- left ear 19 19 10 10 6 6 6 6
o | right ear | 20 20 11 11 6 6 6 6
both ears | 20 38 11 20 6 12 6 11
% " left ear 19 19 10 10 5 5 5 5
= | & | right ear | 20 20 11 11 5 5 4 4
N bothears | 20 | 38 | 11 | 20 [ 5 | 10 | 5 8
o | left ear 19 19 10 10 3 3 3 3
% right ear | 20 20 11 11 3 3 3 3
both ears | 20 38 11 20 3 5 3 4
~ | left ear 19 19 10 10 2 2 2 2
g right ear | 20 20 11 11 2 2 1 1
both ears | 20 38 11 20 2 3 1 2
_ left ear 20 20 7 7 7 7 7 7
o | right ear | 20 20 7 7 8 8 7 7
both ears | 39 20 13 7 10 8 7 7
o left ear 20 20 7 7 7 7 6 6
o | right ear | 20 20 7 7 8 8 7 7
both ears | 39 20 13 7 10 8 6 6
- left ear 20 20 7 7 7 7 5 5
o | o5 | right ear | 20 20 7 7 7 7 6 6
§ both ears | 39 20 13 7 10 7 5! 5)
(% " left ear 20 20 7 7 6 6 4 4
o | right ear | 20 20 7 7 6 6 4 4
both ears | 39 20 13 7 8 6 3 4
o | left ear 20 20 7 7 4 4 2 2
% right ear | 20 | 20 7 7 3 3 2 2
both ears | 39 20 13 7 4 4 2 2
&3 | left ear 20 20 7 7 2 2 1 1
o [right ear | 20 | 20 | 7 7 2 2 1 1

continued on next page
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HRIR Min HRIR DTF lin DTF log

E//E—-|E|]| E—-|E|]|E—|E]|E—
both ears | 39 20 13 7 2 2 2 1
_ left ear 29 29 9 9 7 7 9 9
o~ | right ear | 28 28 10 10 8 8 9 9
both ears | 31 56 11 18 9 14 10 14
o left ear 29 29 9 9 7 7 7 7
o~ | right ear | 28 28 10 10 8 8 8 8
both ears | 31 56 11 18 9 13 8 11
- left ear 29 29 9 9 7 7 6 6
< | o5 | right ear | 28 28 10 10 7 7 6 6
E both ears | 31 | 56 | 11 | 18 9 13 7 8
C% " left ear 29 29 9 9 6 6 3 3
o | right ear | 28 28 10 10 6 6 3 3
both ears | 31 56 11 18 7 10 4 5
o | left ear 29 29 9 9 3 3 1 1
% right ear | 28 | 28 | 10 | 10 3 3 1 1
both ears | 31 56 11 18 4 5 1 2
~ | left ear 29 29 9 9 2 2 1 1
% right ear | 28 | 28 | 10 | 10 2 2 1 1
both ears | 31 56 11 18 3 3 1 2
. left ear 50 50 7 7 9 9 25 25
o | right ear | 53 53 7 7 8 8 31 31
both ears | 73 93 11 10 9 13 12 41
o left ear 50 50 7 7 8 8 16 16
o | right ear | 53 53 7 7 8 8 20 20
% both ears | 73 93 11 10 9 13 8 28
§ - left ear 50 50 7 7 8 8 12 12
n | 5 | right ear | 53 53 7 7 8 8 13 13
both ears | 73 93 11 10 9 12 6 18
- left ear 50 50 7 7 7 7 7 7
o | right ear | 53 53 7 7 7 7 8 8
both ears | 73 93 11 10 8 10 4 11
left ear 50 50 7 7 5 5 4 4

continued on next page
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HRIR Min HRIR DTF lin DTF log

E/IE—-|E|] E—-|E]/] E—-|E||E—
right ear | 53 53 7 7
both ears | 73 93 11 10
left ear 50 50 7 7
right ear | 53 53 7 7
both ears | 73 93 11 10

Structd
S/32 | S/16

CO| | | O Ot
QY | | O Ot
DO DO DO COf W~
W DN DO U W=~

Table C.2: Number of PCs required to yield 90 percent variance for different re-
alizations of a PCA input matrix based on the CIPIC database. S/1 refers to no
smoothing and S/2 ... S/N to different degrees of HRTF spectrum smoothing (see
Chapter 5.2.2). Horizontally, the input signal representations are given and whether
ears are blocked in rows (EJ) or columns (E—). Five different input structures and
variations of spectral smoothing are listed vertically.

HRIR Min HRIR DTF lin DTF log
E//E—-|E|]| E—-|E|]|E—|E|]|E—
left ear 36 36 34 34 33 33 38 38
right ear | 37 37 34 34 34 34 38 38
both ears | 72 39 49 36 32 35 38 39
left ear 36 36 34 34 32 32 37 37
right ear | 37 37 34 34 33 33 37 37
both ears | 72 39 49 36 31 35 32 38
left ear 36 36 34 34 32 32 36 36
right ear | 37 37 34 34 33 33 36 36
both ears | 72 39 49 36 30 35 28 37
left ear 36 36 34 34 32 32 35 35
right ear | 37 37 34 34 33 33 35 35
both ears | 72 39 49 36 29 35 24 36
left ear 36 36 34 34 30 30 32 32
right ear | 37 37 34 34 31 31 33 33
both ears | 72 39 49 36 28 34 18 35
left ear 36 36 34 34 28 28 28 28
right ear | 37 37 34 34 29 29 29 29
both ears | 72 39 49 36 20 32 9 31

continued on next page
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continued from previous page

HRIR Min HRIR DTF lin DTF log

E//E—-|E|]| E—-|E|]|E—|E]|E—
_ left ear 21 21 11 11 7 7 10 10
o~ | right ear | 20 20 11 11 7 7 10 10
both ears | 21 39 11 20 7 13 10 18
o left ear 21 21 11 11 7 7 7 7
o | right ear | 20 20 11 11 7 7 7 7
both ears | 21 39 11 20 7 13 7 13
- left ear 21 21 11 11 7 7 6 6
o | o5 | right ear | 20 20 11 11 7 7 7 7
E both ears | 21 | 39 | 11 | 20 7 12 7 12
(% " left ear 21 21 11 11 6 6 6 6
o | right ear | 20 20 11 11 7 7 6 6
both ears | 21 39 11 20 7 12 6 10
o | left ear 21 21 11 11 6 6 bt 5
% right ear | 20 | 20 | 11 | 11 6 6 5 5
both ears | 21 39 11 20 6 12 5 8
~ | left ear 21 21 11 11 4 4 3 3
% right ear | 20 | 20 | 11 | 11 5 5 3 3
both ears | 21 39 11 20 5 8 3 4
. left ear 21 21 7 7 14 14 41 41
o | right ear | 20 20 8 8 14 14 42 42
both ears | 39 21 13 8 14 14 19 42
o left ear 21 21 7 7 12 12 19 19
o | right ear | 20 20 8 8 13 13 20 20
o~ both ears | 39 21 13 8 13 12 13 20
S| [left ear 21 | 21 7 7 12| 12 | 14 | 14
% o | right ear | 20 20 8 8 12 12 15 15
both ears | 39 21 13 8 13 12 11 14
" left ear 21 21 7 7 11 11 11 11
o | right ear | 20 20 8 8 11 11 12 12
both ears | 39 21 13 8 13 11 10 12
2 | left ear 21 21 7 7 9 9 8 8
o7 [ right ear | 20 | 20 | 8 8 [ 10 | 10 | 8 8

continued on next page

112
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HRIR Min HRIR | DTF lin DTF log

E/|E-|EJ]|E~-|E||E> |EJ|E —

both ears | 39 21 13 12 10 8 8
o~ | left ear 21 21 7 6 6 5 5
g right ear | 20 | 20 8 6 6 5 5

both ears | 39 21 13 8 6 5 5

left ear 36 36 12 14 14 17 17

— =
MMOOOO\]OO

S/1

right ear | 37 37 12 14 14 16 16

both ears | 39 72 14 23 16 26 18 30

left ear 36 36 12 12 13 13 13 13

S/2

right ear | 37 37 12 12 14 14 13 13

both ears | 39 72 14 23 15 25 15 24

left ear 36 36 12 12 13 13 12 12

- % right ear | 37 37 12 12 13 13 12 12
E bothears | 39 | 72 | 14 | 23 | 15 | 24 | 13 | 20
% " left ear 36 36 12 12 13 13 10 10
o5 | right ear | 37 37 12 12 13 13 10 10
both ears | 39 72 14 23 15 24 11 17

o | left ear 36 36 12 12 12 12 8 8

% right ear | 37 37 12 12 12 12 7 7
both ears | 39 72 14 23 14 23 8 12

o~ | left ear 36 36 12 12 9 9 ) D

% right ear | 37 | 37 | 12 | 12 9 9 4 4
both ears | 39 72 14 23 10 16 5 6

_ left ear 67 67 11 11 29 29 68 68

o | right ear | 66 66 10 10 30 30 71 71
both ears | 103 | 124 17 15 21 51 30 129

o |~ left ear 67 67 11 11 26 26 57 57
§ o | right ear | 66 66 10 10 27 27 60 60
C% both ears | 103 | 124 | 17 15 19 45 21 105

left ear 67 67 11 11 24 24 49 49

S/4

right ear | 66 66 10 10 25 25 51 o1

both ears | 103 | 124 17 15 19 42 17 7

left ear 67 67 11 11 23 23 40 40

continued on next page
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continued from previous page
HRIR Min HRIR DTF lin DTF log

E/IE—-|E|] E—-|E]/] E—-|E||E—
% | right ear | 66 66 10 10 23 23 42 42
92 | both ears | 103 | 124 | 17 15 18 40 14 69
o left ear 67 67 11 11 20 20 28 28
E g right ear | 66 | 66 | 10 | 10 | 20 [ 20 | 30 | 30
(4;5‘) @ | both ears | 103 | 124 | 17 15 17 34 11 47
~ | left ear 67 67 11 11 18 18 18 18
% right ear | 66 66 10 10 18 18 19 19
both ears | 103 | 124 17 15 14 29 7 28

Table C.3: Number of PCs required to yield 90 percent variance for different real-
izations of a PCA input matrix based on the IRCAM database. S/1 refers to no
smoothing and S/2 ... S/N to different degrees of HRTF spectrum smoothing (see
Chapter 5.2.2). Horizontally, the input signal representations are given and whether
ears are blocked in rows (EJ) or columns (E—). Five different input structures and
variations of spectral smoothing are listed vertically.
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List of Abbreviations

ANOVA Analysis of Variance

ARI Acoustics Research Institute

CIPIC Center for Image Processing and Integrated Computing
CTF Common Transfer Function

DRIR Directional Room Impulse Response

DHST Discrete Spherical Harmonic Transform

DTF Directional Transfer Function

FT Fourier Transform

GUI Graphical User Interface

HPTF Headphone Transfer Function

HRIR Head-related Impulse Response

HRTF Head-related Transfer Function

ICA Independent Component Analysis

IFT Inverse Fourier Transform

ILD Interaural Level Difference

JND Just Noticeable Difference

IRCAM Institut de Recherche et Coordination Acoustique/Musique
ITD Interaural Time Difference

KEMAR Knowles Electronic Manikin for Acoustic Research
NCF Central Frequencies of Pinna Notches

PCA Principal Component Analysis

PCW Principal Component Weight

PC Principal Component
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PRTF Pinna-related Transfer Function

RMSE Root Mean Square Error

SDR Signal-to-distortion Ratio

SDT Signal Detection Theory

SD Spectral Distortion

SHW Spherical Harmonic Weight

SH Spherical Harmonic

SOFA Spatially Oriented Format for Acoustics
SVD Singular Value Decomposition

TSVD Truncated Singular Value Decomposition
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