import pandas as pd
import numpy as np
df = pd .DataFrame (
{'City' : ['Buenos Aires' , 'Brasilia' , 'Santiago' , 'Bogota' , 'Caracas' ],
'Country' : ['Argentina' , 'Brazil' , 'Chile' , 'Colombia' , 'Venezuela' ],
'Latitude' : [- 34.58 , - 15.78 , - 33.45 , 4.60 , 10.48 ],
'Longitude' : [- 58.66 , - 47.91 , - 70.66 , - 74.08 , - 66.86 ]})
Nice representation of dataframe to markdown
from IPython .display import Markdown , display
def df2md (df ):
fmt = ['---' for i in range (len (df .columns ))]
df_fmt = pd .DataFrame ([fmt ], columns = df .columns )
df_formatted = pd .concat ([df_fmt , df ])
display (Markdown (df_formatted .to_csv (sep = "|" , index = False )))
City
Country
Latitude
Longitude
Buenos Aires
Argentina
-34.58
-58.66
Brasilia
Brazil
-15.78
-47.91
Santiago
Chile
-33.45
-70.66
Bogota
Colombia
4.6
-74.08
Caracas
Venezuela
10.48
-66.86
Find address (column, row) by value
Function definition : Search 'Brazil' and return Column and index
search = 'Brazil'
for column in df .columns :
if df [column ].isin ([search ]).any ():
idx = np .where (df [column ]== search )[0 ]
print ('column, idx= {}, {}' .format (column , idx ))
column, idx= Country, [1]