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Chapter 1

SF1R Overview

The SF1 workflow on single machine is shown in figure1.1. It consists of two processes. One is

building process (labeled as A in the figure). The other is query process (labeled as B).

Figure 1.1: SF1 Workflow

1.1 Build Process

A.1 SCD parsing. The input of the building process are text files in the SCD format. They

are parsed into documents, and each document consists of pairs of property name and

value. The documents are stored by document manager which is a document oriented

nosql actually.

A.2 indexing. For those properties which are configured for search, their property values are

used to build the search index. To satisfy different search requirements, there are three

1



Chapter 1. SF1R Overview 2

kinds of search indices. They are disk based index for general search, suffix index

for fast fuzzy search in pure memory and zambezi index for fast boolean search in pure

memory. For the sake of conveniences on implementation, suffix index belongs to mining

procedure actually although it has the semantic of search. The indexing procedure co-

work with SCD parsing such that whenever a document is inserted into the nosql store,

corresponding indices have been setup.

A.3 mining. For those properties which are configured for mining features, such as groupby,

attrby, etc, their property values are used to build the mining index. SF1R has con-

tained tens of mining features through mining procedure, while in this technical report,

only search as well as navigation relevant ones are mentioned due to frequent usage. Min-

ing procedure is performed after indexing stage, it directly get raw data from document

manager and dispatch them into different kinds of mining components according to con-

figuration.

1.2 Query Process

B.1 Given the user query, it would be tokenized into terms. The tokenization methods include

minimum match, maximum match, maximum entropy and CRF.

B.2 These terms are searched among the search index to get candidate docids. Each candidate

would be assigned with a score, calculated by ranking methods such as TF-IDF, BM25,

product ranking, etc. Finally the candidates with top scores are extracted as topk docids.

B.3 If the request has parameters on mining features, those candidate docids are searched

among the mining index to get mining results.

B.4 The topk docids are searched among the document manager to get the document con-

tents.

B.5 Finally the search results are returned to user.

1.3 Architecture

The architecture of SF1R could be seen from figure 1.2, this is an overview for the system running

on single machine. SF1R provides unified implementation to be deployed on either single node

or search cloud just via adjusting configurations. There are two separated processes within SF1R

system—the search engine server itself and the reverse proxy which is based on nginx, as shown

in 1.2.
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AggregateManager

IndexManager

SearchManager

Tokenizer

Ranker

IndexBundle

MiningBundle

MiningManager

...

RecommendBundle

Collection A

DocumentManager

ProductBundle

Driver(MVC)

CollectionManager

Collection B ...

nginx

nginx_sf1r_module fastcgi

Figure 1.2: Architecture of SF1R—Non-distributed On Single Machine

1.3.1 Key Components

• nginx—This is the customized version to be tailed to connect with SF1R server, such that

http based API could be provided to applications. As a result, the client of SF1R is

language independent. There are two kinds of mechanism for the connnection between

nginx and the search engine server:

– nginx module—The nginx ecosystem delivers a flexible mechanism such that any

customized module could be developed for reverse upstream servers [1]. The nginx

module runs within the same process together with nginx worker, as a result, when
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nginx is going to be connected to multiple SF1R servers, this is not a recommended

approach for concurrency consideration.

– fact cgi—This is a traditional upstream mechanism for nginx ecosystem, while we

have made customization to it as well such that each fast cgi process could be used to

serve any requests routing to any remote SF1R server. Fast cgi is a preferred approach

when deploying SF1R in distributed environment.

• Driver—This is the network encapsulation within SF1R server. We borrowed the idea

from web application to introduce the MVC pattern, such that application logic could be

developed flexiblely based on the Driver layer.

• CollectionManager—Collection is the fundamental concept within SF1R, corresponding

definition in database is table. The collection could be created, destroyed, started, as well

as stopped dynamically through CollectionManager, just like how database manages its

tables. Each request sent to SF1R should specify its target collection, such that the request

could be routed correctedly.

• Bundle—The concept of bundle comes from Java enterprise community—OSGI [2]. The

introduction of bundle is to make the architecture more flexible and seperated, each collec-

tion will have its own bundle instances to make sure total separation. The existing bundles

include:

– IndexBundle—It has contained core components during indexing, such as Document-

Manager for data archiving, IndexManager for archive indexing, SearchManager and

a series rankers for search operations.

– MiningBundle—All mining features are included in this bundle.

– RecommendBundle—SF1R has also delivered a feature to provide unified search engine

and recommendation engine. RecommendBundle is for the purpose of recommenda-

tion, currently, the core algorithm of this engine is based on incremental item-item

collaborative filtering.

• AggregateManager—This is a fundamental building block for distributed search. SF1R

provides single implementation on distributed and non-distributed version. Aggregate-

Manager is the key encapsulation for this unified behavior, it means, when deployed on

single machine, it could be looked on as a transparent layer to serve requests, while when

deployed distributedly, it will have different behaviors depending on whether that node is

Master or Worker:

– Worker is the node serving practical requests over its local data.

– Master is the node to dispatch and aggregate requests from multiple workers.
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– Master and Worker could be deployed either together or remotely — just via adjusting

configurations.



Chapter 2

Navigation—Groupby/Attrby

Groupby means "Group by Property", it groups search results into each property value. At-

trby means "Group by Attribute", it groups search results according to each attribute value.

Such kinds of grouping is frequently used in search navigation for such vertical searchs as e-

commerce,..,etc.

2.1 Index Structure

The index structure for both Groupby and Attrby search is based on a forward index, as shown

in 2.1. In order to save the memory cost, the property value strings are mapped to ids. For each

docid, we need to store an array of value ids, as the number of value ids might be different for

each docid. The group index structure consists of two tables, one is index table, the other is

value id table. The index table stores index (or value id) for each docid. If this doc has only

one value id, then it stores the value id direcly.

While if it has multiple value ids, then it stores the index in the value id table.In order to

differentiate these two cases, we use the most significant bit. That is, bit 0 for the case of single

value id, and bit 1 for the other case. In the value id table, the 1st entry is the number of

value ids. The following entries are each value id for the doc.

In the example of figure 2.1, the index type is parameterized as unsigned char. The docid 1 has

only one value id (3), and the docid 2 has three value ids (10, 15 and 18).

6



Chapter 2. Navigation—Groupby/Attrby 7

Figure 2.1: Group Index Example

2.2 SCD Format

The Groupby search requires corresponding property type to be string, it supports hierarchical

values. Below is its SCD format:

1 <PropertyName>A>B>C,D>E>F...

• The PropertyName is the property name which needs group results;

• The property could contain multiple values, each separated by comma , or semicolon ;

• If the value has parent value, you need to specify the whole path from root to leaf node,

each separated by symbol >

• If one attribute name contains multiple values, such as A, B and C, each value is separated

by the vertical line |, for example, name:A|B|C

• In property values, if there is any embedded character of comma ,, semicolon ;, symbol

> or double-quote ", the whole value must be surrounded by double-quotes. And the

embedded double-quotes must each be represented by a pair of consecutive double quotes.

For example, if the property value contains values on three levels. The root value is John,

Mark. The 2nd level value is 1+1>2. The 3rd level value is "Mary". Then you need to

specify it as "John, Mark">"1+1>2">"""Mary""" in SCD file

Please note that all of the above punctuations and symbols are half width.

The Attrby search also requires the attribute property type to be string with such kinds of

format:

1 <PropertyName>name:value,name:value...
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• The PropertyName is the property name which contains pairs of attribute name and value.

• Each pair of attribute name and value is separated by the comma ,

• Attribute name and value are separated by the colon :

• If one attribute name contains multiple values, such as A, B and C, each value is separated

by the vertical line |, for example, name:A|B|C

• In attribute name or value, if there is any embedded character of above delimiters ,:| or

double-quote ", the whole attribute name or value must be surrounded by double-quotes.

And the embedded double-quotes must each be represented by a pair of consecutive double

quotes "". For example, if the attribute name or value is John, Mark: "Mary" | Tom, you

need to specify it as "John, Mark: ""Mary"" | Tom" in SCD file.

Please note that all of the above punctuations ,:|" are half width.

2.3 Configuration

2.3.1 Groupby Search

• In collection config file, such as config/example.xml in sf1r-engine, for the property in

DocumentSchema, if you need group results on this property (the property type must be

string, int, float or datetime), you have to configure it in MiningBundle/Schema/Group.

• If the property type is int or float, you also need to configure it as filter property in

IndexBundle.

• For the property type of int and float, it’s unnecessary to build group index data.

• While for the property type of string and datetime, it would build group index data when

each time SCD is indexed. Normally, it starts from the last doc id when last time group

index data is built.

• If the string property is configured as <IndexBundle><Schema><Indexing ... rtype="y"/>,

then for this RType string property, it would rebuild its whole group index data when each

time SCD is indexed.

• For other properties, if you want to rebuild the whole group index data when each time

SCD is indexed, you need to configure the "rebuild" attribute to "y". For example,

<Group><Property name="Category" rebuild="y"/>.

For example:
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1 <DocumentSchema>

2 ...

3 <Property name="Category" type="string" />

4 <Property name="Price" type="float" />

5 <Property name="PlayTime" type="datetime" />

6 </DocumentSchema>

7

8 <IndexBundle>

9 <Schema>

10 <Property name="Price">

11 <Indexing filter="yes" multivalue="no" doclen="yes" tokenizer="" rankweight="0.1" />

12 </Property>

13 ...

14 </Schema>

15 </IndexBundle>

16

17 <MiningBundle>

18 <Schema>

19 ...

20 <Group>

21 <Property name="Category" />

22 <Property name="Price" />

23 <Property name="PlayTime" />

24 </Group>

25 </Schema>

26 </MiningBundle>

2.3.2 Attrby Search

In collection config file, such as "config/example.xml" in sf1r-engine, for the property which

contains attribute names and values, you have to add it in MiningBundle/Schema/Attr.

Please note that at most one property is allowed in Attr configuration.

If you want to exclude some attribute names, you need to configure them into Exclude.

For example:

1 <DocumentSchema>

2 ...

3 <Property name="Attribute" type="string" />

4 </DocumentSchema>

5 ...

6 <MiningBundle>

7 <Schema>

8 ...
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9 <Attr>

10 <Property name="Attribute" />

11 <Exclude name="ISBN" />

12 </Attr>

13 </Schema>

14 </MiningBundle>



Chapter 3

Disk Based Index

3.1 Introduction

Disk Based Inverted Index is our first index libary to serve all iZENECloud products with effi-

cient control of memory consumption together with a high performance. Compared with other

open source solutions such as Lucene [3], the fundamental architecture is similar while we have

several extra highlights. As shown in figure 3.1, basic inverted index is composed of two parts:

vocabulary and posting lists. The vocabulary contains all indexed terms and its pointer to coore-

sponding posting list. The major design issues are discussed in the following section. Within

SF1, corresponding component of this disk based inverted index is IndexManager.

Figure 3.1: Inverted Index

11
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3.2 Design Issues

3.2.1 Vocabulary Design

In order to reduce memory consumption, we’ve adopted an engineering trick of Sparse Binary

Search. As we can see from figure 3.1, the vocabulary itself is nothing more than a hash map,

since we store term ids within the vocabulary, each entry of the vocabulary has a fixed length.

During search process, if we do not load any entries of the vocabulary into memory, for each

query, we will have to need O(log|V oc|)) disk accesses to locate posting lists, while when sparse

binary search is applied, we could reduce the disk accesses to O(1) instead of O(log|V oc|)), as
seen in figure 3.2.

Figure 3.2: Sparse Binary Search

Via storing each 512th entry of the vocabulary data in memory, and then ensuring that the

initial delta value of the binary search algorithm is a power of 512, all comparisons required

for the binary search will use the data available in main memory. This optimization requires

O(log|V oc|/512)) main memory usage.

When using the sparse data described above, the first phrase of the binary search algorithm can

determine two 512 entry areas of the vocabulary where the record searched for may reside. Since

the overhead of positioning the disk heads for a read operation is high relative to the time a disk

transfer, it will pay off to buffer these 1023 entries when the delta gets below the value of 512.

3.2.2 Index Construction

IndexManager is designed to support both on-line indexing, which is mainly used for real-time

search, as well as traditional off-line indexing. The user of IndexManager could designate either
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of these two indexing modes easily just by a configuration parameter. The index construction

processes for each of these two modes are totally different:

• The real-time indexing requires the inverted index for a certain document to be able to

search immediately just after that document is indexed.

• The offline indexing could build index for a batch of documents at one time for a much

faster indexing speed.

The real-time indexing has a much higher design complexity than the offline one. In order

to make the design of both two indexing modes into an overall integrity, we introduce a new

concept—Index Barrel, which means the index of a batch of documents. As a result, for

the overall indices, we might have multiple index barrels, each of which contain cooresponding

documents:

• For the offline mode, index for all documents to be indexed will be encapsulated into a

single index barrel.

• The index construction process for on-line mode will be discussed in the following sub

section 3.2.2.2.

In following subsections, we will describe the detailed index construction process for both two

modes respectively.

3.2.2.1 Off-line Index Construction

Off-line index means the index for the documents could not be searched during indexing. In this

case, we could design a very efficient process to make the batch indexing extremely fast: The

inputs of IndexManager is a series of documents, each of which is nothing more than a series of

terms, each of which is composed of both term id and term position. As a result, we could look

on the batch inputs as a series of such kinds of data structures:

1 struct Term

2 {

3 uint32_t docId;

4 uint32_t termId;

5 uint32_t termPosition;

6 };

And we need all of these inputs to be sorted according to the priority of termId,docId and

termPosition, the key design issue is how could we sort the data inputs efficiently ?



Chapter 3. Disk Based Index 14

Figure 3.3: Offline Index Sorting Process

Figure 3.3 has illustrated the sorting process adopted by IndexManager—it’s an improved version

for merge-sort process that is frequently used in external sorting algorithms:

• Firstly, IndexManager will create a memory buffer, say 100M, to accumulate the inputed

data.

• When the memory buffer is full, a memory sort will be performed for those contained data,

and the results will be written to an intermediate file.

• The above steps will be continuously looped until there are no documents to be indexed.

As a result, the intermediate file is a partly sorted file.

• A final merge sort will be performed based on the previously mentioned intermediate file.

Such merge sort based process is extremely efficient. For each batch off-line indexing process,

a single index barrel is generated, while if we have several index operations, eg: we index 1M

documents, 100k documents, and 10k documents sequentially, we then have 3 index barrels. How

to manage these three index barrels have closely relation with the on-line index construction

mode, and we will discuss this issue in the next sub section.

3.2.2.2 Merge Based Index Construction

During past years, great advances have been achieved to build an off-line index, which could not

provide query service during the process of index construction. However, with the boom of the

web pages’ count number, to provide search ability during indexes construction has been more



Chapter 3. Disk Based Index 15

and more urgent, therefore how to maintain on-line index is the current research hotspot on

indexing problems. There are three kinds of index construction method: In-place, Re-build, and

Re-merge[4]. For In-place update strategy, documents are accumulated in main memory. Then,

once main memory is exhausted, the existing on-disk index is combined with the in-memory

index by appending each posting list from the in-memory index to the corresponding list in the

on-disk index; The Re-build algorithm constructs a new index from the current entire collection;

For the Re-merge update strategy, once main memory is exhausted, a merge event is triggered,

and the entire on-disk index is read sequentially and merged with the in-memory index, then

written to a new location to form a new on-disk index that immediately replaces the old one.

According to the experiments of [4], in most cases, Re-merge strategy would perform better than

the other two approaches.

Figure 3.4: Index Barrels for On-line Indexing

Figure 3.4 shows the on-line indexing process: Unlike offline indexing mode, there’s no sorting

process for a batch of documents, instead, inverted index is built for each document as soon as

that document is pass to IndexManager. There’s a memory pool maintained by IndexManager,

as soon as index for documents has used up that memory pool, all of the index data will be

flushed to disk to form an on disk index barrel, named start from 0, 1,...,etc, and then the

memory pool could contain index for new documents, obviously, the in-memory index is another

index barrel. All of the on disk index barrels as well as the in-memory index barrel could be

searched start from scratch, so we could provide real-time search utilities in this indexing mode.

The key design issue for this kind of index construction is how we manage these index barrels:

because in this kind of indexing mode, we might generate much more index barrels than offline

mode: as soon as the memory pool is used up, we are going to generate a new index barrel.

Given a 128M memory pool, we can only index 10k documents approximately. As a result,for

a given 5M corpus, we might generate hundreds of index barrels. We can not keep the number

of index barrels large, or else the search performance will be affected. We also can not merge

those index barrels frequently, or else the indexing performance will be affected. The Dynamic
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Balancing Tree algorithm [5] is used for one of the index merging policy, which provides an index

merging algorithm that supports on-line index maintenance.

DBT[5] index construction strategy is a kind of Re-merge algorithm and performs the best among

all available schemes. A DBT is an m-way tree, each node of which is a sub-index. The tree

is divided into H layers from bottom to top. At layer k, the number of nodes is either zero, or

is less than m. Let Ek,j be the capacity of node j, 0 ≤ j < m − 1, at layer k, 0 ≤ k < H, a

constraint of the number of documents in one node of layer k is given by:

ck ≤ εk,j < ck+1 (3.1)

When the size of each node in layer k satisfy the above equation, the tree is balanced. When

the number of nodes in the layer k is equal to or greater than m, a merge event is triggered,

resulting a new sub-index. The newly created sub-index will be placed into layer k + 1. If the

tree is balanced and a sub-index merge operation is only performed on one layer, the efficiency

of merging process can be guaranteed. According to the experiments in [5], choosing the param

value of m = c = 3 offers better indexing performance.

In the implementation, the index is organized into several barrels. One barrel refers to one node

in the DBT tree. When constructing the index, the postings will be built up in memory at first,

when the memory has been exhausted, these postings will be flushed to one barrel, the layer of

which in the DBT tree could be computed by the above equation according to the document

number that have been indexed in this barrel. If the number of barrels of a certain layer satisfy

the merge condition described above, these barrels will be merged together to form a new barrel,

and the old barrels will be deleted. Therefore, merge operation has been limited within several

barrels since it is an expensive process, and the total barrels could be controlled because too

many barrels will effect the query performance. What’s more, all of the barrels could be merged

into one monad manually to provide better query performance.

IndexManager provides flexible encapsulation so that different kinds of merge policies could be

implemented easily. Except for DBT merge policy, IndexManager also has other merge policies,

such as multi-way merge, which is used by Lucene[3], and optimize-merge, which is used to

merge all index barrels into single index barrel for best index search performance. Different

kinds of index merge algorithm is shared by both online-indexing and off-line index, and the

user of IndexManager could config to choose the suitable merge algorithm. Figure 3.5 gives a

simple graph show for these three different kinds of merge policies.
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Figure 3.5: Index Barrels Merge Policies

3.2.3 Index Compression

Compressioin is a very effective solution to struggle with disk IO. There exists a trade off between

the compressibility and decoding speed. Higher compression ratio would always lead to slower

decoding, if it is too slow, then query performance will be effected. D-gap together with variable

length are adopted to compress the index, because it is very fast to decode, and can reduce the

index size to about 1
2 to 1

4 of the original. It is a mature scheme and has been adopted by most

of the existing IR frameworks. This compression solution is the default policy for IndexManager.

Besides, we have also implemented the state-of-art index compression scheme, such as pForDelta,

a composition of pForDelta and S16, the details could be found in [6], [7],[8],and [9]. These

state-of-the-art compression schemes have also been adopted by the latest Google web search,

as a result, our IndexManager has already kept up with the cutting edge of index design area.

Since these compression solutions all perform decoding and encoding operations in a batch way,

their detailed design within IndexManager is totally different with the variable length solution,

we will describe the details in the later section.

3.2.4 Index Deletion

IndexManager uses a bitmap file to indicate the deleted documents. However, if there are too

many deleted documents, it will affect the search performance a lot. In that case, IndexManager

could utilize the index merger to generate the new index, within which those delete documents

will not appear any more. Another issue is the requirement for supporting Document Updating

semantics, in such cases, the updated documents will be assigned with new doc ids before they are

passed to IndexManager, so that the Document Updating semantics is just a simple composition

of Document Deletion and Index Document.
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3.2.5 B-Tree Index

When indexing documents, some kinds of data is not suitable to be stored within inverted index,

such as date and time, number, etc, because range query is required over vocabulary, this is more

usual under search filtering. Within SF1, we use B-Tree index for such purpose, the output for

any conditional search filtering is a bitmap to be intersected with results got from inverted index.

3.3 Architecture

Following description for architecture design only focuses on the inverted index parts. There are

overall three components for inverted index design:

• IndexWriter, which is used to build index—both online and offline.

• IndexMerger, which is used to merge index barrels.

• IndexReader, which is used to perform search utilities.

We will describe each of them in the following sections.

3.3.1 IndexWriter

Figure 3.6 shows the hierarchy of IndexWriter of how to form a single barrel index.

Figure 3.6: Hierarchy of IndexWriter

As has been shown above, IndexBarrelWriter is in charge of flushing index into one barrel.

Internally, it contains a serial instances of CollectionIndexer, each of which corresponds to one
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collection solely. Inside a CollectionIndexer, there are several FieldIndexers, which takes charge

of building index within its corresponding Field. After Indexer starts up, the instances of

CollectionIndexer and FieldIndexer will be created according to DocumentSchema that have

been initialized by the user of IndexManager. In our document model, each document contains

several configurable fields, such as Title,Content,...,etc. Index for each field is independent

from each other. FieldIndexer will build index of one field of a collection. There are two kinds

of posting lists in the system: document-frequency posting and position posting. The former

stores document id and frequency of a certain term that has appeared in that document. The

latter stores all the term position information of a certain term in the document. Suppose we

only have general variable length compression scheme, figure 3.7 gives a detailed description of

what a single barrel index contains:

Figure 3.7: Index format of a barrel

Let us illustrate these files one by one.

.fdi stores information of all fields.
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Property Type Description
CollectionCount Int32 The count number of collections in this barrel
CollectionID Int32 The collection id of this collection
FieldsCount Int32 The count number of fields in this collection
FieldName string Field name
Boost Byte Boost value of this Field
TotalTermNum Int64 Total term number of this Field
DistinctTermNum Int64 Total distinct term number of this Field
TermPosition Int64 File offset of this Field’s vocabulary information in the .voc file
tdiLength Int64 Length of this Field’s vocabulary information in .voc file
dfiLength Int64 Length of this Field’s document-frequency postings in the file .dfp
ptiLength Int64 Length of this Field’s position postings in the file .pop

.voc vocabulary information of all fields.
Property Type Description
TermID Int32 Term ID, it is stored with d-gap encoded.
DocumentFrequency Int32 The Document frequency, which means how many documents that this

term has appeared.
PostingPointer Int64 File offset of this term’s document-frequency posting in the .dfp file
VocLength Int64 Same as tdiLength in .fdi
TermCount Int64 Same as DistinctTermNumin .fdi

.dfp document-frequency posting.
Property Type Description
DocID Int32 Document ID, which is stored with d-gap encoded.
TermFrep Vint64 Term frequency in this document.
PostingLength Vint64 Length of this posting
PositionPointer Vint64 File offset of the corresponding position posting in the .pop file.
ChunkLength Vint64 Same as PostingLength
LastDocID Vint32 Last document id of this posting.

.pop position posting.The positions of a term in a document is written in the .pop file sequen-

tially.

3.3.2 IndexMerger

IndexMerger takes charge of merging multiple index barrels if the merge conditions are satisfied.

When a merge event happens, all the barrels that are needed to be merged are ordered according

to the document number that each barrel has contained, then the merging process will be

proceeded field by field. FieldMerger is responsible for merging same field of a collection in

different barrels, and PostingMerger will merge postings at the term level.

IndexMerger could be configured to run within a stand-alone thread, in that case, there exist

complicated index sychronization mechanism between IndexMerger and IndexReader, because

IndexMerger will remove old index barrels after a successful merge, while the IndexReader can

not always check the validation due to the performance of searching.
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Figure 3.8: Hierarchy of IndexMerger

Figure 3.9: Components of IndexReader

3.3.3 IndexReader

IndexReader is the interface to read inverted indexes and search them. Figure 3.9 gives a de-

tailed class diagram of the components of IndexReader. When IndexReader is created, it will

open the index barrels and return an instance of TermReader to users. TermReader takes

charge of seeking a term in the vocabulary of the indexes, and then iterating its corresponding

posting list according to the user’s requests. SingleIndexBarrelReader is used to open a single

index barrel and return its TermReader, here it is the DiskTermReader. Because IndexMan-

ager should support on-line indexing, which means the indexes could be searched during index
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construction, therefore, those indexes that have not been flushed to disk should also allow be-

ing searched, InMemoryIndexBarrelReader takes this responsibility. What’s more, since there

may exist several barrels in the system, then we have MultiIndexBarrelReader which contains

several instances of SingleIndexBarrelReader or InMemoryIndexBarrelReader, each of which

takes charge of reading their corresponding sub-index. Accordingly, the TermReader got by

InMemoryIndexBarrelReader should be InMemoryTermReader, and the TermReader got from

MultiIndexBarrelReader should be MultiTermReader, which is composed of several instances of

DiskTermReader and InMemoryReader similarly.

After getting an instance of TermReader, the user could use it to search the inverted indexes: if

the term to be queried could be found by TermReader in the indexes, then TermReader could re-

turn an index iterator TermDocFreqs or TermPositions. Just as Figure 3.8 shows. TermDocFreqs

will iterate the document-frequent postings and TermPositions will iterate document-frequent

postings and position postings both, therefore TermPositions is inherited from TermDocFreqs.

They are the major search utilities interface classes exposed to users.

Figure 3.10: TermDocFreqs and TermPositions

3.3.4 Search Optimization

Search performance is always the most important design issue for index design. We have two

approaches for search optimization:

3.3.4.1 Embedded Skiplist

Embedded skip list is used to accelerate conjunction operation of multiple posting lists. Suppose

we have two postings that contain doc ids:

1 1,2,3,4,10,11,100,120,1000,...

2

3 1,10,1000,...
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The conjunction operation for these two postings should be: 1, 10, 1000, ... . For index without

embedded skiplist, we must read and decompress all posting data, while if we have implemented

skiplist within posting list, we could use these operations to avoid of frequent disk IO:

1 pDocIterator−>skip(10);

2 pDocIterator−>skip(1000);

The assumptions for the embedded skiplist are:

• Seeking forward to a certain place will take less time than read. In the above example: it

means within the first posting, the time taken by the file seek operation from doc id of 1

to doc id of 10, is less than the time taken by reading all posting data between those two

doc ids. This is especially true for conjunction operation over short posting list and long

posting list.

• Document ids within each posting list should be an incremental order.

Figure 3.11 shows the detailed design for an embedded skiplist—For simplicity, it has not con-

tained the information of term position posting lists:

Figure 3.11: Embeded SkipList Design

Several points are needed to be illustrated:

• In this example, we have embedded a skiplist with an interval of 8 and a max skip level

of 3. Which means, during indexing, we will record a skip point every 8 documents. The

skip interval of the second skip level is 8 ∗ 8 = 64, while the skip interval of the upmost

skip level is 8 ∗ 8 ∗ 8 = 512.
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• Each skip point contains two kinds of data:

1. Current skipped document id.

2. File offsets of skipped point, including both dfp posting list and pos posting list.

• We should consider the location of skiplist data. In the example graph, the skiplist data

locates at the end of each posting. It is very convenient for posting merging, because skiplist

data will not be generated until the overall posting list is merged, if we put skiplist data

at the end of each posting, we could directly write skip data just after merging postings.

However, such design will hurt the query performance—it will lead to file seek operations

not sequential any more. Therefore, with the eventual implementation, the skiplist data

is put at the head of each posting—In this case, it’s pretty inconvenient for posting merge

operation, we will discuss this issue in the following part.

Figure 3.12 illustrates the design issue for posting merge when we have added embedded skiplist

data to index. From the upper part of this graph we can see the posting merge is pretty direct,

while if we put skiplist data at the beginning of the posting list, it will introduce more complicated

design: During merging operation, we could directly write the skiplist data of merged posting to

the index file, while we need an extra intermediate file to store the merged posting data. After

all posting merging is finished, we should copy data from that intermediate file to index file.

Only through this operation could we provide skip list data at the beginning of each posting.

Figure 3.12: Posting Merge With SkipList

Another design issue for skiplist design is also caused by the posting merge, seen from figure

3.13:
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Figure 3.13: Unfixed Skip Interval Design

In this example, both two posting have a skip interval of 8. However, at the end of the first

posting, there are only 4 documents left, as a result, after merging these two postings, the skip

interval between document 96 and document 111 should have to be reconsidered:

• One solution is to still keep the fixed skip interval. In this case, all skip data will have to

be regenerated after posting merging.

• The other solution is to introduce unfixed skip interval. In this case, the skipinterval

between document 96 and document 111 will be 12 instead of 8 any more.

IndexManager adoptes the second solution, because it requres less operation for merging skiplist

data. Obviously, it introduce extra storage overheads because we have to record skip interval

value for certain skip points.

3.3.4.2 New Compression

New compression is another approach for search optimization. Due to the fact that all of the

cutting-edge compression schemes are totally different with general variable byte length based

solution, IndexManager must provide a good abstraction so that all kinds of index format can

be supported and switched easily just by a configuration parameter. Shown in figure 3.14, the

basic abstraction is PostingWriter and PostingReader. They are two interface classes owned by

IndexWriter and IndexReader. We provide new compression based index within EPostingWriter

and EPostingReader.

In order to be flexible enough to switch among all the new compression schemes, IndexManager

provides a wrapper class:

1 template<typename PrimaryCompressor>

2 struct CompressorType
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Figure 3.14: Class Diagram Overview For New Index

3 {

4 int compress(uint32_t∗ input, uint32_t∗ output, int num_input_elements) const;

5

6 int decompress(uint32_t∗ input, uint32_t∗ output, int num_input_elements) const;

7 };

So that if we want to change the compression scheme, we just need to redefine cooresponding

template parameters:

1 typedef CompressorType<PForDeltaMix_Compressor> DocIDCompressor;

2

3 typedef CompressorType<S16_Compressor> TermFreqCompressor;

4

5 typedef CompressorType<S16_Compressor> TermPosCompressor;

Before illustrating how the new compression schemes are used within index, let us first describe

how those compression approaches work at first:
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1. Variable-Byte Coding: Variable-byte compression represents an integer in a variable num-

ber of bytes, where each byte consists of one status bit, indicating whether another byte

follows the current one, followed by 7 data bits. Variable-byte compression does not achieve

a very good compression ratio, but is simple and alows for fast decoding, as a result, it is

the most popular compression solution in existing IR frameworks.

2. S9: Simple9 coding is an algorithm proposed in [10] that combines good compression and

high decompression speed. The basic idea is to try to pack as many values as possible into

a 32-bit word. This is done by dividing each word into 4 status bits and 28 data bits, where

the data bits can be partitioned in 9 different ways. For example, if the next 7 values are

all less than 16, then we can store them as 7 4-bit values. Or if the next 3 values are less

than 512, we can store them as 3 9-bit values(leaving one data bit unused).

Simple9 uses 9 ways to divide up the 28 data bits: 28 1-bit numbers, 14 2-bit numbers,

9 3-bit numbers(one bit unused), 7 4-bit numbers, 5 5-bit numbers (three bits unused), 4

7-bit numbers, 3 9-bit numbers(one bit unused), 2 14-bit numbers, or 1 28-bit numbers.

The 4 status bits store which of the 9 cases is used. Decompression can be optimized by

hardcoding each of the 9 cases using fixed bit masks, and using a switch operation on the

status bits to select the case.

3. S16: Simple16 [11] uses the same basic idea as S9, but has 16 ways of partitioning the

data bits, where each of the 16 cases uses all of the 28 data bits. The result is that S16

approximately matches the speed of S9, while achieving slightly better compression.

4. PForDelta: This is a compression method recently proposed in [6] that supports extremely

fast decompression while also achieving a small compressed size. PForDelta first determines

a value b such that most of the values to be encoded(say, 90%) are less than 2b and thus

fit into a fixed bit field of b bits each. The remaining values, called exceptions, are coded

separatedly. If we apply PForDelta to blocks containing some multiple of 32 values, and

finally patching the result by decoding a smaller number of exceptions. This process can be

implemented extremely efficiently by providing, for each value of b, an optimized method

for extracting 32 b-bit values from b memory words. PForDelta can be modified and tuned

in various ways by choosing different thresholds for the number of exceptions allowed, and

by encoding the exceptions in different ways.

Within IndexManager, the composite compression scheme that uses variable-byte approach

to compress the exceptions is names as PForDeltaMix compressor. From the research work

in [9], another improvements for PForDelta have been presented: Recall that the imple-

mentations of PForDelta in previous work encode a block of 128 value by first allocating

128 b-bit slots, and then for those 90% of the values less than 2b directly storing them in

their corresponding slots. For each value larger than 2b , called a exception, we store an

offset value in the exception’s corresponding slot indicating the distance from the current
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exception to the next one, and the actual value of the exception in some additional space

after the 128 b-bit slots. One disadvantage of such a code structure is that when two con-

secutive exceptions have a distance of more than 2b , we have to use more than one offset

to represent the distance, by forcing additional exceptions in between these two exceptions.

We cannot solve this problem by simply increasing b since this would waste lots of bits

on 90% of values; but if we decrease b more exceptions will be produced. This means in

particular that this version of PForDelta cannot profitably use any values of b less than

b = 3. To overcome this problem, they present a new code structure for PForDelta that

stores the offset values and parts of the exceptions in two additional arrays. In particular,

for an exception, they store its lower b bits, instead of the offset to the next exception, in

its corresponding b-bit slot, while they store the higher overflow bits and the offset in two

separate arrays. These two arrays can be further compressed by any compression method,

and they find that S16 is particularly suitable for this. Another improvement is in the

selection of the b value for each block. As it turns out, selecting a constant threshold for

the number of exceptions does not give the best tradeoff between size and speed. Instead,

they model the selection of the b for each block as an optimization problem: initially assign

the b with the smallest compressed size to each block, and then increase speed as desired

by selecting a block that gives us the most time savings per increase in size, and change

the b of that block. For a given target speed, we can easily derive simple global rules about

the choice of b, instead of running the iterative optimization the above. Thus this version

can be very efficiently implemented even on very large collections.

Within IndexManager, we call this composite compression scheme PForDelta-Mix-S16

compressor. According to the description above, the optimization procedure for choosing

best b value takes longer time—around 10 times longer than general PForDelta according

to the experiments, while it can achieve more benefits during search operations.

Based on the above template wrapper for compressor, as well as a suit of compression schemes,

such as: S16, PForDelta, PForDeltaMix, PForDeltaMixS16, ..., etc, we provide two kinds of

index format within which any of the new compression scheme could be applied, shown in figure

3.15:

• Chunk Type—solution A in figure 3.15

Chunk type index directly compress posting data for every 128 documents, and we call

each compression unit with the terminology chunk. The embedded skiplist data is totally

the same with the original index, with a fixed skip interval of 128.

• Block Type—solution B in figure 3.15

The idea of block type index comes from the requirements that disk IO performs the best

for a fixed block of size. In this design, the posting data is partitioned into a series of
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Figure 3.15: Chunk and Block Type Index

block each of which has a fixed size, say, 64K bytes. Within each block, there are a series

of chunk that contains posting data for every 128 documents. There are several benefits

for block type index over chunk type:

1. It is very easy to provide posting level cache based on block type index.

Given a large scale web search system, we need to set up multi level cache mechanism

to support huge search requests. Posting level cache is always the lowest level and

the most difficult to design. However, having block type index, implementing such

cache is much easier: we just need to record each block identifier and store them into

cache.

2. We could provide more compression to posting data:

When implementing chunk type index, besides the chunk that contains posting data

for every 128 documents, we still need to store these values to posting list:

– Size of each chunk. Generally, it is stored using variable byte compression.

– Skip data, containing current skip doc id and file offsets. They are also stored

using variable byte compression.

With block type index, we only need to set up an embedded skip list for blocks, while

within each block, we have block header data that contains size and last doc id for

each chunk, these data are put together so we could use another better compressor

to compress block header data.

The weakness for block type index is also remarkable: It supposes each posting list

would occupy at least one block. For smaller corpus, most of the index contains
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useless data. So block type index is more suitable to serve as extremely large index,

especially for supporting web search, while chunk type index is more general.

There are two more design issues caused by the new compression scheme:

• Location of term position posting data.

Just the as the original variable byte length based index, the term position posting data

is still put into another file, instead of putting together with doc ids and term frequencies,

shown in figure 3.16;

Figure 3.16: Term Position Data for Chunk Type Index

We design in this way just for better reusage for existing IndexManager components.

• Posting merge issue.

Another design issue is caused by posting merge. No matter chunk type or block type

index, all of them compress posting data in a batch way with fixed documents. When

merging two postings, suppose the last chunk for the first posting only contains posting

data for 21 documents, we can only have two choices to deal with such kinds of data chunk:

1. Decompress all posting data of the second posting, then recompress them together

with the data from the first posting.

2. For every chunk, do not compress data from a fixed size of documents.

IndexManager has adopted the first choice, because the other approach has introduced

more overheads—it will cause the inefficiency of PForDelta based compression scheme. As

a result, given that either of chunk type or block type index is adopted, we should have

a much slower merging performance, both of these two kinds of index should be chosen

according to practical situations.
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Succinct Self-Index

As performance of inverted list based search engine is limited by disk I/O, we build a in-memory

one to provide much higher throughput based on the family of succinct data structures. Most

available solutions for succinct in-memory index can be classified into two categories: compressed

suffix array(CSA) and FM-index. Both use wavelet trees to store data and support three basic

operations: access, rank and select. Our solution is based on FM-index and document array.

It trades long build time and large memory consumption for low latency and high concurrency.

4.1 One Cache-miss Bitvector

A wide variety of succinct data structures are build upon wavelet trees, each node of which is

a bitvector (or integer vector for multi-ary wavelet trees). The three bitvector operations —

access, rank and select — are fundamental for algorithms on wavelet trees. Figure 4.1 shows the

definition of a rank/select operation on a basic bitvector. Thus a carefully designed bitvector

with good performance is crucial for a fast succinct index solution. In our implementation

major part of computation occurs on document array. To maximize the performance of retrieval

algorithms, we designed one cache-miss bitvector for document array.

Figure 4.1: Rank/Select Operation of a Bitvector

31
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4.1.1 Data Structure

The design of bitvector with rank/select operation supported is to struggle with cache misses,

during a retrieval process over wavelet trees, there are intensive rank operations getting involved,

as a result, the number of cache misses is one of major bottleneck for performance improvements

since the complexity of wavelet trees is optimal. A general design of bitvector will introduce 4-6

cache misses for each rank operation, and there are several research works to reach state-of-the-

art results on reducing cache misses, such as [12], [13], which claimed to have 2 to 3 cache misses

for each rank operation, see in figure 4.2.

Figure 4.2: 3 Cache/TLB Misses Per Rank of a Bitvector

Our solution is to split the original data into blocks of 384 bits (uint64_t[6]), then for each block

we store the rank value for its initial position and the partial rank values of each 64-bit integer.

The partial rank values are stored like this: each partial value is not more than 384 (9 bits), and

each block has 7 partial values, so we need at least 9 ∗ 7 = 63 bits which can be compacted into

a 64-bit integer. Thus each block is exactly 512 bits. Answering a rank() query, we calculate

the block index and offset, and sum up the initial rank of that block, the partial rank of one

particular integer and the popcount of part of that integer, all of which reside in a single cache

line inferring exact one cache miss.

The structure of a super block looks like below:

1 struct SuperBlock

2 {

3 uint64_t rank_;

4 uint64_t subrank_;

5 uint64_t bits_[6];

6 };
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4.1.2 Rank Query

It is convenient to calculate rank value on one cache-miss bitvector. First we calculate the

superblock and block indexes for queried position. Then the rank value is

rank1(pos) = sb[sb_index(pos)].rank_

+ (sb[sb_index(pos)].subrank_ >> (9 ∗ b_index(pos))|511)

+ popcount(mask(sb[sb_index(pos)].bits_[b_index(pos)], b_offset(pos)))

4.2 Wavelet tree

The Wavelet Tree is a succinct data structure to store strings in compressed space. Wavelet

Tree converts a string into a balanced binary-tree of bit vectors, where a 0 replaces half of the

symbols, and a 1 replaces the other half. This creates ambiguity, but at each level this alphabet

is filtered and re-encoded, so the ambiguity lessens, until there is no ambiguity at all. The tree

is defined recursively as follows:

1. Take the alphabet of the string, and encode the first half as 0, the second half as 1, for

example, a,b,c,d would become 0,0,1,1;

2. Group each 0-encoded symbol, a,b, as a sub-tree;

3. Group each 1-encoded symbol, c,d, as a sub-tree;

4. Reapply this to each subtree recursively until there is only one or two symbols left (when

a 0 or 1 can only mean one thing).

For the string ′PeterP iperpickedapeckofpickledpeppers′ (spaces and a string terminator have

been represented as _ and $ respectively, due to convention in the literature) the Wavelet Tree

would look like this in Table 4.1. Note that the strings aren’t actually stored, but are shown

here for convenience.

It has the alphabet {$, P,, a, c, d, e, f, i, k, l, o, p, r, s, t}, which would be mapped to {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}.
So, for example, $ would map to 0, and r would map to 1.

The left subtree is created by taking just the 0-encoded symbols {$, P,, a, c, d, e, f} and then

re-encoding them by dividing this new alphabet: {0, 0, 0, 0, 1, 1, 1, 1}. Note that on the first level

an e would be encoded as a 0, but now it is encoded as a 1 (it becomes a 0 again at a leaf node).

In fact, since it is a balanced tree, we can concatenate each of the levels and store it as one single

bit vector. Actually, the data structure we used is a variant of Wavelet Tree named Wavelet

Matrix, which introduced by (Claude el at,. 2012 [14]). The idea of the Wavelet Matrix is
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Table 4.1: A Wavelet Tree

to break the assumption that the children of a node v at interval [s, e], must be aligned to it

and occupy the same interval in the next level. Freeing the structure from this unnecessary

assumption allows us to design a much simpler mapping mechanism from one level to the next:

all the 0s of the level go left, and all the 1s go right. For each level, we will store a single integer

z[l] that tells the number of 0s in level l.

4.2.1 Rank in Wavelet Tree

A rank query is the count of 1-bits up to a specified position. Rank queries over larger alphabets

are analogous – instead of a 1, it may be any other symbol. After the tree is constructed, a rank

query can be done with O(logA) (A is alphabet size) binary rank queries on the bit vectors in

O(1)(Claude et al., 2008 [15]). The encoding at each internal node may be ambiguous, but of

course it isn’t useless – we use the ambiguous encoding to guide us to the appropriate sub-tree,

and keep doing so until we have our answer.

For example in Table 4.2, if we wanted to know rank(5, e), we use the following procedure which

is illustrated below. We know that e is encoded as 0 at this level, so we take the binary rank

query of 0 at position 5. Which is 4, which we then use to indicate where to rank in the 0-child:

the 4th bit (or the bit at position 3, due to 0-basing). We know to query the 0-child, since that

is what e was encoded as at the parent level. We then repeat this recursively. At a leaf node we

have our answer.
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Table 4.2: Rank in Wavelet Tree

4.3 FM-Index

FM-index(Full-text index in Minute space) is a compressed full-text substring index based on the

Burrows-Wheeler Transform, with some similarities to the suffix array. It was created by (Paolo

et al., 2001 [16]) who describe it as an opportunistic data structure as it allows compression of

the input text while still permitting fast substring queries. It can be used to efficiently find the

number of occurrences of a pattern within the compressed text, as well as locate the position of

each occurrence. Both the query time and storage space requirements are sublinear with respect

to the size of the input data. In contrast, the FM-index is a compressed self-index, which means

that it compresses the data and indexes it at the same time.

4.3.1 Suffix Arrays

There is a variety of Suffix Array construction algorithms, including some O(N) ones (Puglisi

et al., 2007 [17]). However, we will explain it from the most common (and intuitive) angle. In

its simplest form, a suffix array can be constructed for a string S[1..N ] like so:

1. Construct an array of pointers to all suffixes S[1..N ], S[2..N ], . . . , S[N..N ].

2. Sort these pointers by the lexicographical (i.e. alphabetical) ordering of their associated

suffixes.
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For example, the sorting of the string ′abracadabra′ with terminating character ’$’ would look

like this in Table 4.3:

Table 4.3: Get Suffix Array

index string sa string
1 abracadabra$ 12 $
2 bracadabra$ 11 a$
3 racadabra$ 8 abra$
4 acadabra$ 1 abracadabra$
5 cadabra$ 4 acadabra$
6 adabra$ 6 adabra$
7 dabra$ 9 bra$
8 abra$ 2 bracadabra$
9 bra$ 5 cadabra$
10 ra$ 7 dabra$
11 a$ 10 ra$
12 $ 3 racadabra$

4.3.2 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a was developed by Burrows and Wheeler to re-

versibly permute a string in such a way that characters from repeated substrings would be

clustered together. It was useful for compression schemes such as run-length encoding. It is

not the point of this article to explain how it works, but it is closely linked to Suffix Arrays:

BWT [i] = S[SA[i]−1], for the original string S, suffix array SA, and Burrows-Wheeler Trans-

form string BWT. In other words, the ith symbol of the BWT is the symbol just before the ith

suffix. The BWT also lets us reconstruct the original string S, allowing us to discard the original

document – indexes with this property are known as self indexes, which introduced by (Paolo

et al., 2005 [18]).

An FM-index is created by first taking the BWT of the input text. For example, the BWT

of the string T = "abracadabra" is "ard$rcaaaabb", and here it is represented by the matrix

M in Table 4.4 where each row is a rotation of the text that has been sorted. The transform

corresponds to the last column labeled L.

The BWT in itself allows for some compression with, for instance, move to front and Huffman

encoding, but the transform has even more uses. The rows in the matrix are essentially the

sorted suffixes of the text and the first column F of the matrix shares similarities with suffix

arrays. How the suffix array relates to the BWT lies at the heart of the FM-index.
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Table 4.4: Matrix M

F String L
$ abracadabr a
a $abracadab r
a bra$abraca d
a bracadabra $
a cadabra$ab r
a dabra$abra c
b ra$abracad a
b racadabra$ a
c adabra$abr a
d abra$abrac a
r a$abracada b
r acadabra$a b

It is possible to make a last-to-first column mapping LF (i) from a character L[i] to F [j], with

the help of a table C[c] and a function Occ(c, k). C[c] is a table that, for each character c in

the alphabet, contains the number of occurrences of lexically smaller characters in the text. The

function Occ(c, k) is the number of occurrences of character c in the prefix L[1..k]. (Paolo et al.,

2005 [18]) showed that it is possible to compute Occ(c, k) in constant time.

The last-to-first mapping can now be defined as LF (i) = C[L[i]] + Occ(L[i], i). For instance,

on row 9, L is a and the same a can be found on row 5 in the first column F , so LF (9) should

be 5 and LF (9) = C[a] + Occ(a, 9) = 5. For any row i of the matrix, the character in the last

column L[i] precedes the character in the first column F [i] also in T. Finally, if L[i] = T [k], then

L[LF (i)] = T [k − 1], and using the equality it is possible to extract a string of T from L.

The FM-index itself is a compression of the string L together with C and Occ in some form, as

well as information that maps a selection of indices in L to positions in the original string T .

4.4 Fuzzy-Search Algorithms

Let’s briefly introduce our search algorithms. When we get a search query, we divide it to several

terms. Each term is given a score, correspond to it’s significance. Then search each term in

FM-Index to get it’s range. Do union operation with all term’s range, and get K most related

result as our final result.
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4.4.1 Build FM-Index

We have N documents in our database whose text is t1, t2...tN , T is contection of these text

with terminating character $ for each text, as T = t1$t2$...tN$. Do BWT with T could get a

FM-Index stored in Wavelet Tree, our searching based on this data structure.

4.4.2 Get terms from search query

Search query should be tokenize into terms, and we use the vector of terms to do next operation.

Score terms would help us to rank the search result, higher score means more significance. For

example, query is ’white shirt’, ’shirt’ have higher score than ’white’, result contains only ’shirt’

would rank higher than that contains only ’white’ because we prefer ’yellow shirt’ than ’white

car’. It’s just a small part of rank, we won’t discuss more about rank in this article. Terms in a

dictionary of brand&good have the highest score, terms in a usual dictionary have lower score,

terms construction as bigram or others have the lowest score.

4.4.3 Backward search for each term

Since any pattern P in S (the original string) is a prefix of a suffix (our Suffix Array stores

suffixes), and the suffixes are lexicographically ordered, all occurrences of a search pattern P

lie in a contiguous portion of the Suffix Array. Backward search instead utilises the BWT in a

series of paired rank queries (which can be answered with a Wavelet Tree), improving the query

performance considerably. Backward search issues p pairs of rank queries, where p denotes the

length of the pattern P. The paired rank queries are:

s′ = C[P [i]] + rank(s−1, P [i]) + 1

e′ = C[P [i]] + rank(e, P [i])
(4.1)

C is a lookup table containing the count of all symbols in our alphabet which sort lexicographi-

cally before P [i]. Where s denotes the start of the range and e is the end of the range. Initially

s = 1 and e = N . Index variable i starts at p, decreases to 1, then get the answer. If e < s

at any stage, then P doesn’t exist in S. This maintains the invariant that SA[s..e] contains all

the suffixes of which P [i..|P |] is a prefix, and hence all locations of P [i..|P |] in S. After back-

ward searching, we get [left_range, right_range, score] for each term(score get in last step),

we could get the most related documents from the range set then.
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4.4.4 Top K Union

Union opeartion with the range set after backward searching could get documents set which

contains all terms. But in most cases, there is no document hits all terms in query, thus we want

to get the document which have higher score that means higher relevance with the query. We

name this operation ’top k union’, as will get top k most related result after union.

Naive top k union is easy, pseudo code looks like this, then sort doc[] we could get the most

related documents.

for j = 1 to range_set_size

for i = range[j]’s left_range to range[j]’s right_range

doc[i]’s score += score[j];

The time complexity is

O(range_set_size ∗ (range_right − range_left)) +O(sort all documents)

and space complexity is O(document number), assume we have N = 100 million document,

range_right − range_left could be at most N , and a query contains at most 20 terms, the

time complexity is O(108 ∗ 20) and space complexity is O(108), both is too large.

Do you remember the Wavelet Tree? It perform perfect in backward search, and combined with

heuristic searching, it could give us a excellent solution in top k union also.

Retrieve data structure of the Wavelet Tree in FM-Index, tree’s root stores all text’s BWT,

partition it level by level, and leaf denotes document. We define ’status’ by a range set, a tree

node, and a score, that means in the current node, ranges in the range set is available, and the

score is the sum of all available ranges. For example, the initial status’s range set is the range set

after backward search which corresponding each term, node is tree’s root, that means all range

is available for the root, score is the sum of all terms in query. For each status, we could derive

status from it. Range will be partition into 2 ranges in the next level, one for 0 and another for

1, corresponding node is current node’s left child and right child. Sometimes a derived status

have a NULL range set, we should drop this status because no documents hit any terms in this

node’s subtree. Every time we choose a status with highest score to derive, when status’ node is

a leaf, we get one result document. It’s easy to find that the nth document we get has the nth

highest score. It will be stopped when we get k document or all status has been derived. That

is the mainly meaning of ’fuzzy search’, when couldn’t find document hits all terms, we could

get the top k most related. Of course the document hits all terms have the highest score and

won’t be losen.
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Pruning in searching is needed as the intermediate result is too large, we use a interval heap which

key is score to store status, that could help us to get the status with highest/lowest score in O(1),

and heap size is delimited to specified MAX_SIZE, when heap size reaches MAX_SIZE, we

can replace the status with lowest score to a new status in O(log(MAX_SIZE)). Pseudo code

of top k union looks like follow.

heap_insert(original_range_set, root);

while(result_size < k)

{

top_status = heap_get_max();

if (top_status->root == leaf)

{

result_add(top_status);

}

else

{

for i = 0 to top_status->range_size

{

left/right_range = get left/right child range from top_status;

if (left/right_range != NULL)

{

add left/right_range to left/right_status;

add range’s score to left/right_status;

}

}

if (left/right_status != NULL and heap->size < MAX_SIZE)

heap_insert(left/right_range);

else if (left/right_range->score > heap_get_min()->score)

heap_replace_min(left/right_range);

}

}

Get left/right child range operation cost constant time as rank in a Wavelet Tree’s node cost

constant. We have to do it range_set_size times for each status, and status number is up to

node number in the Wavelet Tree, equals to 2 ∗N . The time complexity is O(range_set_size ∗
N). We have to store range_set_size ranges for each status, and status in interval heap is up

to MAX_SIZE, space complexity is O(range_set_size ∗MAX_SIZE). It seems that time

complexity is large than the naive version, but in parctise, as used pruning, status we traversed

is much less than N , usually less than N/20. In practise we set MAX_SIZE to [1000..10000],

the space complexity is much smaller than the naive version too.

4.4.5 Major and Minor Terms

Major and minor feature is used for getting better result in searching. After setting score for

each term, we move significant terms(often with high score) into major set and the rest into
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minor set. Each returned doc contains all the major terms and any number of minor terms,

thus this is a half-intersection half-union algorithm. The intersection part makes bare branches

pruned much faster so that entire search performance accelerated by 3 times.

Pseudo code of the improved top k union looks like follow.

heap_insert(original_range_set, root);

while(result_size < k)

{

top_status = heap_get_max();

if (top_status->root == leaf)

{

result_add(top_status);

}

else

{

for i = 0 to top_status->major_size

{

left/right_range = get left/right child range from top_status;

if (left/right_status != NULL && left/right_range != NULL)

{

add left/right_range to left/right_status;

add range’s score to left/right_status;

}

else

{

left/right_status = NULL;

}

}

for i = top_status->major_size to top_status->range_size

{

left/right_range = get left/right child range from top_status;

if (left/right_status != NULL && left/right_range != NULL)

{

add left/right_range to left/right_status;

add range’s score to left/right_status;

}

}

if (left/right_status != NULL and heap->size < MAX_SIZE)

heap_insert(left/right_range);

else if (left/right_range->score > heap_get_min()->score)

heap_replace_min(left/right_range);

}

}

4.4.6 Synonym

Synonym searching means that we could get result documents which hits the synonym of term.

For example, text contains only ’LV bag’, query is ’Louis Vuitton bag’, we could get it under
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synonym searching, obviously it missing in normal searching.

We build a dictionary of synonym from the SCD first, that will help us to expand original term

to a synonym term set for each term, set synonym’s score little lower than the original one.

Then do backward search with new term set. In top k union, we calculate status’ score for each

synonym term set once, that means if more than one term in the same synonym set hit a status,

only the highest score will be added.



Chapter 5

In-memory Inverted Index

For text retrieval systems, the assumption that all data structures reside in main memory is

increasingly common. To achieve optimal performance, we adopted a state-of-art in-memory

inverted index — Zambezi [19–22]. Zambezi was originally designed for twitter’s real-time search.

It supports incremental index and several retrieval algorithms. In addition, we applied some

enhancements to make it more versatile.

5.1 Zambezi

5.1.1 Basic Incremental Indexing Algorithm

Our indexer consists of three main components, depicted in Figure 5.1: the dictionary, buffer

maps, and the segment pool. The basic indexing approach is to accumulate postings in the

buffer maps in an uncompressed form until the buffer fills up, and then to “flush” the contents

to the segment pool, where the final compressed postings lists reside. Note that in this approach

the inverted lists are discontiguous; we return to address this issue in Section 5.1.2.

The dictionary is implemented as a hash table with a bit-wise hash function [23] and the move-

to-front technique [24], mapping terms (strings) to integers term ids (see [25] for a study that

compares this to other approaches). There is nothing noteworthy about our dictionary im-

plementation, and we claim no novelty in this design. The dictionary additionally holds the

document frequency (df ) for each term, as well as a head and tail pointer into the segment pool

(more details below). In our implementation, term ids are assigned sequentially as we encounter

new terms.

A buffer map is a one-to-one mapping from term ids to arrays of integers (the buffers). Since

term ids increase monotonically, a buffer map can be implemented as an array of pointers, where

43
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Figure 5.1: A snapshot of our indexing algorithm. In the middle we have buffer maps for
storing docids, tf s, and term positions: the gray areas show elements inserted for document 508,
the current one to be indexed. Once the buffer for a term fills up, an inverted list segmented
is assembled and added to the end of the segment pool and linked to the previous segment via
addressing pointers. The dictionary maps from terms to term ids and holds pointers to the
head and tail of the inverted list segments in the segment pool.

each index position corresponds to a term id, and the pointer points to the associated buffer.

The array of pointers is dynamically expanded to accommodate more terms as needed. To

construct a positional index, we build three buffer maps: the document id (docid) map, the

term frequency (tf ) map, and the term positions map. As the names suggest, the docid map

accumulates the document ids of arriving documents, the tf map holds term frequencies, and the

term positions map holds term positions. There is a one-to-one correspondence between entries

in the docid map and entries in the tf map (for each term that occurs in a document, there

is exactly one term frequency), but a one-to-many correspondence between entries in the docid

map and entries in the term positions map (there are as many term positions in each document

as the term frequency).

In the indexing loop, the algorithm receives an input document, parses it to gather all term

frequencies and term positions (relative to the current document, starting from one) for all

unique terms, and then iterates over these unique terms, inserting the relevant information into

each buffer map. Whenever we encounter a new term, the algorithm initializes an empty buffer

in each buffer map for the corresponding term id. Initially, the buffer size is set to the block size b

that will eventually be used to compressed the data (leaving aside an optimization we introduce

below to control the vocabulary size). Following best practice today, we use PForDelta [26, 27],

with the recommended block size of b = 128. The term positions map expands one block at a

time when it fills up to accommodate more positions. When the docid buffer for a term fills up,

we “flush” all buffers associated with the term, compressing the docids, term frequencies, and

term positions into what we call an inverted list segment, described below:

Each inverted list segment begins with a run of docids, gap-compressed using PForDelta; call



Chapter 5. In-memory Inverted Index 45

this D. By design, the docids occupy exactly one PForDelta block. Next, we compress the term

frequencies using PFor; call this F . Note that term frequencies cannot be gap-compressed, so

they are left unmodified. Finally, we process the term positions, which are also gap-encoded,

relative to the first term position in each document. For example, if in d1 the term was found at

positions [1, 5, 9] and in d2 the term was found at positions [3, 16], we would code [1, 4, 4, 3, 13].

The term positions can be unambiguously reconstructed from the term frequencies, which provide

offsets into the array of term positions. Since the term positions array is likely longer than b,

the compression block size, the term positions occupy multiple blocks. Call the blocks of term

positions P1 . . . Pm.

Finally, all the data are packed together in a contiguous block of memory as follows:

[ |D|, D, |F |, F, {|Pi|, Pi}0≤i<m]

where the | · | operator returns the length of its argument. Since all the data are tightly packed in

an otherwise undelimited array, we need to explicitly store the lengths of each block to properly

decode the data during retrieval.

Each inverted list segment is written at the end of the segment pool, which is where the com-

pressed inverted index ultimately resides. Conceptually, the segment pool is an bounded array

with a pointer that keeps track of the current “end”, but in practice the pool is allocated in large

blocks and dynamically expanded as necessary. In order to traverse a term’s postings during

query evaluation, we need to “link” together the discontiguous segments. The first time we write

a segment for a term id, we add its address (byte offset in the segment pool) to the dictio-

nary, which serves as the “head” pointer (the entry point to postings traversal). In addition,

we prepend to each segment the address (byte offset position in the segment pool) of the next

segment in the chain. This means that every time we insert a new segment for a term, we have

to go back and correct the “next pointer” for the last segment. We leave the next pointer blank

for a newly-inserted segment to mark the end of the postings list for a term; this location is

stored in the “tail pointer” in the dictionary. Once the indexer has processed all documents, the

remaining contents of the buffer maps are flushed to the segment pool in the same manner. By

default, we build full positional indexes, but our implementation has an option to disable the

term position buffers if desired. In this case, the inverted list segments will be smaller, but other

aspects of the algorithm remain exactly the same.

Conceptually speaking, the postings list for each term is a linked list of inverted list segments,

where each of the segments is laid out in discontiguous monotonically-increasing byte offset posi-

tions in the segment pool and linked together with addressing pointers. Segments corresponding

to different terms are arbitrarily interleaved in the segment pool. What are the implications of

this design? On the positive side, all data in the segment pool are “tightly packed” for maximum
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efficiency in memory utilization: there are no empty regions and there is no need for special

delimiters. During indexing we guarantee that there is no heap fragmentation, which may be

a possibility if we simply used malloc to allocate space for each inverted list segment. On the

negative side, postings traversal becomes an exercise in pointer chasing across the heap, without

any predictable access patterns that will aid in processor pre-fetching across segment boundaries.

Thus, as a query evaluation algorithm consumes postings, it is likely to encounter a cache miss

whenever it reaches the end of a segment, since it has to follow a pointer. On the other hand,

it is not entirely clear if this cache miss is a major concern: since PForDelta is block-based,

postings are decompressed in blocks even if the inverted lists are contiguously stored in memory.

In addition to “flushing to memory” (i.e., the segment pool) as opposed to flushing to disk,

the operation of our indexer is fundamentally different from previous designs. In previous ap-

proaches, the in-memory buffer is completely flushed when the capacity limit is reached, which

means that inverted lists associated with all terms are written to disk. In contrast, we only flush

data associated with the term id whose buffer has reach capacity.

One final optimization detail: we control the size of the term space by discarding terms that

occur fewer than ten times (an adjustable document frequency threshold). This is accomplished

as follows: instead of creating a buffer of length b when we first encounter a new term, we first

allocate a small buffer equal to the df threshold. We buffer postings for new terms until the

threshold is reached, after which we know that the term will make it into the final dictionary, and

so we reallocate a buffer of length b. This two-step process reduces memory usage substantially

since there are many rare terms in web collections.

5.1.2 Segment Contiguity

It is clear that our baseline indexing algorithm generates discontiguous inverted list segments. In

order to create contiguous inverted lists, we would need an algorithm to rearrange the segments

once they are written to the segment pool. Following the “remerging” idea in disk-based incre-

mental indexing, we might merge multiple discontiguous segments belonging to the same term

id and transfer them to another region in memory, repeating if necessary. Alternatively, when

writing an inverted segment to the segment pool, we might leave some empty space—but since

no pre-allocation policy can be prescient, we will either leave too much empty space (wasting

memory) or not leave enough (necessitating further copying). These basic designs have been

explored in the context of on-disk incremental indexing, but we argue that the issues become

more complex in memory because we do not have an intermediate abstraction of the file—the

indexing algorithm must explicitly manage memory addresses. This amounts to implementing

malloc and free for inverted list segments, which is a non-trivial task.
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Before going down this path, however, we first examined the extent to which contiguous segments

would improve retrieval efficiency, from better reference locality, pre-fetch cues provided to the

processor, etc. Let us assume we have an oracle that tells us exactly how long each inverted list

is going to be, so that we can lay out the segments end-to-end, without any wasted memory. We

simulate this oracle condition by building the inverted index as normal, and then performing

in-memory post-processing to lay out all the inverted list contiguously. Obviously, in a real

incremental indexing scenario, this is not a workable option, but this simple experiment allows

us to measure the ideal performance from the perspective of query evaluation. Thus, we can

establish two retrieval efficiency bounds—the query evaluation time on arbitrarily discontiguous

inverted lists (the baseline algorithm) and on contiguous inverted lists (the upper bound on

query evaluation speed).

Using these two efficiency bounds as guides, we developed a simple yet effective approach to

achieving increasingly better approximations of contiguous postings lists. Instead of moving

compressed segments around after they have been added to the segment pool, we change the

memory allocation policy for the buffer maps. In the limit, if we increased buffer map sizes so

that they are large enough to hold the entire document collection in uncompressed form, it is

easy to see how we could build contiguous inverted list segments. As it turns out, we do not

need to go to such extremes.

In our strategy, whenever the docid buffer for a term becomes full (and thus compressed and

flushed to the segment pool), we expand that term’s docid and tf buffers by a factor of two

(still allowing the term positions buffer to grow as long as necessary). This means that after the

first segment of a term is flushed, new docid and tf buffers of length 2b replace the old ones;

after the second flush, the buffer size increases to 4b, and then 8b, and so on. When a buffer of

size 2mb becomes full, the buffer is broken down to 2m segments, each segment is compressed as

described earlier, and all 2m segments are written at the end of the segment pool contiguously.

This strategy allows long postings to become increasingly contiguous, without wasting space to

pre-allocate large buffers to hold terms that turn out to be rare.

To prevent buffers from growing indefinitely and to control the memory pressure, we set a cap

on the length of docid and tf buffers. That is, if the cap is set to 2mb, then when the buffer size

for a term reaches that limit, it is no longer expanded. This means that the maximum number

of contiguous segments allowed in the segment pool is 2m. We experimentally show that for rela-

tively small values of m, around 6 or 7, we achieve query evaluation speeds that are statistically

indistinguishable from having an index with fully-contiguous inverted lists (i.e., the oracle con-

dition). The tradeoff of this approach is that we require more transient working memory during

the indexing process, and that impacts the size of the collection that we can index. However, we

experimentally show that the additional memory requirements for implementing this approach
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Query 1b 2b 4b 8b 16b 32b 64b 128b Contiguous

G
ov

2 Terabyte 14.4 (±0.2) 14.2 (±0.1) 13.9 (±0.1) 13.6 (±0.1) 13.3 (±0.1) 13.2 (±0.1) 13.1 (±0.1) 13.1 (±0.1) 13.1 (±0.1)

AOL 20.2 (±0.4) 19.7 (±0.1) 19.3 (±0.2) 19.0 (±0.3) 18.8 (±0.3) 18.7 (±0.5) 18.4 (±0.2) 18.3 (±0.1) 18.2 (±0.2)

C
lu

e Terabyte 49.7 (±0.2) 47.1 (±0.1) 45.9 (±0.4) 44.4 (±0.5) 42.9 (±0.4) 42.0 (±0.3) 41.6 (±0.1) 41.6 (±0.4) 41.3 (±0.1)

AOL 87.5 (±1.6) 83.2 (±0.5) 80.7 (±0.3) 75.5 (±0.5) 75.7 (±0.8) 75.8 (±0.3) 75.2 (±0.2) 75.0 (±0.6) 75.3 (±1.2)

Table 5.1: Average query latency (in milliseconds) for postings intersection using SvS with dif-
ferent buffer length settings. Results are averaged across 5 trials, reported with 95% confidence
intervals.

are reasonable. Note that for on-disk incremental indexing algorithms, the strategy of increas-

ing the in-memory buffer size is generally not considered since those algorithms operate under

an assumption of limited memory. In our case, we are simply changing the allocation between

transient working memory for performing document inversion and the final index structures.

5.1.3 Query Latency

Table 5.1 summarizes query latency for conjunctive query processing (postings intersection with

SvS). The average latency per query is reported in milliseconds across five trials along with 95%

confidence intervals. Each column shows different indexing conditions: 1b is the baseline algo-

rithm presented in Section 5.1.1 (linked list of inverted list segments). Each of {2, 4, 8 . . . 128}b
represents a different upper bound in the buffer map growing strategy described in Section 5.1.2.

The final column marked “contiguous” denotes the oracle condition in which all postings are con-

tiguous; this represents the ideal performance.

From these results, we see that, as expected, discontiguous postings lists (1b) yield slower query

evaluation: on Gov2, queries are approximately 10% slower, while for ClueWeb09, the perfor-

mance dropoff ranges from 16% to 20%. For higher values of b, we allow the buffer maps to

increase in length: at 32b, query evaluation performance is statistically indistinguishable from

the performance upper bound (i.e., confidence intervals overlap). That is, we only need to ar-

range inverted list segments in relatively small groups of 32 to achieve ideal performance. Later,

we quantify the memory requirements of allocating larger buffer maps.

Figure 5.2 illustrates query latency by query length, for the AOL query set on Gov2 and

ClueWeb09, using different conditions. Not surprisingly, the latency gap between contiguous

and the 1b condition widens for longer queries. On the other hand, the difference between a

contiguous index and the 32b condition is indistinguishable across all query lengths—the lines

practically overlap in the figures.

For disjunctive query processing, we used the Wand algorithm to retrieve the top 1000 docu-

ments using BM25. Table 5.2 summarizes these experiments on different collections and queries.

For space considerations, we only report results for select buffer length configurations. These
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Figure 5.2: Query latency using SvS for the AOL query set, by query length for different
buffer length settings.

Query 1b 32b Contiguous

G
ov

2 Terabyte 65.0 (±0.4) 62.5 (±0.8) 62.0 (±0.4)
AOL 103.5 (±0.5) 100.3 (±0.1) 100.2 (±0.4)

C
lu

e Terabyte 150.0 (±0.5) 141.1 (±0.6) 141.1 (±0.2)
AOL 455.7 (±5.1) 434.3 (±5.8) 432.6 (±4.9)

Table 5.2: Average query latency (in milliseconds) to retrieve the top 1000 hits in terms of
BM25 using WAND (5 trials, with 95% confidence intervals).

results are consistent with the conjunctive processing case. A maximum buffer size of 32b yields

query latencies that are statistically indistinguishable from a contiguous index. Note that the

performance difference between fully-contiguous postings lists and 1b discontiguous postings lists

is less than 7%. In other words, there is much less performance degradation than in the SvS

case.

As with the conjunctive query processing case, we analyzed query latency by length. The results,

however, were not particularly insightful: as expected, query latency increases with length, and

the performance differences between the three conditions were so small that the plots essentially

overlapped. For this reason, we did not include the corresponding figures here.

5.1.4 Memory Usage

All inverted indexing algorithms require transient working memory to hold intermediate data

structures. For on-disk incremental indexing algorithms, previous work has assumed that this

working memory is relatively small. In our case, there is no hard limit on the amount of space

we can devote to working memory, but space allocated for holding intermediate data takes away

from space that can be used to store the final compressed postings lists, which limits the size of

the collection that we can index for a fixed server configuration.

At minimum, our buffer maps must hold the most recent b docids, term frequencies, and associ-

ated term positions (leaving aside the rare terms optimization in Section 5.1.1). In our case, we
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Figure 5.3: Memory behavior of buffer maps.

set b = 128 to match best practices PForDelta block size; any smaller value would compromise

decompression performance. In order to increase the contiguity of the inverted list segments,

we increase the length of the buffers, as described in Section 5.1.2. This of course increases the

space requirements of the buffer maps.

Figure 5.3a shows the maximum size of the buffer maps for different contiguity configurations,

broken down by space devoted to docids, term frequencies, and term positions. The reported

values were computed analytically from the necessary term statistics, making the assumption

that all terms reach their maximum buffer size at the same time, which makes these upper

bounds on memory usage. To facilitate comparison across the two collections, we normalized

the values to the 1b condition; in absolute terms, the total buffer map sizes are 12.6GB for Gov2

and 22.1GB for ClueWeb09. It is no surprise that as the maximum buffer length increases, the

total memory requirement grows as well. At 128b, where we allow the buffer to grow to 128

blocks of 128 32-bit integers, the algorithm requires 71% more space for Gov2 and 95% more

space for ClueWeb09 (compared to the 1b condition). At 32b, which from our previous results

achieves query evaluation performance that is statistically indistinguishable from contiguous

postings lists, we require 44% and 70% more memory for Gov2 and ClueWeb09, respectively.

As reference, the total size of the segment pool (i.e., size of the final index) is 31GB for Gov2

and 62GB for ClueWeb09. This means, on the Gov2 collection, setting the maximum buffer

length to 1b, 32b and 128b results in a buffer map that is approximately 41%, 59%, and 69%

of the overall size of the segment pool, respectively. Similarly, for ClueWeb09, the buffer map

sizes are approximately 32%, 54%, and 63% of the size of the segment pool, respectively. These

statistics quantify the overhead of our in-memory indexing algorithms.

Note that most of the working memory is taken up by term positions; in comparison, the

requirements for buffering docids and term positions are relatively modest. In all cases the

present implementation uses 32-bit integers, even for term positions. We could easily cut the

memory requirements for those in half by switching to 16-bit integers, although this would
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require us to either discard or arbitrarily truncate long documents. Ultimately, we decided not

to sacrifice the ability to index long documents.

The total number of unique terms is 31M in Gov2 and 79M in ClueWeb09. Since these collections

consist of web pages, most of the terms are unique and correspond to JavaScript fragments that

our parser inadvertently included and other HTML idiosyncrasies; such issues are prevalent in

web search and HTML cleanup is beyond the scope of this paper. Our indexer discards terms

that occur fewer than 10 times, which results in a vocabulary size of 2.9M for Gov2 and 6.9M for

ClueWeb09. Of these, Figure 5.3b shows the percentage of terms that require a maximum buffer

length of m × b, for different values of m in our contiguity settings. For example, the 1b bar

represents terms whose document frequencies are ≥ 10 but < 128. The 2b bar represents terms

whose document frequencies are ≥ 128 but less than 1b + 2b = 384, and so on. The 128b bar

represents terms whose document frequencies exceed the maximum buffer length of 128 blocks.

From this we can see why significantly increasing the b value only yields a modest increase in

memory requirements.

Finally, the average size of each inverted list segment for terms with a buffer length of 1b is

about 300 bytes; for terms that require a buffer of length of 2b, the average length is around 600

bytes. For terms with a buffer of length > 2b, this value is about 800 bytes. These statistics

make sense since 1b terms may have less than a document frequency of 128, and in general, rarer

terms have smaller term frequencies, and hence fewer term positions.

5.2 Attribute Score Search

To fit our requirements, we deeply customized the original Zambezi. In our implementation,

each document comprises multiple attributes and we assign each attribute a respective score

(details are in Chapter ??). For convenience of implementation, all attribute scores are 16-bit

integers.

In the indexing loop, the indexer receives an input document consisting of a list of 〈attribute, score〉
pairs, extracts a unique term list, and calculate the document score corresponding to each term.

If a particular term exists in different attributes of a document, then the term score is the sum

of scores to all the attributes in which that term exists:

SD,t =
∑

t∈D|A

SA (5.1)

The modified indexer has similar scheme as the original depicted in Figure 5.1, except that buffer

maps and segment pool store docid list and score list. In application, term frequencies and term
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positions are not needed. Each posting segment stores a gap-compressed docid list D and an

uncompressed score list S. All the data are packed together in a contiguous block of memory as

follows:

[ |D|, D, |S|, S ]

During retrieval, we intersect all term postings using SvS algorithm and calculate scores for each

candidate in the common set. For a query Q, the score for a candidate is calculated as below:

SD =
∑
t∈Q

SD,t (5.2)

Then Zambezi has finished its work. The candidates and their scores are passed to reranking

stage.

5.3 Real-time Extension

5.3.1 Motivation

The Zambezi indexer has limitations. Many of the techniques are tweet-specific and not applica-

ble to the general case. For example, it assumes terms occurring less than 9 times insignificant

thus unsearchable. This assumption may be true for twitter trends but not for other data

sources. In product or hotel search, the rare but useful terms may lay in buffer maps and never

be flushed to segment pool. We demanded a lockless, real-time, incremental inverted index.

Zambezi already proposed a good incremental scheme. Our work is to make it real-time, i.e. to

make the buffer maps searchable, and retain its locklessness. This is also a future work discussed

by the authors.

5.3.2 Solution

The solution is not complex. We first reimplement the buffer maps with boost::shared_array

and boost::atomic libraries. Each posting buffer is stored in a smart pointer. We use atomic

operations to ensure data consistency between write(index) and read(retrieval) threads. This is

a copy-on-write strategy implementation. As buffer maps is dynamically expanded as necessary,

the combine use of boost::shared_array and boost::atomic can ensure that retrieval threads

are still iterating on valid old data while index thread allocating a new memory region.
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The SvS intersection algorithm also needs to be updated to support search buffer maps. We

rewrite the posting search algorithm so that it can iterate from segment pool to buffer maps (or

the reverse) seamlessly.

There are other enhancements we made for this new Zambezi index:

• Native filter support. We added filter handling in SvS algorithm so that filters are applied

more efficient. Moreover, if filters are implemented outside retrieval algorithm, probably we

can not get sufficient candidates.

• Better integer compressor. We shift the PFor(Delta) compressor to the recently proposed

S4-BP128-D4 [28]. It puts compression and delta coding in a single run to reduce cache misses

and exploits SIMD instructions to accelerate both. We also modified the data alignment for

segment pool to 128-bit as SIMD demands.

• Better posting search algorithm. The original uses galloping search [29] for iteration on post-

ings list, which is nearly optimal for unbounded search over sorted list. However, with a

postings segment or buffer map no longer than 4096, the integer comparisons saved by gal-

loping search can not offset the cache misses which it draws in. We shift to SIMD accelerated

linear search [30] instead.
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Search Cloud

6.1 Overview

SF1R could be deployed as a fully distributed search engine. Within iZENECloud, we have it

supporting different kinds of search requests, some of which require non-distributed deployment

while others are deployed distributedly, as shown in figure 6.1. We call such platform as a search

cloud.

Figure 6.1: SF1R Search Cloud

The overview of Distributed SF1R nodes is shown in 6.2. Each Node can have several replicas,

and all the replicas in the same replica set have the same nodeid. We call them together as a

54



Chapter 6. Search Cloud 55

replica set. Basically, there will be one primary node and some secondary nodes in the specific

replica set. Each node will supply the master and worker parts.

Figure 6.2: Distributed SF1R Architecture

Figure 6.3: Distributed SF1R Replica Set

1. Primary Master

The master part on the primary node, it will take charge of distributing the search request

to all shard workers and merging the results from all shard workers. And also take the

charge of pulling the write request from zookeeper and distribute the write request to all

shard workers on primary.
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2. Secondary Master

The master part on the secondary node, it will take charge of distributing the search

request to all shard workers and merging the results from all shard workers. And also take

the charge of pushing the write request to zookeeper.

3. Shard Worker

The worker part on the node will do the actually work as one of shard worker and return

the result to the master. For write request, the shard worker on primary node will take

charge of broadcasting the request to all secondary nodes in the same replica set.

6.2 Architecture and Internal

6.2.1 The role of ZooKeeper

The ZooKeeper in the distributed sf1r will serve as the node activity detecting and primary

electing. The distributed write queue is also used in the zookeeper to make sure all write request

can be saved temporally. In sync mode, the zookeeper is used to keep the processing state of

write request and notify the primary and the secondary nodes about the state changes. By using

zookeeper we can make sure all nodes will see the same topology view in the distributed sf1r

since the zookeeper has implemented the PAXOS protocols to make sure the data consistency.

The topology in zookeeper is as below:

1 / # Root of zookeeper namespace

2 |−−− SF1R−[CLUSTERID] # Root of distributed SF1 namesapce,

3 [CLUSTERID] is specified by user configuration.

4

5 |−−− Topology # Topology of distributed service cluster

6 |−−− Replica1 # A replica of service cluster

7 |−−− Node1 # A SF1 node in the replica of cluster , it can be a

8 Master or Worker or both.

9 |−−− Node2

10 |−−− Replica2

11 |−−− Node1

12 |−−− Node2

13

14 |−−− Servers # Servers in topology is a master node.

15 |−−− Server00000000

16 |−−− Search, Recommend # A master node supply Search and

17 # Recommend service as master

18 |−−− Server00000001

19 |−−− WriteRquestQueue # Root of waiting write request queue

20 |−−− Node1 # Waiting Write request queue for node1

21 |−−− WriteRequestSeq0000000000 # the waiting write request
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22 |−−− Node2

23 |−−− PrimaryNodes

24 |−−− Node1 # backup primary nodes for node1

25 |−−− Primary0000000000 # first backup primary server as current

26 # primary for replica set node1.

27 |−−− Primary0000000001

28 |−−− Node2

29 |−−− Primary0000000000

30 |−−− Primary0000000001

31 |−−− WriteRequestPrepare # prepare root node for sync write

32 |−−− Node1 # prepare for node1 in sync write.

33 |−−− Node2

34 |−−− Synchro # For synchronization task

6.2.2 The new write routine on distributed sf1r

Figure 6.4 has shown the working flow of the write request:

1. A client caller send write request to one of node in the specific replica set on distributed

sf1r.

2. The master part on the node will push the request to the write queue on zookeeper. For

each replica set it has a standalone write queue on the zookeeper for its own.

3. The primary node will be notified and try to get the new write from zookeeper. If success,

the master part on primary node will set the prepared state and pop the write request

from the queue.

4. If the write request should be distributed to other shard workers, it will be pushed to the

write queue belong to that shard node.

5. The primary shard worker begin process on local. After finished on primary worker, it will

notify other nodes in the same replica set by updating the zookeeper nodedata. Then the

primary worker will wait all secondary nodes until finished or down by accidentally.

6. The secondary worker will be notified by zookeeper while there is a new write from primary.

After the secondary worker finished, it will notify the primary by updating the zookeeper

nodedata and wait the primary to get ready to write log.

7. After all secondary finished the write request(or part of them down), the primary will

notify all secondary to write the log.

8. The secondary worker will get notified from primary after all secondary finished write

request. Then it will write the log to disk and notify primary that the log has been

written.
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Figure 6.4: Write request handling Flow

9. After all secondary finished writting log, the primary worker will write log to disk and the

write request is finished finally.

10. The primary worker notify the primary master on the same node that it is ready for next

new request. And the primary master will check if any new request on the write queue

and continue to handle the next write request.
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6.2.3 Starting Node In Distributed SF1R

How a node start in distributed sf1r is shown as below: 6.5. Starting a node will add a secondary

to the replica set if there is already a primary, otherwise the starting node will enter the replica

set as a primary.

1. Staring node as primary

Each distributed node will be registered as a backup primary node in the same replica

set on the zookeeper. The first backup primary node in the replica set will be treated as

primary.

• Check data: while starting, the node will check whether local data is ok by checking if

some flag file exists on local. If last down by accidentally, the node can not be started

as primary. Because we can not identify the correctness of the local data without

checking by comparing with the other node.

• Register as backup primary: After checking data, the first node will start and register

a backup primary in the replica set. Because this is the first backup primary, it will

be treated as the current primary. The start is finished at last.

2. Starting as secondary

After the first node in the replica set started, all other nodes will be started as secondary.

• Recover: If last exit is normal, no recovery needed. Otherwise, the secondary will

restore the data from the newest backup.

• Sync to Newest log: After recovery finished, the secondary will pull new log data

from primary, and redo the log since last down. After synced to the newest log, the

secondary will notify the primary to stop accecpt new request and begin to enter

cluster.

• Check consistent: If primary agreed the enter of secondary, the secondary will check

the data consistent with primary by computing the CRC of the collection data files.

If the consistent finished success the node starting as secondary is done at last. Oth-

erwise, the secondary node will fail to start.

6.2.4 Failing in Distributed SF1R

In distributed sf1r, there are many cases to cause a failing node. Basically, there are two major

fails: primary fail and non-primary fail. Beside, because the zookeeper is used, we need handle

the zookeeper connection lost as one kind of fail. The handle of fail is shown in Fig 6.6.
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Figure 6.5: Starting of a node
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6.2.4.1 Abort write request

If the write request failed to finished, the node need rollback to the state before write. This is

aborting a write request.

• When abort hanppen: Abort may happen if the primary failed to finish or a secondary

send abort request to primary. The expired session on zookeeper connection while running

request will also trigger the aborting.

• How to abort: While aborting triggered, the primary node will notify all secondary nodes

to abort the request. If the secondary node did not begin to run the write, the abort

can ignore since no write happen on the node. Otherwise, the secondary node will do the

aborting and notify primary after aborting finished. While aborting on the local node,

it will find the latest backup and restore data from it. After that the node will redo the

logs between the latest backup and current failed state. By redoing the log, the node can

restore state to the old state before the failed write actually running.

6.2.4.2 Auto failover and recover

The master will be notified if the fail node is in the watching list of master and the master will

try to failover this node by using the backup node with the same nodeid in other replica set. If

the fail node restarts later, the master will recover this node.

6.2.4.3 Primary Fail

Current primary fail will trigger a backup primary to begin electing and the backup primary

will take the charge of primary if its log is newest.

1. Primary fail while idle: While idle, the primary fail will notify all replicas in the same

replica set and the first backup primary will become new primary and notify all other

replicas by updating self state to electing. The other backup nodes will just update the

current primary info and notify the new primary that I am ready to follow the new primary.

After all other nodes followed the new primary, the new primary will end the electing and

ready for the next new write request.

2. Primary fail while write request running local: If the primary failed while running the write

request but not finished yet. Because the other nodes in the replica set haven’t began to

run the write, we can handle it just the same as case 1.
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3. Primary fail While write request finished local: In this case, some of the secondary nodes

have already begun to run write request on the node. So we need abort the current write

request if the node has begun and after aborting the node will reenter the cluster to sync

to the new primary. If the node has not yet start to run the write, it can begin electing

the same as case 1.

4. Primary fail while ready to write log: In this case, all secondary nodes have already finished

write request, but not all secondary nodes finished the log. This is almost the same as the

case 3 except the node finished log do not need to abort the current write request. All

others not finished log need abort request and re-enter cluster.

5. Primary fail while electing: In this case, it means the current primary failed and the first

backup also failed while trying to become new primary. It is almost the same as the case

1 except the second backup take charge of the new primary.

6. Primary fail while others recovering: In this case, the recovering node need follow the new

primary and redo recovering from the mew primary. The nodes not recovering can be

handled just like the other case in 1-5.

In all case above, the node re-enter cluster if the log is fall behind others. The newest log id will

be updated to zookeeper once the node finished log.

6.2.4.4 Non-Primary Fail

1. Non-Primary fail while idle: Nothing will happen except auto failover on master since no

write running.

2. Non-Primary fail while write request running local: The primary will stop waiting this fail

node and check if others finished the write request.

3. Non-Primary fail while recovering: The primary will stop waiting this node to enter cluster

and check if any new write request can be handled.

4. Non-Primary fail while electing: The new primary will stop waiting this node to follow

itself and check if others followed it.

6.2.4.5 ZooKeeper Connection Lost

ZooKeeper will lost connection by auto-reconnect or expired session. This may happen while

network is unstable or zookeeper server is restarting.
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Figure 6.6: Fail of a node

• Auto-reconnect: In this case, the zookeeper will make sure all nodes created by self keep

the same after auto-reconnected. But we need refresh other nodes state such as primary or

other secondary nodes after auto-reconnect finished. If primary node has changed during

auto-reconnect, the node need do the same thing just like the primary fail case. If nothing

happened during auto-reconnect, the node can continue to run without any change.

• Expired Session: expired session will cause all zookeeper self-created node and event invalid,

so we need reconnect to the zookeeper by hand. After expired, the node will set the state

and keep waiting until the node is ready to re-enter cluster. Any unfinished write will be

aborted.

• Optimization for the unstable zookeeper: Sometimes the zookeeper is very unstable and

we need do some optimization to avoid the unnecessary change of primary node and the

abortion of the running write request. This can be done by checking the primary aliveness

so we can make sure the electing only start when the primary is really unreachable. In
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this way, the temporally lost for the primary will not trigger the primary election or write

abortion.

6.2.5 Async write support

As described above, the write need keep communicating with zookeeper while doing the write.

This will cause much downgrade of write performance if there are many replicas in the replica

set because of the network latency. In order to improve the performance of write, the async

write has been implemented to reduce the communication with zookeeper while handling the

write request.

• Async write on primary node: On primary the write flow is almost the same as sync except

the notify to zookeeper has been just ignored. In async write, the primary will pop the

write request from zookeeper and handle it locally without notify others and keep going on

until no more new write on zookeeper. As we can see, the communication with zookeeper

has been reduced to only 1 time. This will greatly improve the write performance and will

keep the same even the replica set become larger.

• Async write on secondary node: Since the primary no long notify secondary about the write

request, the secondary nodes will pull the redo logs from current primary periodically and

redo these logs in the log sync thread.

• Drawback of async write: As we can see, the secondary nodes may fall behind from primary

node, and if primary failed part of logs may have not synced to other secondary nodes.

This will cause write request loss.

• Recovering in async mode: Since the failed primary may have the logs that other secondary

nodes don’t have, while the failed primary restarting, the node need check whether the log

is newer that current new primary. If restarting with newer log, the node need rollback to

old and sync to new primary.

6.2.6 SF1R lib for distributed SF1R

The SF1R lib in Fig 6.7 is used by the distributed nginx. By using this sf1r-lib the client can

send request with no need for knowing the topology in the distributed sf1r. This client lib will

find the correct sf1r node in topology automatically and send the request to it. The client lib

update the topology by using the zookeeper connection and any changes from zookeeper will be

notified.
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Figure 6.7: The SF1R lib for nginx

• Support For Separating read and write: Currently, the distributed sf1r node will write the

current busy state to the zookeeper while the busy state changed. By reading the busy

state from zookeeper node we can temporally disable the read from the node who is busy

writing. In this way, we can route the read request and write request to different nodes to

implement separating the read and write.

6.2.7 The Sharding for the huge data

While the data growing rapidly, the single node can not handle all the data anymore. Then we

need do the sharding of the data to put the data across several nodes.

• Benefit: improve read/write performance. Concurrently read and write on different nodes

is more effective than multi-thread r/w on the single node because there is no CPU con-

tention.

• What to think: The first thing is load balancing, we should make sure all sharding nodes

are handling the average work. The second thing is to handle the add/remove sharding

nodes easily since the data may grow rapidly.

• How to do: Using consistent hashing to keep data balance among all sharding nodes and

avoid too much data migrate while changing the sharding nodes topology. Pick up the

searching worker one by one to balance the read request among them.
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6.3 Developer Guide

Because all the write request will be handled on primary first and send to all secondary nodes

from primary, the new write request need some adjustment to be adopted by distributed sf1r.

Most work has been done and we can add new write simply follow as below step:

6.3.1 Add new write api

1. add the controller+action string in the function initWriteRequestSet in the RequestLog.cpp

file.

2. if the write api is in the controller that derived from Sf1Controller, then most work will

be done OK in base class. If not, you need handle it yourself.

3. If the api will execute on all shard workers, you need push the write request to the queues

of other shard workers. (See the index write request in the class IndexTaskService for

example.)

4. In the write request handler, coding as below:

1 // check valid first .

2 DISTRIBUTE_WRITE_BEGIN;

3 DISTRIBUTE_WRITE_CHECK_VALID_RETURN;

4 // do pre−check without modify any collection data.

5 if (precheckfailed ())

6 {

7 return false ;

8 }

9

10 // prepare request log before actually modify the collection data.

11 CreateOrUpdateDocReqLog reqlog;

12 reqlog .timestamp = Utilities :: createTimeStamp();

13 if (! distributereqhooker−>prepare(ReqCreateOrUpdate_Doc, reqlog))

14 {

15 LOG(ERROR) << "prepare failed in " << __FUNCTION__;

16 return false ;

17 }

18

19 // do modify collection data.

20 ret = modify_data();

21 if (! ret)

22 {

23 return false ;

24 }

25 // flush data to make sure data write to disk.
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26 flush () ;

27

28 DISTRIBUTE_WRITE_FINISH(ret, reqlog);

29 return ret ;

5. Make sure the controller and handler will execute in sync.

6. If an api will call another write api, you should set the chain status properly.

7. Define a new req log type in RequestLog.h if necessary and set for rollback and backup

action in DistributeRequestHooker.cpp file.

6.3.2 Add new write cron job

In order to run cron job in distributed mode, the cron job need a job name cronJobName for each

cron job and each cron job just do one job. cronJob task is a function with calltype parameter.

You should write cron job function as below:

1 void RecommendTaskService::cronJob_(int calltype)

2 {

3 if (cronExpression.matchesnow() || calltype > 0)

4 {

5 // check if need to put the job to distributed sf1r write queue.

6 if ( calltype == 0 && NodeManagerBase::get()−>isDistributed())

7 {

8 if (NodeManagerBase::get()−>isPrimary())

9 {

10 MasterManagerBase::get()−>pushWriteReq(cronJobName_, "cron");

11 LOG(INFO) << "push cron job to queue on primary : " << cronJobName_;

12 }

13 else

14 LOG(INFO) << "cron job ignored on replica: " << cronJobName_;

15 return;

16 }

17 // check for valid

18 DISTRIBUTE_WRITE_BEGIN;

19 DISTRIBUTE_WRITE_CHECK_VALID_RETURN;

20 // prepare the log for cron job.

21 CronJobReqLog reqlog;

22 reqlog .cron_time = Utilities :: createTimeStamp();

23 if (!DistributeRequestHooker::get()−>prepare(Req_CronJob, reqlog))

24 {

25 LOG(ERROR) << "!!!! failed running cron job. : " << cronJobName_ << std::endl;

26 return;

27 }

28 //do the job task here. and flush data after job finished .
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29 bool ret = DoJob();

30 flush () ;

31 //finish job

32 DISTRIBUTE_WRITE_FINISH(ret);

33 }

34 }

6.3.3 Add new write callback

The write callback is used for the write without any write api or cronJob. You can add/remove

a write callback with an identify string and call it as below :

1

2 // add new callback.

3 DistributeDriver :: get()−>addCallbackWriteHandler(collection_ + "_callBackFuncName",

4 boost::bind(&CallbackObj::callbackFunc, this, _1));

5

6 // removing the callback

7 DistributeDriver :: get()−>removeCallbackWriteHandler(collection_ + "_callBackFuncName");

8

9 // call callback by push the specific data.

10 DistributeDriver :: get()−>pushCallbackWrite(reqloghead.req_json_data, reqdata);

The callbackFunc should have the protocol as below and should be with the log type ReqCallback:

1 bool callbackFunc(int calltype) ;

The calltype will be used to tell who is calling this callback. In the callback you should code

just like the write request api handler.

6.3.4 Auto test

Currently, the distributed sf1r support auto test for new write request. The auto test will try

all possible fail case to check if data is consistent after the write request.

For each write request api, you can add the test json request body to the autotest directory. All

the json file under it will be tested in all kinds of node fails to make sure after the write request

we get the consistent data.

If you want some node fail at the some test point, you can do

1 echo failtype > distribute_test.conf
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under the working directory. the failtype here stand for the kind of test point at which line the

sf1r will fail. Currently all test points are shown as below:

1 enum TestFailType

2 {

3 NoAnyTest = 0,

4 NoFail,

5 PrimaryFail_At_Electing,

6 PrimaryFail_At_BeginReqProcess,

7 PrimaryFail_At_PrepareFinished,

8 PrimaryFail_At_ReqProcessing,

9 PrimaryFail_At_NotifyMasterReadyForNew,

10 PrimaryFail_At_AbortReq,

11 PrimaryFail_At_FinishReqLocal,

12 PrimaryFail_At_Wait_Replica_Abort,

13 PrimaryFail_At_Wait_Replica_FinishReq,

14 PrimaryFail_At_Wait_Replica_FinishReqLog,

15 PrimaryFail_At_Wait_Replica_Recovery,

16 PrimaryFail_At_Master_PrepareWrite,

17 PrimaryFail_At_Master_checkForNewWrite,

18

19 ReplicaFail_Begin = 30,

20 ReplicaFail_At_Electing,

21 ReplicaFail_At_Recovering,

22 ReplicaFail_At_BeginReqProcess,

23 ReplicaFail_At_PrepareFinished,

24 ReplicaFail_At_ReqProcessing,

25 ReplicaFail_At_Waiting_Primary,

26 ReplicaFail_At_Waiting_Primary_Abort,

27 ReplicaFail_At_AbortReq,

28 ReplicaFail_At_FinishReqLocal,

29 ReplicaFail_At_UnpackPrimaryReq,

30 ReplicaFail_At_Waiting_Recovery,

31

32 OtherFail_Begin = 60,

33 Fail_At_AfterEnterCluster,

34 Fail_At_CopyRemove_File,

35

36 FalseReturn_Test_Begin = 70,

37 FalseReturn_At_UnPack,

38 FalseReturn_At_LocalFinished,

39 };
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6.4 Operation Note

6.4.1 Configuration

A simple sample configuration is as below:

SF1R Node1, work as Master and Shard Worker 1. For this Master, it provides multiple collec-

tions, "b5mp" is distributed to two shard workers.

part of sf1config.xml

1 <DistributedTopology enable="y">

2 <CurrentSf1rNode nodeid="1" replicaid="1">

3 <!−−master names for B5M are www|stage|beta−−>

4 <MasterServer enable="y" name="undefined" />

5 <WorkerServer enable="y" />

6 </CurrentSf1rNode>

7 </DistributedTopology>

part of b5mp.xml

1 <IndexBundle>

2 <ShardSchema>

3 <ShardKey name="DOCID" />

4 <DistributedService type="search" shardids="1,2" />

5 <DistributedService type="recommend" shardids="1,2" />

6 </ShardSchema>

7 ...

8 </IndexBundle>

SF1R Node2, work as Master and Shard Worker2 (with shard 2).

1 <DistributedTopology enable="y">

2 <CurrentSf1rNode nodeid="2" replicaid="1">

3 <MasterServer enable="y" name="undefined" />

4 <WorkerServer enable="y" />

5 </CurrentSf1rNode>

6 </DistributedTopology>

The name in Master Server can be used to tell the difference for independent cluster such as the

beta/stage/www cluser.



Chapter 6. Search Cloud 71

6.4.2 Monitor status

Some node status will be updated to memory statistical data. If you want to get the running

status of distributed sf1r node, you can using the api

1 status/get_distribute_status

From this we can known the current primary host and how many write request processed and

etc..

6.4.3 Update SF1R

The update can have two major cases: simple update and update to new cluster. The simple

update will happen while the update is compatible with old node, otherwise update to new

cluster is needed.

• Update config: replace the config file on current primary node and send the api command

1 collection /update_collection_conf

After this the updated config will auto deliver to other replicas in the replica set.

• Simple update: If the data or code is compatible with the old one, we can do simple

update. Just using the script below:

1 distribute_tools .sh simple_update new−sf1r−tar−file

and wait until the updating node can serve as the new master or worker.

• Update to new cluster: update to new cluster is needed while the new is no longer com-

patible with the old. We can do this one by one as follow :

1. Chose one node in the replica set and run the script :

1 distribute_tools .sh update_to_newcluster new−sf1r−tar−file new−clusterid

2. Rebuild data if needed by using the api.

3. Backup node data. Using api

1 collection /backup_all

to generate the backup data on the current node.

4. Copy the backup data to other replicas and update the left nodes one by one. On

the other nodes, using the script
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1 distribute_tools .sh rollback new−clusterid

to restore the data from the copied backup data. After all nodes have finished, the

update to new cluster is done.

6.4.4 Handle Unexpected down

The node in distributed sf1r may be down at any time. After started, the node will set a force

exit flag file and this flag file will be removed if the node is stopped normally. While starting, if

the force exit flag exists, we treat it as an accident down. In this case we will restore the data

from the latest backup and sync to newest from current primary.

While running the write request, the node will set a rollback flag file to indicate the current

running request with the request id. If the write failed to finish, we can know which state we

will rollback to. If the rollback file is empty it will rollback to the latest backup.

If all nodes in the replica set are down, we need check the log data carefully. We need find out

which node has the newest log data and start this node as the first node in the replica set.
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