-
Notifications
You must be signed in to change notification settings - Fork 2
/
GNS_.py
349 lines (296 loc) · 13.3 KB
/
GNS_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import math
import argparse
from _thread import start_new_thread
from functools import wraps
from dgl.data import RedditDataset
import tqdm
import traceback
from ogb.nodeproppred import DglNodePropPredDataset, Evaluator
import json
import matplotlib.pyplot as plt
import pdb
epsilon = 1 - math.log(2)
# more parameters are needed to contruct SAGE
class SAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout,
fanout,
buffer_size,
batch_size):
super().__init__()
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_classes = n_classes
self.layers = nn.ModuleList()
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
for i in range(1, n_layers - 1):
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.fanout = fanout
self.buffer_size = buffer_size
self.batch_size = batch_size
# for importance sampling, use the fanout and dst_in_degrees
def forward(self, blocks, x,pro,device):
h = x
for l, (layer, block) in enumerate(zip(self.layers, blocks)):
cache = block.edges['_E'].data['cached']
eid_ = block.edges['_E'].data[dgl.EID]
# pdb.set_trace()
p_new = th.true_divide(1, pro[block.srcdata['_ID']])
cache_edge = eid_[(cache==1).nonzero()]
x_s,x_d = block.find_edges(th.reshape(eid_[(cache==1).nonzero()].to(th.int32),[len(cache_edge),]))
in_degree = block.in_degrees()
sample_pro = th.true_divide(in_degree.cpu(),self.fanout[l])
mm = th.reshape( sample_pro[x_d.long()]*p_new[x_s.long()],[len(x_s),1])
p_product = np.repeat(mm,h.shape[1],axis=1)
p_product[ p_product>2] = 2
h[x_s.long()] = (h[x_s.long()] * p_product.to(device)).float()
h_dst = h[:block.number_of_dst_nodes()]
h = layer(block, (h, h_dst))
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
return h
def inference(self, g, x, batch_size, device):
"""
Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
g : the entire graph.
x : the input of entire node set.
The inference code is written in a fashion that it could handle any number of nodes and
layers.
"""
# During inference with sampling, multi-layer blocks are very inefficient because
# lots of computations in the first few layers are repeated.
# Therefore, we compute the representation of all nodes layer by layer. The nodes
# on each layer are of course splitted in batches.
# TODO: can we standardize this?
nodes = th.arange(g.number_of_nodes())
for l, layer in enumerate(self.layers):
y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
dataloader = dgl.dataloading.NodeDataLoader(
g,
th.arange(g.number_of_nodes()),
sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers)
for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
block = blocks[0].int().to(device)
h = x[input_nodes].to(device)
h_dst = h[:block.number_of_dst_nodes()]
h = layer(block, (h, h_dst))
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
y[output_nodes] = h.cpu()
x = y
return y
def compute_acc(pred, labels):
"""
Compute the accuracy of prediction given the labels.
"""
evaluator = Evaluator(name="ogbn-arxiv")
return evaluator.eval({"y_pred": pred.argmax(dim=-1, keepdim=True), "y_true": labels})["acc"]
def evaluate(model, g, labels, val_nid, test_nid, batch_size, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
batch_size : Number of nodes to compute at the same time.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
inputs = g.ndata['feat']
pred = model.inference(g, inputs, batch_size, device)
model.train()
return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid]), pred
def load_subtensor(g, labels, seeds, input_nodes, device):
"""
Copys features and labels of a set of nodes onto GPU.
"""
batch_inputs = g.ndata['feat'][input_nodes].to(device)
batch_labels = labels[seeds].to(device)
return batch_inputs, batch_labels
def cross_entropy(x, labels):
y = F.cross_entropy(x, labels[:, 0], reduction="none")
y = th.log(epsilon + y) - math.log(epsilon)
return th.mean(y)
#### Entry point
def run(args, device, data):
# added by jialin, additional paramenters
train_nid, val_nid, test_nid, in_feats, labels, n_classes, g = data
number_of_nodes = g.number_of_nodes()
in_degree_all_nodes = g.in_degrees()
# Define model and optimizer
# added by jialin, additional paramenters
model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout,
[int(fanout) for fanout in args.fan_out.split(',')], args.buffer_size,
args.batch_size / number_of_nodes)
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
# Training loop
avg = 0
iter_tput = []
best_eval_acc = 0
best_test_acc = 0
keys = ['Loss', 'Train Acc', 'Test Acc', 'Eval Acc']
history = dict(zip(keys, ([] for _ in keys)))
fanout= [int(fanout) for fanout in args.fan_out.split(',')]
# Adj = g.adjacency_matrix()
# pro = (Adj*Adj*Adj).mm(np.reshape(prob, [len(prob), 1]).float()).numpy()
# pro = np.true_divide(pro, sum(pro))
# pro = np.reshape(pro,[len(pro),])
#
# while pro.sum() != 1:
# pro /= pro.sum()
for epoch in range(args.num_epochs):
if epoch % args.buffer_rs_every == 0:
if args.buffer_size != 0:
# initial the buffer
num_nodes = g.num_nodes()
num_sample_nodes = int(args.buffer_size * num_nodes)
prob = np.divide(in_degree_all_nodes, sum(in_degree_all_nodes))
args.buffer = np.random.choice(num_nodes, num_sample_nodes, replace=False,
p=prob)
# args.buffer = np.random.choice(num_nodes, num_sample_nodes, replace=False,
# p=pro)
sampler = dgl.dataloading.MultiLayerNeighborSampler(
[1,10,15],[-1,10,15], args.buffer, args.buffer_size,g)
dataloader = dgl.dataloading.NodeDataLoader(
g,
train_nid,
sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers)
tic = time.time()
# Loop over the dataloader to sample the computation dependency graph as a list of
# blocks.
for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
tic_step = time.time()
# copy block to gpu
blocks = [blk.int().to(device) for blk in blocks]
# Load the input features as well as output labels
batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, device)
batch_pred = model(blocks, batch_inputs,prob,device)
loss = cross_entropy(batch_pred, batch_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter_tput.append(len(seeds) / (time.time() - tic_step))
if step % args.log_every == 0:
acc = compute_acc(batch_pred, batch_labels)
gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
print(
'Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
epoch, step, loss.item(), acc, np.mean(iter_tput[3:]), gpu_mem_alloc))
history['Loss'].append(loss.item())
history['Train Acc'].append(acc)
toc = time.time()
print('Epoch Time(s): {:.4f}'.format(toc - tic))
if epoch >= 5:
avg += toc - tic
if epoch % args.eval_every == 0:# and epoch != 0:
eval_acc, test_acc, pred = evaluate(model, g, labels, val_nid, test_nid, args.val_batch_size, device)
if args.save_pred:
np.savetxt(args.save_pred + '%02d' % epoch, pred.argmax(1).cpu().numpy(), '%d')
print('Eval Acc {:.4f}'.format(eval_acc))
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_test_acc = test_acc
print('Best Eval Acc {:.4f} Test Acc {:.4f}'.format(best_eval_acc, best_test_acc))
history['Test Acc'].append(test_acc)
history['Eval Acc'].append(eval_acc)
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
epochs = range(args.num_epochs)
plt.figure(1)
plt.plot(epochs, history['Loss'], label='Training loss')
plt.title('Training loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig(
'results/loss_' + args.dataset + '_' + str(args.buffer_size) + '_' + str(args.buffer_rs_every) + '.png')
plt.show()
plt.figure(2)
plt.plot(epochs, history['Train Acc'], label='Training accuracy')
plt.title('Training accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.savefig(
'results/acc_' + args.dataset + '_' + str(args.buffer_size) + '_' + str(args.buffer_rs_every) + '.png')
plt.show()
json_r = json.dumps(history)
f = open('results/history_' + args.dataset + '_' + str(args.buffer_size) + '_' + str(
args.buffer_rs_every) +'.json', "w")
f.write(json_r)
f.close()
return best_test_acc
if __name__ == '__main__':
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument('--gpu', type=int, default=0,
help="GPU device ID. Use -1 for CPU training")
argparser.add_argument('--dataset', type=str, default='ogbn-products')
argparser.add_argument('--num-epochs', type=int, default=10)
argparser.add_argument('--num-hidden', type=int, default=256)
argparser.add_argument('--num-layers', type=int, default=3)
argparser.add_argument('--fan-out', type=str, default='5,10,15')
argparser.add_argument('--batch-size', type=int, default=1000)
argparser.add_argument('--val-batch-size', type=int, default=10000)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=9)
argparser.add_argument('--lr', type=float, default=0.003)
argparser.add_argument('--dropout', type=float, default=0.5)
argparser.add_argument('--num-workers', type=int, default=4,
help="Number of sampling processes. Use 0 for no extra process.")
argparser.add_argument('--save-pred', type=str, default='')
argparser.add_argument('--wd', type=float, default=0)
argparser.add_argument('--buffer-size', type=float, default=0.01)
argparser.add_argument('--buffer', type=np.ndarray, default=None)
argparser.add_argument('--buffer_rs-every', type=int, default=1)
args = argparser.parse_args()
if args.gpu >= 0:
device = th.device('cuda:%d' % args.gpu)
else:
device = th.device('cpu')
# load data
data = DglNodePropPredDataset(name="ogbn-products")
# data = DglNodePropPredDataset(name="ogbn-arxiv")
splitted_idx = data.get_idx_split()
train_idx, val_idx, test_idx = splitted_idx['train'], splitted_idx['valid'], splitted_idx['test']
graph, labels = data[0]
in_feats = graph.ndata['feat'].shape[1]
n_classes = (labels.max() + 1).item()
graph.create_formats_()
# Pack data
data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph
# Run 1 times
test_accs = []
for i in range(1):
test_accs.append(run(args, device, data))
print('Average test accuracy:', np.mean(test_accs), '±', np.std(test_accs))