
D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te International

Virtual
Observatory

Alliance

Catalogue of ADQL User Defined
Functions

Version 1.2

Proposed Endorsed Note 2024-08-07

Working Group
DAL

This version
https://www.ivoa.net/documents/udf-catalogue/20240807

Latest version
https://www.ivoa.net/documents/udf-catalogue

Previous versions
EN-1.1
EN-1.0
PEN-20200806
PEN-20190925

Author(s)
Jon Juaristi Campillo, Markus Demleitner, Tamara Civera

Editor(s)
Jon Juaristi Campillo

Version Control
Revision 7439876, 2024-09-09 09:42:58 +0200

https://www.ivoa.net/documents/udf-catalogue/20240807
https://www.ivoa.net/documents/udf-catalogue
https://www.ivoa.net/documents/udf-catalogue/20231010
https://www.ivoa.net/documents/udf-catalogue/20210310
https://ivoa.net/documents/udf-catalogue/20200806/
https://ivoa.net/documents/udf-catalogue/20190925
https://wiki.ivoa.net/twiki/bin/view/IVOA/JonJuaristiCampillo
https://wiki.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner
https://wiki.ivoa.net/twiki/bin/view/IVOA/TamaraCivera
https://wiki.ivoa.net/twiki/bin/view/IVOA/JonJuaristiCampillo

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Abstract
The IVOA Astronomical Data Query Language (ADQL) has the exten-

sion facility of user defined functions (UDFs). While service operators are
free to define these as they see fit, it is clearly advantageous if identical
functionality is available under identical names in different services. There-
fore, ADQL 2.1 has introduced the ivo_ prefix, reserved for functions with
agreed-upon semantics. This endorsed note contains this agreement and, via
its updates, is the means of updating it.

Status of this document
This is an IVOA Proposed Endorsed Note for review by IVOA members

and other interested parties. It is appropriate to reference this document
only as a Proposed Endorsed Note that is under review and may change
before it is endorsed or may not be endorsed.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents/.

Contents

1 Introduction 3
1.1 Role within the VO Architecture 4

2 List of IVOA user defined functions 5
2.1 HEALPix-related . 5

2.1.1 ivo_healpix_index(hpxOrder, long, lat) 5
2.1.2 ivo_healpix_index(hpxOrder, point) 6
2.1.3 ivo_healpix_center(hpxOrder, hpxIndex) 6

2.2 Astrometry . 7
2.2.1 ivo_epoch_prop_pos(ra, dec, parallax, pmra, pmdec,

radial_velocity, ref_epoch, out_epoch) 7
2.2.2 ivo_geom_transform(from_sys, to_sys, geo) 9

2.3 Dates and Times . 10
2.3.1 ivo_to_jd(d) . 10
2.3.2 ivo_to_mjd(d) . 11

2.4 Text-Related . 11
2.4.1 ivo_string_agg(expression, delimiter) 11
2.4.2 ivo_nocasematch(value, pattern) 12
2.4.3 ivo_hasword(haystack, needle) 13
2.4.4 ivo_hashlist_has(hashlist, item) 13

2.5 Statistics . 14

2

https://www.ivoa.net/documents/

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2.5.1 ivo_histogram(val, lower, upper, nbins) 14
2.5.2 ivo_normal_random(mu, sigma) 15

2.6 Convenience Functions . 16
2.6.1 ivo_interval_overlaps(a1, b1, a2, b2) 16
2.6.2 ivo_simbadpoint(identifier) 16

2.7 Celestial Conversion Functions 17
2.7.1 ivo_hms_to_degrees(hms) 17
2.7.2 ivo_dms_to_degrees(dms) 18

A Changes from Previous Versions 18
A.1 Changes from EN-1.1 . 18
A.2 Changes from EN-1.0 . 19
A.3 Changes from PEN-20200806 19
A.4 Changes from PEN-20190925 19

References 19

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

The Astronomical Data Query Language (ADQL) (Mantelet and Morris
et al., 2023) has the notion of user defined functions (UDF). These pro-
vide a light-weight extension mechanism for operators of TAP services. For
instance, Taylor and Mantelet et al. (2016) show how they enable the con-
struction of HEALPix maps although ADQL 2.0 itself entirely lacks facilities
to deal with them.

In order to avoid different signatures or semantics on functions offering
identical or similar functionality, this document defines UDFs with names
prefixed with ivo_. If services have functions with this names, they must
work as defined here.

In version 1.0, this note documents a consensus on such functions where
it has been reached within other standards or in the review of this document.

3

http://www.ivoa.net

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Users Computers

Providers

R
eg

is
tr

y
D

ata A
ccess P

ro
to

co
ls

User Layer

Using

Resource Layer

Sharing

VO

Core

F
in

di
ng

G
etting

Desktop Apps

In-Browser
Apps

User
Programs

Data and Metadata Collection
Storage Computation

Semantics
Data

Models

VO Query
Languages

Formats

RegTAP

MOC

ADQL

Figure 1: Architecture diagram for the UDF catalogue.

In the future, where UDFs are not naturally associated with a particular
standard, they can be proposed by editing this document and starting the
Endorsed Note process (Genova and Arviset et al., 2017) on the changes. In
effect, this endorsed note is the management tool for the ivo_ “namespace”
in ADQL user defined functions.

Note that no function given here is required to be present in a generic
TAP service (though other standards may pose such requirements; for in-
stance, ivo_hashlist_has is required by both RegTAP and EPN-TAP).
However, if a service implements any UDF with a name mentioned in this
document, its semantics must be as specified here.

1.1 Role within the VO Architecture

Fig. 1 shows the role this document plays within the IVOA architecture
(Dowler and Evans et al., 2021). It relates to the following other standards:

ADQL (Mantelet and Morris et al., 2023)
This endorsed note defines the user defined functions with the ivo_
prefix. While ADQL 2.0 does not treat those as special, they can be
(and have been) used there already. Normative language on ivo_
is expected to become part of ADQL 2.1.

RegTAP (Demleitner and Harrison et al., 2019)
RegTAP first defined some of the UDFs defined here. It is expected

4

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

that later versions of RegTAP will refer to this note rather than
maintaining a second definition, and deferring the actual definition
of UDFs to this note should be the standard way of introducing
UDFs used or required by a standard in the future.

MOC (Fernique and Nebot et al., 2022)
The HEALPix functions defined here build on terminology intro-
duced in the MOC specification.

2 List of IVOA user defined functions

The functions are defined through a brief human-readable description of
what the function does, followed by a closer discussion of the parameters,
the return value, and the authority the UDF was drawn from.

In the parameter definitions, we do not distinguish between different pre-
cisions of floating point arguments. Where we write REAL, the expectation is
that the functions accept floating point values of any precision. Similarly, we
write TEXT for anything sufficiently string-like, be it CHAR(n), VARCHAR(*),
or something comparable.

Most functions are accompanied by examples, which are intended to make
the effects of the functions clearer and give implementors a starting point
for tests. Where examples disagree with the specification text, the text is
normative.

While ADQL does not support standalone evaluation of functions, a
query like

SELECT TOP 1 <example> AS res FROM TAP_SCHEMA.tables
will return one row with the function result for simple, non-aggregate func-
tions.

2.1 HEALPix-related

In this section, order and npix are used as in the Multi-Order Coverage map
(MOC) recommendation (Fernique and Nebot et al., 2022).

2.1.1 ivo_healpix_index(hpxOrder, long, lat)

Returns the index (npix) of the HEALPix cell containing the spherical point
given by longitude long (typically, right ascension) and latitude lat (typi-
cally, declination) at order hpxOrder in NESTED numbering.

Parameters

• hpxOrder (INTEGER) – the HEALPix order to use.
• long (REAL) – longitude of the spherical point to compute the

index for, in degrees.

5

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• lat (REAL) – latitude of the spherical point to compute the index
for, in degrees.

Return type BIGINT

Source This document, version 1.0

Examples (non-normative)

ivo_healpix_index(0, 1, 1)
→ 4

ivo_healpix_index(17, 1, 1)
→ 81609757711

ivo_healpix_index(17, 359, -1)
→ 73009064944

2.1.2 ivo_healpix_index(hpxOrder, point)

Returns the index (npix) of the HEALPix cell containing the spherical point
given by point at order hpxOrder in NESTED numbering.

Parameters

• hpxOrder (INTEGER) – the HEALPix order to use.
• point (POINT) – the position to compute the index for.

Return type BIGINT

Source This document, version 1.0

Examples (non-normative)

ivo_healpix_index(0, POINT(1, 1))
→ 4

ivo_healpix_index(17, POINT('ICRS', 1, 1))
→ 81609757711

ivo_healpix_index(17, CENTROID(CIRCLE(359, -1, 3)))
→ 73009064944

2.1.3 ivo_healpix_center(hpxOrder, hpxIndex)

Returns a POINT corresponding to the center of the HEALPix cell with
index (npix) hpxIndex at order hpxOrder in NESTED numbering.

Parameters

• hpxOrder (INTEGER) – the HEALPix order to use.

6

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• hpxIndex (INTEGER) – the index for which to return the center
position.

Return type POINT

Source This document, version 1.0

Examples (non-normative)
ivo_healpix_center(0, 6)

→ [180., 0.]
as a 2-array with xtype=point.

ivo_healpix_center(17, ivo_healpix_index(17, 23.4, 56.7))
→ [23.399843462947466, 56.70016214363192]

ivo_healpix_center(17, 23.2)
→ undefined

Implementations are advised to fail when floating point numbers are passed as indices, but
may choose to do some rounding.

2.2 Astrometry

2.2.1 ivo_epoch_prop_pos(ra, dec, parallax, pmra, pmdec,
radial_velocity, ref_epoch, out_epoch)

Returns an ADQL POINT giving the position at out_epoch for an object
with the six parameters at ref_epoch. Essentially, it will apply the proper
motion and the radial velocity under the assumption of linear motion. De-
spite the name of the positional parameters, this is not restricted to equa-
torial systems, as long as positions and proper motions are expressed in the
same reference frame.

Implementations must assume linear motions of both the star and the
sun (i.e., not include secular aberration). No relativistic corrections at low
parallaxes must be applied (which are very likely spurious for most appli-
cations of this UDF). The recommended formalism is Lindegren’s “rigorous
treatment” (ESA, 1997).

This way, only the difference between ref_epoch and out_epoch is rel-
evant to the function’s result. The signature was chosen for compatibility
with established UDFs at major TAP service providers.

Parameters

• ra (REAL) – the object’s longitude at ref_epoch, in degrees. NULL
values here are an error.

• dec (REAL) – the object’s latitude at ref_epoch, in degrees. NULL
values here are an error.

• parallax (REAL) – the parallax at ref_epoch in mas. A NULL
here is to be interpreted as “object is infinitely remote”.

7

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• pmra (REAL) – the tangential plane proper motion in longitude
at ref_epoch, in mas/yr. “Tangential plane” here means it is the
temporal derivative of the longitude multiplied by the cosine of
the latitude, which is what is given as proper motion in RA in
almost all modern catalogues. NULLs must be interpreted as 0.

• pmdec (REAL) – the object’s proper motion in latitude at ref_epoch,
in mas/yr. NULLs must be interpreted as 0.

• radial_velocity (REAL) – the object’s radial velocity at ref_epoch,
in km/s. NULLs must be interpreted as 0.

• ref_epoch (REAL) – the epoch for which the six previous param-
eters are given, in Julian years. NULL values here are an error.

• out_epoch (REAL) – the epoch for which to compute the new
position. NULL values here are an error.

Return type POINT

Source This document, version 1.1

Examples (non-normative)

ivo_epoch_prop_pos(7.606083572, 11.79044105, 125,
300, -428.8, 52.51, 2016.0, 1992.25)

→ [7.604061404627978, 11.7932703828279]
where [] denote an array and we use DALI representation.

ivo_epoch_prop_pos(7.606083572, 11.79044105, 125,
300, -428.8, 52.51, 2016.0, 1875.0)

→ [7.594068213694308, 11.807251375203935]

ivo_epoch_prop_pos(7.606083572, 11.79044105, 125,
300, -428.8, NULL, 2016.0, 1875.0)

→ [7.594079587029898, 11.807235464326332]

ivo_epoch_prop_pos(7.606083572, 11.79044105, 125,
300, NULL, NULL, 2016.0, 1875.0)

→ [7.594080321498365, 11.790440798509207]

ivo_epoch_prop_pos(7.606083572, 11.79044105, NULL,
300, -428.8, 52.51, 2016.0, 1875.0)

→ [7.594079587020846, 11.807235464339055]
This last value is approximative in the sense that the concrete “small” parallax has not
been fixed normatively.

ivo_epoch_prop_pos(NULL, 11.79044105, 125,
300, NULL, NULL, 2016.0, 1875.0)

8

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

→ an error.

ivo_epoch_prop_pos(7.606083572, 11.79044105, 125,
300, -428.8, 52.51, NULL, 1875.0)

→ an error.

2.2.2 ivo_geom_transform(from_sys, to_sys, geo)

Transforms ADQL geometries (i.e., at least values of type POINT, CIRCLE,
or POLYGON) between various reference systems. The function will return a
geometry of the same type as the geo argument.

As specified here, from_sys and to_sys must be literal strings (i.e.,
they cannot be computed through expressions or be taken from database
columns), although implementors are free to accept more general string
expressions as an extension. The identifiers of the reference frames must
be taken from the IVOA refframe vocabulary1, where additional reference
frames can be added as needed as described in Demleitner and Gray et al.
(2023). Services publishing sky data are advised to implement ICRS and
GALACTIC at the very least.

Implementations should list the reference frames supported in their local
descriptions of this function.

Reference frame identifiers are case-sensitive.
For reproducability, all transforms should be implemented as simple rota-

tions. This is only a rough approximation to the actual relationships between
reference systems, and applications requiring high levels of precision in ref-
erences frame transforms have to perform these outside of the database.

For equinox-dependent frames, we for now define default equinoxes:

• FK5: J2000.0

• FK4: J1950.0

• ECLIPTIC: J2000.0

A later version of this document may define a four-argument form of
ivo_transform to support passing equinoxes or other metadata influencing
the transformation.

Parameters

• from_sys (string literal) – the refframe identifier of the sys-
tem geo is in.

• to_sys (string literal) – the refframe identifier of the system
the return value is in.

1http://www.ivoa.net/rdf/refframe

9

http://www.ivoa.net/rdf/refframe

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• geo (GEOMETRY) – a POINT, CIRCLE, or POLYGON (accepting and
transforming additional types is permitted) to transform from
from_sys to to_sys.

Return type The function returns a value of the same type as geo

Source This document, version 1.2

Examples (non-normative)
ivo_geom_transform('ICRS', 'GALACTIC', POINT(120, -23))

→ [241.121831182, 3.62785788087]
in limited-precision DALI representation, where [] denote an array.

ivo_geom_transform('FK4', 'GALACTIC', CIRCLE(189.70303055, 22.96240006, 3))

→ [275.00025405, 84.99996154, 3].
ivo_geom_transform('FK4', 'GALACTIC', CIRCLE(189.70303055, 22.96240006, 3))

→ [275.00025405, 84.99996154, 3].
ivo_geom_transform('GALACTIC', 'FK5', POLYGON(5, 3, 4, 4, 4.5, 2))

→ [266.44721, -23.107310, 264.95088, -23.434037, 267.09936, -24.051919].

2.3 Dates and Times

2.3.1 ivo_to_jd(d)

Converts a database timestamp to a Julian Date as a floating point number.
This is naive; no corrections for timezones, let alone time scales or the like
are done. Users can thus not expect this to be good to second-precision
unless they are careful in the construction of the timestamp.

Parameters

• d (TIMESTAMP literal) – a SQL timestamp.

Return type REAL

Source This document, version 1.2

Examples (non-normative)

ivo_to_jd(CAST('2000-01-02T12:00:00' AS TIMESTAMP))
→ 2451546.0

ivo_to_jd('1910-12-31T06:00:00')
→ 2419036.75

While not strictly necessary for compliance, implementations SHOULD accept reasonable

10

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

strings – primarily, DALI-style ISO dates – as arguments, in particular when they do not
implement the optional CAST construct.

ivo_to_jd(NULL)
→ NULL

2.3.2 ivo_to_mjd(d)

Converts a database timestamp to a Modified Julian Date as a floating point
number. This is naive; no corrections for timezones, let alone time scales or
the like are done. Users can thus not expect this to be good to second-level
precision unless they are careful in the construction of the timestamp.

Parameters

• d (TIMESTAMP literal) – a SQL timestamp.

Return type REAL

Source This document, version 1.1

Examples (non-normative)

ivo_to_mjd(CAST('2000-01-02T12:00:00' AS TIMESTAMP))
→ 51545.5

ivo_to_mjd('1910-12-31T06:00:00')
→ 19036.25

While not strictly necessary for compliance, implementations SHOULD accept reasonable
strings – primarily, DALI-style ISO dates – as arguments, in particular when they do not
implement the optional CAST construct.

ivo_to_mjd(NULL)
→ NULL

2.4 Text-Related

2.4.1 ivo_string_agg(expression, delimiter)

An aggregate function returning all values of expression concatenated with
delimiter.

Parameters

• expression (TEXT) – a SQL expression giving the strings to con-
catenate. The expression may be NULL, in which case the row
does not leave a trace in the result string.

• delimiter (TEXT) – a string used to concatenate the values of
expression in each group.

Return type TEXT

11

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Source RegTAP 1.0

Examples (non-normative)

SELECT ivo_string_agg(table_name, '␣<//>␣')|
FROM TAP_SCHEMA.tables
WHERE table_name ILIKE 'tap_schema.%'

→ 'tap_schema.columns <//> tap_schema.schemas <//> ta...'
Of course, the actual value depends on the contents of the TAP schema on the service used
to run the query.

2.4.2 ivo_nocasematch(value, pattern)

Evaluates value ILIKE <pattern> pattern, i.e., pattern is defined as for the
SQL LIKE operator, but the match is performed case-insensitively. Returns
1 if the pattern matches, 0 otherwise.

Databases processing non-ASCII should perform case folding according
to algorithm R2 in section 3.13, “Default Case Algorithms” of the Unicode
Standard (The Unicode Consortium, 2012).

Please note that in ADQL versions higher than ADQL 2.1, the ILIKE
operator should be used instead.

Parameters

• value (TEXT) – a string-valued SQL expression.
• pattern (TEXT) – a SQL pattern for LIKE evaluation (i.e., under-

score is any character, percent zero or more arbitrary characters).

Return type INTEGER

Source RegTAP 1.0

Examples (non-normative)

ivo_nocasematch('abcabc', 'ab%')
→ 1

ivo_nocasematch('ABcabc', 'ab__bc')
→ 1

ivo_nocasematch('abcabc', '%BC')
→ 1

ivo_nocasematch('abcabc', 'ABCABC')
→ 1

ivo_nocasematch('abcabc', 'abcab')
→ 0

12

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2.4.3 ivo_hasword(haystack, needle)

Returns 1 if all tokens from the string needle are contained (in some sense)
in the string haystack, 0 otherwise. This is intended to support somewhat
“Google-like”, soft string matches. This specification does not precisely spec-
ify what “token” exactly means and whether stemming or any other normal-
isation should be performed, except that matching must be case-insensitive
within ASCII, and that the minimal token definition is a continuous run of
ASCII characters. Implementors are encouraged to attempt a reasonable
approximation to what Web search engines do.

Parameters

• needle (TEXT) – a string to locate in haystack.
• haystack (TEXT) – text to match needle in.

Return type INTEGER.

Source RegTAP 1.0

Examples (non-normative)

ivo_hasword('Miller and Urey have', 'miller')
→ 1

ivo_hasword('shown that a primordial', 'show')
→ 1

This could also be 0 on a platform that does not perform English-language stemming.

ivo_hasword('shown that a primordial', 'soup')
→ 0

ivo_hasword('shown that a primordial', 'shown primordial')
→ 1

All tokens from needle are in haystack.

ivo_hasword('shown that a primordial', 'shown soup')
→ 0

One token from needle is missing in haystack.

2.4.4 ivo_hashlist_has(hashlist, item)

The hashlist argument is a list of words not containing the hash sign (#),
concatenated by hash signs; the item argument is a string not containing a
hash sign. The function returns 1 if, compared case-insensitively, the second
argument is in the list of words encoded in the first argument, 0 otherwise.
In case the second argument does contain a hash sign, the function must
return 0.

Parameters

13

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• hashlist (TEXT) – a string containing hash-separated terms.
• item (TEXT) – a string containing a single term not containing a

hash.

Return type INTEGER

Source RegTAP 1.0

Examples (non-normative)

ivo_hashlist_has('red#green#blue', 'red')
→ 1

ivo_hashlist_has('Red#green#blue', 'red')
→ 1

ivo_hashlist_has('red#green#blue', 're')
→ 0

ivo_hashlist_has('red#green#blue', 'red#green')
→ 0

2.5 Statistics

2.5.1 ivo_histogram(val, lower, upper, nbins)

This aggregate function returns a histogram of val with nbins+2 elements.
Assuming 0-based arrays, results[0] contains the number of underflows
(i.e., val < lower), result[nbins+1] the number of overflows. Elements
1 . . . nbins are the counts in nbins bins of width (upper − lower)/nbins.
Clients will have to convert back to physical units using some external com-
munication, as there currently is no (meta-) data on the lower limit or the
bin size in the TAP response.

When val is NULL, it counts as an underflow.

Parameters

• val (REAL) – the value to bin. This can be any expression suitable
in aggregate functions.

• lower (REAL) – the lower limit of the histogram (anything smaller
will end up in bin 0).

• upper (REAL) – the upper limit of the histogram (anything larger
will end up in bin nbins+1).

• nbins (INTEGER) – the number of “natural” bins in the histogram.
The returned array will have two additional cells for under- and
overflows.

Return type INTEGER[]

14

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Source This document, version 1.1

Examples (non-normative)

SELECT ivo_histogram(parallax, 0.5, 3.5, 8)
FROM gaiadr3.nss_vim_fl

→ 6 245 287 162 92 33 22 10 7 6
on the TAP service at https:// gaia.ari.uni-heidelberg.de/ tap.

SELECT ivo_histogram(LOG10(n_star+1), 3, 5, 5) FROM mwsc.main
→ 781 41 329 1239 1107 260 27

on the TAP service at http:// dc.g-vo.org/ tap.

2.5.2 ivo_normal_random(mu, sigma)

Returns a random number drawn from a normal distribution

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
. (1)

Implementation note: Few databases at this point have built-in facilities
for drawing random numbers from non-uniform distributions. In practice,
an implementation of the type

(((random()+random()+random()+random()+random()
+random()+random()+random()+random()+random()-5

)*sigma)+mu)
has been giving sufficiently good results and adequate runtime behaviour.
Of course, better approximations are preferred.

Parameters

• mu (REAL) – the µ in eq. (1)
• sigma (REAL) – the σ in eq. (1)

Return Type REAL

Source This document, version 1.2

Examples (non-normative)
ivo_normal_random(10, 5), ivo_normal_random(10, 5)

→ 3.4275427, 7.839408
(or, really, almost anything else).

15

https://gaia.ari.uni-heidelberg.de/tap
http://dc.g-vo.org/tap

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2.6 Convenience Functions

2.6.1 ivo_interval_overlaps(a1, b1, a2, b2)

The function returns 1 if the interval [a1 . . . b1] overlaps with the interval
[a2 . . . b2]. For the purposes of this function, the case a1 = b2 or a2 = b1 is
treated as overlap. The function returns 0 for non-overlapping intervals.

Parameters

• a1 (NUMERIC) – the lower bound of the first interval.
• b1 (NUMERIC) – the upper bound of the first interval.
• a2 (NUMERIC) – the lower bound of the second interval.
• b2 (NUMERIC) – the upper bound of the second interval.

Return type INTEGER

Source Originally proposed by the roadmap for STC discovery (Demleitner,
2018); standardised in this document, version 1.0.

Examples (non-normative)

ivo_interval_overlaps(-3, -2, 2, 3)
→ 0

ivo_interval_overlaps(-2, 55.3, 2, 3)
→ 1

ivo_interval_overlaps(2, 3, -2, 55.3)
→ 1

ivo_interval_overlaps(-2, 55.3, 3, 2)
→ 0

In accordance with common RDBS semantics, intervals with lower bound > upper bound
never overlap with anything.

ivo_interval_overlaps(-2, 2, 2, 3)
→ 1

Relying on the special case of identical first upper vs. second lower bound is probably
not a good idea for floating point numbers that do not have a short and finite binary
representation.

2.6.2 ivo_simbadpoint(identifier)

Queries Simbad (Wenger and Ochsenbein et al., 2000) for a position of
identifier and returns a POINT for that position. This is mainly a con-
venience function, as identifier must be a literal (as opposed to a column
reference or expression). For mass resolution of identifiers, Simbad’s own
TAP service should be used.

Parameters

16

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• identifier (string literal) – A Simbad-resolvable identifier.

Return type POINT

Source This document, version 1.2

Examples (non-normative)
ivo_simbadpoint('GJ 699')

→ [269.452076958619, 4.69336496657667]
(where Simbad returns estimated current positions and hence return values will change
over time – significantly so for the present example, Barnard’s star).

ivo_simbadpoint('an invalid identifier')
→ an error

The error message should ideally state that the identifier passed in (which ought to be
included in the message) cannot be resolved by Simbad.

2.7 Celestial Conversion Functions

2.7.1 ivo_hms_to_degrees(hms)

This function converts hms (hours, minutes, seconds) to degrees format. This
is useful for right ascension (RA) conversion, since hms is fairly standard
method of presenting RA coordinates.

Parameters

• hms (TEXT) – hms to be converted. The following syntaxes must
be accepted: ’h:m:s’, ’hhmmss’ and ’hHmMsS’. Hours and min-
utes should be integer and seconds can be decimal. The function
returns NULL on unparsable input.

Return type REAL

Examples (non-normative)

ivo_hms_to_degrees('3:34:45.4')
→ 53.6891667

ivo_hms_to_degrees('3h34m45.4s')
→ 53.6891667

ivo_hms_to_degrees('3H34M45.4S')
→ 53.6891667

17

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2.7.2 ivo_dms_to_degrees(dms)

This function converts dms (degrees, minutes, seconds) to degrees format.
This is useful for declination conversion (DEC) conversion, since dms is
fairly standard method of presenting DEC coordinates. The function re-
turns NULL on unparsable input.

Parameters

• dms (TEXT) – dms to be converted. The following syntaxes must
be accepted: ’d:m:s’, ’ddmmss’ and ’dDmMsS’. Degrees and min-
utes should be integer and seconds can be decimal. A preceding
+ or - sign is allowed.

Return type REAL

Examples (non-normative)

ivo_dms_to_degrees('42:9:6.768')
→ 42.15188

ivo_dms_to_degrees('42d9m6.768s')
→ 42.15188

ivo_dms_to_degrees('42D9M6.768S')
→ 42.15188

ivo_dms_to_degrees('-00:15:00')
→ -0.25

ivo_dms_to_degrees('+00:15:00')
→ 0.25

ivo_dms_to_degrees('-0d15m0s')
→ -0.25

ivo_dms_to_degrees('+0d15m0s')
→ 0.25

A Changes from Previous Versions

A.1 Changes from EN-1.1

• Added ivo_geom_transform as astrometry function (gavo, esa)

• Added ivo_simbadpoint as convenience function (gavo, esa)

• Added ivo_normal_random as a statistics function (gavo, esa)

• Added ivo_to_jd and ivo_to_mjd as a datetime functions (gavo, esa,
cefca-oaj)

18

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• Added ivo_hms_to_degrees and ivo_dms_to_degrees as a celestial
conversion functions (cefca-oaj)

A.2 Changes from EN-1.0

• Added ivo_epoch_prop_pos (gavo, esa)

• Added ivo_histogram (gavo, ari)

• Removed the list of third-party UDFs; its proper maintenance would
have become too tedious.

A.3 Changes from PEN-20200806

Editorial changes only.

A.4 Changes from PEN-20190925

• Added Examples

• Removed ivo_apply_pm, since the right specification needs a bit more
thought.

• Removed ivo_interval_has; this is still experimental, not the least
because interval in ADQL is somewhat underspecified.

References

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119. http://www.ietf.org/rfc/rfc2119.txt.

Demleitner, M. (2018), ‘A roadmap for space-time discovery in the VO reg-
istry’, IVOA Note. http://ivoa.net/documents/Notes/Regstc/20180208/
NOTE-regstcnote-1.0-20180115.html.

Demleitner, M., Gray, N. and Taylor, M. (2023), ‘Vocabularies in the VO
Version 2.1’, IVOA Recommendation 06 February 2023. https://ui.adsabs.
harvard.edu/abs/2023ivoa.spec.0206D.

Demleitner, M., Harrison, P., Molinaro, M., Greene, G., Dower, T. and
Perdikeas, M. (2019), ‘IVOA Registry Relational Schema Version 1.1’,
IVOA Recommendation 11 October 2019. doi:10.5479/ADS/bib/2019ivoa.
spec.1011D, https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1011D.

19

http://www.ietf.org/rfc/rfc2119.txt
http://ivoa.net/documents/Notes/Regstc/20180208/NOTE-regstcnote-1.0-20180115.html
http://ivoa.net/documents/Notes/Regstc/20180208/NOTE-regstcnote-1.0-20180115.html
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0206D
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.0206D
https://doi.org/10.5479/ADS/bib/2019ivoa.spec.1011D
https://doi.org/10.5479/ADS/bib/2019ivoa.spec.1011D
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1011D

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Dowler, P., Evans, J., Arviset, C., Gaudet, S. and Technical Coordination
Group (2021), ‘IVOA Architecture Version 2.0’, IVOA Endorsed Note 01
November 2021. doi:10.5479/ADS/bib/2021ivoa.spec.1101D, https://ui.
adsabs.harvard.edu/abs/2021ivoa.spec.1101D.

ESA (1997), ‘The HIPPARCOS and TYCHO catalogues. Astrometric and
photometric star catalogues derived from the ESA HIPPARCOS Space As-
trometry Mission’. https://ui.adsabs.harvard.edu/abs/1997ESASP1200...
..E.

Fernique, P., Nebot, A., Durand, D., Baumann, M., Boch, T., Greco, G.,
Donaldson, T., Pineau, F.-X., Taylor, M., O’Mullane, W., Reinecke, M.
and Derrière, S. (2022), ‘MOC: Multi-Order Coverage map Version 2.0’,
IVOA Recommendation 27 July 2022. https://ui.adsabs.harvard.edu/abs/
2022ivoa.spec.0727F.

Genova, F., Arviset, C., Demleitner, M., Glendenning, B., Molinaro,
M., Hanisch, R. J. and Rino, B. (2017), ‘IVOA Document Stan-
dards Version 2.0’, IVOA Recommendation 17 May 2017. doi:10.
5479/ADS/bib/2017ivoa.spec.0517G, https://ui.adsabs.harvard.edu/abs/
2017ivoa.spec.0517G.

Mantelet, G., Morris, D., Demleitner, M., Dowler, P., Lusted, J., Nieto-
Santisteban, M. A., Ohishi, M., O’Mullane, W., Ortiz, I., Osuna, P.,
Shirasaki, Y. and Szalay, A. (2023), ‘Astronomical Data Query Lan-
guage Version 2.1’, IVOA Recommendation 15 December 2023. https:
//ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M.

Taylor, M. B., Mantelet, G. and Demleitner, M. (2016), ‘All of the
Sky: HEALPix Density Maps of Gaia-scale Datasets from the Database
to the Desktop’, ArXiv e-prints , arXiv:1611.09190. http://ads.ari.
uni-heidelberg.de/abs/2016arXiv161109190T.

The Unicode Consortium (2012), ‘The Unicode standard, version 6.1 core
specification’. http://www.unicode.org/versions/Unicode6.1.0.

Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde,
S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. and Monier, R.
(2000), ‘The SIMBAD astronomical database. The CDS reference database
for astronomical objects’, A&AS 143, 9–22, arXiv:astro-ph/0002110.
doi:10.1051/aas:2000332, https://ui.adsabs.harvard.edu/abs/2000A&AS.
.143....9W.

20

https://doi.org/10.5479/ADS/bib/2021ivoa.spec.1101D
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.1101D
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.1101D
https://ui.adsabs.harvard.edu/abs/1997ESASP1200.....E
https://ui.adsabs.harvard.edu/abs/1997ESASP1200.....E
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0727F
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0727F
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517G
https://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517G
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0517G
https://ui.adsabs.harvard.edu/abs/2017ivoa.spec.0517G
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M
https://ui.adsabs.harvard.edu/abs/2023ivoa.spec.1215M
http://ads.ari.uni-heidelberg.de/abs/2016arXiv161109190T
http://ads.ari.uni-heidelberg.de/abs/2016arXiv161109190T
http://www.unicode.org/versions/Unicode6.1.0
https://doi.org/10.1051/aas:2000332
https://ui.adsabs.harvard.edu/abs/2000A&AS..143....9W
https://ui.adsabs.harvard.edu/abs/2000A&AS..143....9W

	Introduction
	Role within the VO Architecture

	List of IVOA user defined functions
	HEALPix-related
	ivo_healpix_index(hpxOrder, long, lat)
	ivo_healpix_index(hpxOrder, point)
	ivo_healpix_center(hpxOrder, hpxIndex)

	Astrometry
	ivo_epoch_prop_pos(ra, dec, parallax, pmra, pmdec, radial_velocity, ref_epoch, out_epoch)
	ivo_geom_transform(from_sys, to_sys, geo)

	Dates and Times
	ivo_to_jd(d)
	ivo_to_mjd(d)

	Text-Related
	ivo_string_agg(expression, delimiter)
	ivo_nocasematch(value, pattern)
	ivo_hasword(haystack, needle)
	ivo_hashlist_has(hashlist, item)

	Statistics
	ivo_histogram(val, lower, upper, nbins)
	ivo_normal_random(mu, sigma)

	Convenience Functions
	ivo_interval_overlaps(a1, b1, a2, b2)
	ivo_simbadpoint(identifier)

	Celestial Conversion Functions
	ivo_hms_to_degrees(hms)
	ivo_dms_to_degrees(dms)

	Changes from Previous Versions
	Changes from EN-1.1
	Changes from EN-1.0
	Changes from PEN-20200806
	Changes from PEN-20190925

	References

