
A Micro-Manual for LISP - Not the whole truth

John McCarthy

Artificial Intelligence Laboratory

Stanford University

LISP data are symbolic expressions that can be either
atoms or lists. Atoms are strings of letters and digits and other
characters not otherwise used in LISP. A list consists of a left
parenthesis followed by zero or more atoms or lists separated
by spaces and ending with a right parenthesis. Examples: a,
onion, (), (a), (a onion a), (plus 3 (times x pi) 1),
(car (quote (a b))).

The LISP programming language is defined by rules
whereby certain LISP expressions have other LISP expres-
sions as values. The function called value that we will use in
giving these rules is not part of the LISP language but rather
part of the informal mathematical language used to define
LISP. Likewise, the italic letters e and a (sometimes with
subscripts) denote LISP expressions, the letter v (usually
subscripted) denotes an atom serving as a variable, and the
letter f stands for a LISP expression serving as a function
name.

1. value (quote e) = e. Thus the value of (quote a) is
a.

2. value (car e), where value e is a non-empty list, is the
first element of value e. Thus value (car (quote (a b

c))) = a.

3. value (cdr e), where value e is a non-empty list, is the
the list that remains when the first element of value e
is deleted. Thus value (cdr (quote (a b c))) = (b

c).

4. value (cons el e2), is the list that results from prefix-
ing value e1 onto the list value e2. Thus value (cons

(quote a) (quote (b c))) = (a b c).

5. value (equal el e2) is T if value e1 = value e2. Other-
wise, its value is NIL. Thus value (equal (car (quote

(a b))) (quote a)) = T.

6. value (atom e) = T if value e is an atom; otherwise its
value is NIL.

7. value (COND(pi ei) ...(pn en)) = value ei, where
pi is the the first of the p’s whose value is not
NIL. Thus value (cond ((atom (quote a)) (quote

b)) ((quote t) (quote c))) = b.

8. An atom v, regarded as a variable, may have a value.

9. value ((lambda (vi ... vn) e) ei ... en) is the
same as value e but in an environment in which
the variables vi . . . vn take the values of the
expressions ei . . . en in the original environ-
ment. Thus value ((lambda (x y) (cons (car

x) y)) (quote (a b)) (cdr (quote (c d)))) = (a

d).

10. Here’s the hard one. value ((label f (lambda (vi ...

vn) e)) ei ... en) is the same as value ((lambda (vi
... vn) e) ei ... en) with the additional rule that
whenever (f ai ... an) must be evaluated, f is re-
placed by (LABEL f (lambda (vi ... vn) e)). Lists
beginning with label define functions recursively.

This is the core of LISP, and here are more examples:

value (car x) = (a b) if value x = ((a b) c),
and value ((label ff (lambda (x) (cond ((atom x) x)

((quote t) (ff (car x)))))) (quote ((a b) c)))= a

Thus ((label ff (lambda (x) (cond ((atom x) x)

((quote t) (ff (car x)))))), is the LISP name of a
function ff such that ff e is the first atom in the written
form of e. Note that the list ff is substituted for the atom
ff twice.

Difficult mathematical type exercise: Find a list e such
that value e = e.

Abbreviations

The above LISP needs some abbreviations for practical
use.

1. The variables T and NIL are permanently assigned the
values T and NIL, and NIL is the name of the null list
().

2. So as not to describe a LISP function each time it
is used, we define it permanently by typing (defun

f (vi ... vn))) e) . Thereafter (f ei ... en) is
evaluated by evaluating e with the variables vi . . . vn

taking the values value value ei, . . . , value enrespectively.
Thus, after we define (defun ff (x) (cond ((atom

x) x) (t (ff (car x))))), typing (ff (quote (ca

b) c))), gets a from LISP.

3. We have the permanent function definitions.

(defun null (x) (equal x nil)) and (defun cadr

(x) (car (cdr x))).

and similarly for arbitrary combinations of A and D.

4. (list ei ... en) is defined for each n to be (cons

ei(cons ... (cons ennil))) .

5. (and p q) abbreviates (cond (p q) (t nil)). ANDs
with more terms are defined similarly, and the proposi-
tional connectives or and not are used in abbreviating
corresponding conditional expressions.

Here are more examples of LISP function definitions:

215

(defun alt (x) (cond ((or (null x) (null (cdr

x))) x) (t (cons (car x) (alt (cddr x))))))

defines a function that gives alternate elements of a list
starting with the first element. Thus (alt (quote (a b c

d e))) = (a c e)

(defun subst (x y z) (cond ((atom z) (cond

((equal z y) x) (t z))) (t (cons (subst x y (car

z))(subst x y (c d r z)))))),
where Y is an atom, gives the result of substituting X

for Y in Z. Thus (subst (quote (plus x y)) (quote v)

(quote (times x v))) = (times x (plus x y)).
You may now program in LISP. Call LISP on a time-

sharing computer, define some functions, type in a LISP
expression, and LISP will output its value on your terminal.

The LISP interpreter written in LISP

The rules we have given for evaluating LISP expressions
can themselves be expressed as a LISP function (eval e

a), where e is an expression to be evaluated, and a is a
list of variable-value pairs, a is used in the recursion and is
often initially NIL. The long LISP expression that follows is
just such an evaluator. It is presented as a single LABEL
expressions with all auxiliary functions also defined by LABEL
expressions internally, so that it references only the basic
function of LISP and some of abbreviations like CADR and
friends. It knows about all the functions that are used in its
own definition so that it can evaluate itself evaluating some
other expression. It does not know about DEFUNs or any
features of LISP not explained in this micro-manual such as
functional arguments, property list functions, input-output,
or sequential programs.

The function eval can serve as an interpreter for LISP,
and LISP interpreters are actually made by hand-compiling
EVAL into machine language or by cross-compiling it on a
machine for which a LISP system already exists.

The definition would have been easier to follow had we de-
fined auxiliary functions separately rather than include them
using LABEL. However, we would then have needed prop-
erty list functions in order to make the eval self-applicable.
These auxiliary functions are evlis which evaluates lists of
expressions, evcond which evaluates conditional expressions,
assoc which finds the value associated with a variable in the
environment, and pairup which pairs up the corresponding
elements of two lists.

Here is eval.

(label eval
(lambda (e a)
(cond ((atom e)

(cond ((eq e nil) nil)
((eq e t) t)
(t (cdr ((label assoc

(lambda (e a)
(cond ((null a) nil)

((eq e caar a)) (car a)
(t (assoc e (cdr a)))))

e
a)))))

((atom (car e))
(cond ((eq (car e) (quote quote)) (cadr e))

((eq (car e) (quote car))
(car (eval (cadr e) a)))
((eq (car e) (quote cdr))
(cdr (eval (cadr e) a)))
((eq (car e) (quote cadr))
(cadr (eval (cadr e) a)))
((eq (car e) (quote caddr))
(caddr (eval (cadr e) a)))
((eq (car e) (quote caar))
(caar (eval (cadr e) a)))
((eq (car e) (quote cadar))
(cadar (eval (cadr e) a)))
((eq (car e) (quote caddar))
(caddar (eval (cadr e) a)))
((eq (car e) (quote atom))
(atom (eval (cadr e) a)))
((eq (car e) (quote null))
(null (eval (cadr e) a)))
((eq (car e) (quote cons))
(cons (eval (cadr e) a) (eval (caddr e) a)))
((eq (car e) (quote eq))
(eq (eval (cadr e) a) (eval (caddr e) a)))
((eq (car e) (quote cond))
((label evcond

(lambda (u a)
(cond ((eval (caar u) a)

((eval (cadar u) a))
(t (evcond (cdr u) a)))))

(cdr e) a))
(t (eval (cons (cdr ((label assoc

(lambda (e a)
(cond
((null a) nil)
((eq e (caar a)) (car a))
(t (assoc e (cdr a))))))

(car e) a))
(cdr e))

a))))

((eq (caar e) (quote lambda))
(eval (caddar e)

((label ffappend
(lambda (u v)
(cond ((null u) v)

(t (cons (car u)
(ffappend (cdr u) v))))))

((label pairup
(lambda (u v)
(cond ((null u) nil)

(t (cons (cons (car u) (car v))
(pairup (cdr u) (cdr v)))))))

(label evlis
(lambda (u a)
(cond ((null u) nil)

(t (cons (eval (car u) a)
(evlis (cdr u) a))))))

(cdr e)
a))

a)))
((eq (caar e) (quote label))
(eval (cons (caddar e) (cdr e))) a)))))

216

