PEAN: A Diffusion-Based Prior-Enhanced Attention Network for Scene Text Image Super-Resolution

Zuoyan Zhao

Southeast University

- Introduction
- Prior-Enhanced Attention Network (PEAN)
 - The framework of PEAN
 - Text Prior Enhancement Module
 - Attention-Based Modulation Module
 - Multi-Task Learning

> Experiments

- Comparing with State-of-the-Art Methods
- Ablation Study
- Conclusion

- Prior-Enhanced Attention Network (PEAN)
 - The framework of PEAN
 - Text Prior Enhancement Module
 - Attention-Based Modulation Module
 - Multi-Task Learning
- Experiments
 - Comparing with State-of-the-Art Methods
 - Ablation Study
- Conclusion

- To better read text from LR images, researchers formulate the STISR task to reconstruct missing text details in LR images, as a pre-processing step for the scene text recognition task.
- ➢ For scene text images, two crucial factors determine whether they could be correctly recognized.
 - Visual structure: the restoration of images containing long or deformed text string
 - **Semantic information:** primary text prior prevents the SR network from generating images that contain correct semantic information
- ▶ We propose a Prior-Enhanced Attention Network (PEAN) to tackle issues caused by the two factors.

- An Attention-based Modulation Module (AMM) is proposed to substitute the SRB, endowing the network with a larger receptive feld to images, thereby restoring the visual structure of images with text in various shapes and lengths.
- However, the lack of semantic information limits the capability of such model.
- Text prior derived from high-resolution (HR) images is a robust choice for STISR, in view of the high recognition accuracy of HR images.

 We conduct an exploratory experiment wherein we substitute the text prior from LR images (TP-LR) with the text prior from HR images (TP-HR) within such model, yielding superior outcomes.

•	TP-LR	TPEM	TP-HR	Easy	Medium	Hard	Average
				75.7	60.2	42.1	60.4
	\checkmark			79.7	62.3	46.1	63.8
	\checkmark	\checkmark		84.5	71.4	52.9	70.6
			\checkmark	88.4	75.5	61.3	75.9

 This inspires the design of a module for enhancing the primary text prior, resulting in the creation of the Enhanced Text Prior (ETP), which is comparable in effectiveness to TP-HR.

- The ETP provides valuable guidance to the SR network, promoting the generation of SR images with high semantic accuracy.
- Given the remarkable performance of diffusion models, we propose a diffusion-based Text Prior Enhancement Module (TPEM) to obtain the ETP owing to their ability to map complex distributions.
- ➤ We adopt the Multi-Task Learning (MTL) paradigm in the training phase.
 - ➤ Image restoration task: focuses on generating high-quality SR images.
 - **Text recognition task**: stimulates the model to generate more readable SR results.

Introduction

Prior-Enhanced Attention Network (PEAN)

- The framework of PEAN
- Text Prior Enhancement Module
- Attention-Based Modulation Module
- Multi-Task Learning

Experiments

- Comparing with State-of-the-Art Methods
- Ablation Study
- Conclusion

Prior-Enhanced Attention Network

Prior-Enhanced Attention Network

ACM Multimedia 2024

- > Introduction
- Prior-Enhanced Attention Network (PEAN)
 - The framework of PEAN
 - Text Prior Enhancement Module
 - Attention-Based Modulation Module
 - Multi-Task Learning

> Experiments

- Comparing with State-of-the-Art Methods
- Ablation Study

Conclusion

Experiments

Methods	Ac	Accuracy of ASTER [53] (%)		Accuracy of MORAN [33] (%)			Accuracy of CRNN [52] (%)					
Methous	Easy	Medium	Hard	Average	Easy	Medium	Hard	Average	Easy	Medium	Hard	Average
LR	62.4	42.7	31.6	46.6	59.4	36.0	28.2	42.3	37.5	21.2	21.4	27.3
SRCNN [10]	69.4	43.4	32.2	49.5	63.2	39.0	30.2	45.3	38.7	21.6	20.9	27.7
SRResNet [27]	69.6	47.6	34.3	51.3	60.7	42.9	32.6	46.3	39.7	27.6	22.7	30.6
RDN [73]	70.0	47.0	34.0	51.5	61.7	42.0	31.6	46.1	41.6	24.4	23.5	30.5
RRDB [63]	70.9	44.4	32.5	50.6	63.9	41.0	30.8	46.3	40.6	22.1	21.9	28.9
LapSRN [26]	71.5	48.6	35.2	53.0	64.6	44.9	32.2	48.3	46.1	27.9	23.6	33.3
ESRT [10]	69.8	49.1	35.2	52.5	61.9	41.7	32.2	46.3	48.2	27.9	25.8	34.8
Omni-SR [60]	71.2	52.3	38.1	54.9	66.7	47.9	36.5	51.4	54.8	37.4	29.4	41.4
SRFormer [78]	69.0	45.1	32.8	50.2	61.3	39.6	29.9	44.7	41.0	22.8	22.9	29.6
TSRN [62]	75.1	56.3	40.1	58.3	70.1	53.3	37.9	54.8	52.5	38.2	31.4	41.4
TBSRN [5]	75.7	59.9	41.6	60.1	74.1	57.0	40.8	58.4	59.6	47.1	35.3	48.1
PCAN [74]	77.5	60.7	43.1	61.5	73.7	57.6	41.0	58.5	59.6	45.4	34.8	47.4
TG [6]	77.9	60.2	42.4	61.3	75.8	57.8	41.4	59.4	61.2	47.6	35.5	48.9
SGENet [57]	75.8	60.7	45.0	61.4	71.5	56.2	41.4	57.3	59.4	47.9	37.7	49.0
TPGSR [34]	78.9	62.7	44.5	62.8	74.9	60.5	44.1	60.5	63.1	52.0	38.6	51.8
TATT [35]	78.9	63.4	45.4	63.6	72.5	60.2	43.1	59.5	62.6	53.4	39.8	52.6
C3-STISR [75]	79.1	63.3	46.8	64.1	74.2	61.0	43.2	60.5	65.2	53.6	39.8	53.7
TATT + DPMN [81]	79.3	64.1	45.2	63.9	73.3	61.5	43.9	60.4	64.4	54.2	39.2	53.4
TSAN [82]	79.6	64.1	45.3	64.1	78.4	61.3	45.1	62.7	64.6	53.3	38.8	53.0
TEAN [55]	80.4	64.5	45.6	64.6	76.8	60.8	43.4	61.4	63.7	52.5	38.1	52.2
MSPIE [83]	80.4	63.4	46.3	64.4	74.0	61.4	44.4	60.8	64.5	54.2	39.6	53.5
TCDM [39]	81.3	65.1	50.1	65.5	77.6	62.9	45.9	62.2	67.3	57.3	42.7	55.7
LEMMA [19]	81.1	66.3	47.4	66.0	77.7	64.4	44.6	63.2	67.1	58.8	40.6	56.3
RTSRN [70]	80.4	66.1	49.1	66.2	77.1	63.3	46.5	63.2	67.0	59.2	42.6	57.0
RGDiffSR [77]	81.1	65.4	49.1	66.2	78.6	62.1	45.4	63.1	67.6	56.5	42.7	56.4
TextDiff [29]	80.8	66.5	48.7	66.4	77.7	62.5	44.6	62.7	64.8	55.4	39.9	54.2
PEAN	84.5	71.4	52.9	70.6	79.4	67.0	49.1	66.1	68.9	60.2	45.9	59.0
HR	94.2	87.7	76.2	86.6	91.2	85.3	74.2	84.1	76.4	75.1	64.6	72.4

Experiments

LR	DIRC	POLYTICHNE	1325	800-352-5675	40128824	cooking.	RUTICA ALTA
	one	nonthouse	the	0009529476	date	realing	now
TSRN	I'H FICE	POLYTICHESIC	1925	800-352-5675	AGI SHEN	roohing,	KUDCAMLEA
	nhfice	polyticical	1993	800 <mark>9</mark> 52 <mark>6</mark> 67 <mark>6</mark>	serious	cooking	kudchilea
TBSRN	OTHCE	PORYTYCHESK	2535	800-352-5675	4012828	cooking.	HURICA ALTA
	office	polythoirs	250s	800 <mark>9546</mark> 675	401 <mark>98</mark> 2_	evoking	kurcaalta
TG	HFICE	OLYTEEHNK.	12525	800-352-5675	1012025	ecohing.	NUEICA ALEA
	mince	polytechnic	is2s	800 <mark>9</mark> 52567 <mark>6</mark>	1012010	seching	nuricaalea
TATT	THFICE	POLYTICHNK	3525	800-352-5675	4012828	seohing.	HUEICA ALTA
	infice	polyttchinic	<mark>3</mark> 525	800 <mark>9</mark> 52 <mark>6</mark> 67 <mark>6</mark>	101202_	ceching	kulccaalta
C3-STISR	MHCE	POLYTECHNK.	3525	800-352-5675	4012826	ceoking.	NUSICA ALTA
	intrice	polytechn <mark>k</mark>	js25	8003 <mark>3</mark> 28675	1012 <mark>3</mark> 2_	ceoking	kusicaalta
TSAN	DIFICE	POLYTECHNE.	2525	800-352-8675	4012112N	ceeklag.	HUE/CA ALTA
	nhl	polyttchnic	<mark>2</mark> 525	800352 <mark>8</mark> 675	1012112	eeching	hudicaalta
LEMMA	OFFICE	POLYTICHNK	\$\$25	800-352-5675	402202H	eoohing,	NUSICA KLTA
	chfice	polytichnic	<mark>3</mark> 25	8003 <mark>326</mark> 67 <mark>6</mark>	401202 <mark>h</mark>	eoohing	nusicanlya
RGDiffSR	DFFICE	RILYTTCHNIC	2525	800-352-5675	401302N	cecking.	NUSCA ALTA
	dffice	rolytichnic	<mark>2</mark> 525	800352567 <mark>6</mark>	101 <mark>3</mark> 02n	ceshing	hus_caalta
PEAN (Ours)	OFFICE	POLYTEEHNIC	1525	800-352-5675	4012028	cooking.	MUSICA ALTA
(Ours)	office	polytechnic	1525	8003525675	4012028	cooking	musicaalta
HR	OFFICE	POLYTECHNIC	1525	800-352-5675	4012028	cooking,	MUSICA ALTA
	office	polytechnic	1525	8003525675	4012028	cooking	musicaalta

Methods	Easy	Medium	Hard	Average
SRB [62]	80.1	64.4	46.4	64.7
ViT [12]	81.8	65.7	49.5	66.7
Swin [30]	73.8	55.1	39.0	57.1
CSWin [11]	70.2	52.9	37.2	54.5
Stripformer [58]	72.9	53.6	37.3	55.7
AMM	84.5	71.4	52.9	70.6

Loss Functions	Easy	Medium	Hard	Average
$\mathcal{L}_{\mathrm{mse}}$	76.2	58.8	41.5	59.9
+ \mathcal{L}_{sfm}	79.2	64.3	47.0	64.5
+ \mathcal{L}_{mae}	79.6	65.1	47.1	64.9
+ \mathcal{L}_{ctc}^{t}	81.4	68.8	50.7	67.9
+ \mathcal{L}_{ctc}^{a}	84.5	71.4	52.9	70.6

- > Introduction
- Prior-Enhanced Attention Network (PEAN)
 - The framework of PEAN
 - Text Prior Enhancement Module
 - Attention-Based Modulation Module
 - Multi-Task Learning
- Experiments
 - Comparing with State-of-the-Art Methods
 - Ablation Study

Conclusion

Conclusion

- ➢ We propose a Prior-Enhanced Attention Network (PEAN) for scene text image super-resolution (STISR).
- A Text Prior Enhancement Module (TPEM) is designed to provide the ETP for the subsequent SR process, enabling SR images to contain accurate semantic information.
- An Attention-based Modulation Module (AMM) is devised to obtain local and global coherence in scene text images, which can recover the visual structure of images with text in various sizes and deformations.
- ➤ We introduce the Multi-Task Learning (MTL) paradigm to improve the legibility of LR images.
- > Experiments demonstrate that our proposed PEAN achieves SOTA performance.
- We believe our work will serve as a strong baseline for future works, and will push forward the research of STISR as well as other sub-fields of scene text images.

- Wenjia Wang, Enze Xie, Xuebo Liu, Wenhai Wang, Ding Liang, Chunhua Shen, and Xiang Bai. Scene text image super-resolution in the wild. In *Proceedings of the European Conference on Computer Vision* (ECCV), 2020.
- ➢ Jianqi Ma, Zhetong Liang, and Lei Zhang. A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
- Minyi Zhao, Miao Wang, Fan Bai, Bingjia Li, Jie Wang, and Shuigeng Zhou. C3-STISR: Scene Text Image Superresolution with Triple Clues. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2022.
- Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang, and Luc Van Gool. DiffIR: Efficient Diffusion Model for Image Restoration. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
- Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip Transformer for Fast Image Deblurring. In Proceedings of the European Conference on Computer Vision (ECCV), 2022.
- Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad Norouzi. Image Super-Resolution via Iterative Refinement. In *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2023.

Authors & Contact Information

Zuoyan Zhao

Hui Xue

Pengfei Fang

Shipeng Zhu

- Main Paper: https://doi.org/10.1145/3664647.3680974
- Full Paper (with Supplementary Material): https://arxiv.org/abs/2311.17955
- Code: https://github.com/jdfxzzy/PEAN
- OpenReview: https://openreview.net/forum?id=IxSKhO7ed6
- E-mail: zuoyanzhao@seu.edu.cn

Thank you!

Zuoyan Zhao

Southeast University

