
D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te International

Virtual
Observatory

Alliance

Data Access Layer Interface

Version 1.2

IVOA Working Draft 2023-07-12

Working Group
Data Access Layer Working Group

This version
https://www.ivoa.net/documents/DALI/20230712

Latest version
https://www.ivoa.net/documents/DALI

Previous versions
DALI-1.1
DALI-1.0

Author(s)
Patrick Dowler, Markus Demleitner, Mark Taylor, Doug Tody

Editor(s)
Patrick Dowler

https://www.ivoa.net/documents/DALI/20230712
https://www.ivoa.net/documents/DALI
http://www.ivoa.net/Documents/DALI/1.1
http://www.ivoa.net/Documents/DALI/1.0

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Abstract
This document describes the Data Access Layer Interface (DALI). DALI

defines the base web service interface common to all Data Access Layer
(DAL) services. This standard defines the behaviour of common resources,
the meaning and use of common parameters, success and error responses,
and DAL service registration. The goal of this specification is to define the
common elements that are shared across DAL services in order to foster con-
sistency across concrete DAL service specifications and to enable standard
re-usable client and service implementations and libraries to be written and
widely adopted.

Status of this document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents/.

Contents

1 Introduction 4
1.1 Role within the VO Architecture 4
1.2 Example Usage of the DALI Specification 5

2 Resources 6
2.1 Asynchronous Execution: DALI-async 7
2.2 Synchronous Execution: DALI-sync 8
2.3 DALI-examples . 9

2.3.1 name property . 12
2.3.2 capability property . 12
2.3.3 generic-parameter property 12
2.3.4 continuation property 13

2.4 Availability: VOSI-availability 13
2.5 Capabilities: VOSI-capabilities 14
2.6 Tables: VOSI-tables . 15

2

https://www.ivoa.net/documents/

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

3 Data Types and Literal Values 15
3.1 Numbers . 15
3.2 Boolean . 16
3.3 Timestamp . 16
3.4 Intervals . 17
3.5 Sexagesimal Coordinates . 18
3.6 Point . 18
3.7 Circle . 19
3.8 Range . 20
3.9 Polygon . 20
3.10 MOC . 21
3.11 Multi-Polygon . 21
3.12 Shape . 22
3.13 URI . 23
3.14 UUID . 23
3.15 Unsupported Types . 24

4 Parameters 24
4.1 Case Sensitivity . 24
4.2 Multiple Values . 25
4.3 Standard Parameters . 25

4.3.1 REQUEST . 25
4.3.2 VERSION . 26
4.3.3 RESPONSEFORMAT 26
4.3.4 MAXREC . 27
4.3.5 UPLOAD . 28
4.3.6 RUNID . 29

5 Responses 29
5.1 Successful Requests . 30
5.2 Errors . 30
5.3 Redirection . 32
5.4 Use of VOTable . 32

5.4.1 Overflow . 33
5.4.2 Errors . 34
5.4.3 Additional Information 35

3

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

PDF fallback: A conversion from SVG to PDF failed. This
is probably because inkscape is not installed. While SVG is
not supported by the major TeX engines, it is recommended
to commit built PDFs to the VCS.

Figure 1: Architecture diagram for this document

A Changes 35
A.1 PR-DALI-1.2 . 35
A.2 PR-DALI-1.1-20170412 . 36
A.3 PR-DALI-1.1-20161101 . 36
A.4 WD-DALI-1.1-20160920 . 36
A.5 WD-DALI-1.1-20160415 . 36
A.6 WD-DALI-1.1-20151027 . 37
A.7 PR-DALI-1.0-20130919 . 37
A.8 PR-DALI-1.0-20130521 . 37
A.9 WD-DALI-1.0-20130212 . 39

References 39

1 Introduction

The Data Access Layer Interface (DALI) defines resources, parameters, and
responses common to all DAL services so that concrete DAL service specifi-
cations need not repeat these common elements.

1.1 Role within the VO Architecture

DALI defines how DAL service specifications use other IVOA standards as
well as standard internet designs and protocols. Fig. 1 shows the role this
document plays within the IVOA architecture (Dowler and Evans et al.,
2021).

4

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Astronomical coordinate values accepted and returned by DAL services
use a string representation of the Space-Time Coordinates (Rots, 2007) data
model. The concrete DAL service specification defines whether the returned
resources are serializations of a particular standard data model. For pre-
serving backwards compatibility or to enable service-specific use cases, the
concrete DAL service specification may explicitly specify the use of ad-hoc
Utypes.

A registry extension schema, usually extending VODataService (Dem-
leitner and Plante et al., 2021), may be used to describe the capabilities of
a DAL service. This schema is used within the VOSI-capabilities (Graham
and Rixon et al., 2017) resource and in registry records for the service.

1.2 Example Usage of the DALI Specification

The DALI specification defines common elements that make up Data Access
Layer (DAL) services. DAL service specifications will refer to the sections
in this document by name rather than include all the explanatory text. For
example, suppose a document defines a service that stacks FITS images
asynchronously, the specification could say that the service has the following
resources:

• a DALI-async resource that accepts one or more UPLOAD parameters
(section 4.3.5) where the resources are FITS images; the resource could
also define a fixed set of error messages for anticipated failure modes

• a VOSI-availability resource (section 2.4)

• a VOSI-capabilities resource (section 2.5) conforming to a specified
registry extension schema

and would have to define the registry extension schema to be used to register
services and to implement the VOSI-capabilities resource. Most of the ser-
vice specification would be in defining the semantics (possibly controllable
via additional input parameters) of the computations to be performed and
in defining the extension schema to describe service functionality and limits
(e.g., maximum input or result image sizes, result retention time and poli-
cies). The registry extension schema may be part of the service specification
or a separate document.

5

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2 Resources

DAL services are normally implemented as HTTP REST (Fielding, 2000)
web services, although other transport protocols could be used in the future.
The primary resource in a DAL service is a job. A DAL job is defined by
parameters (section 4) and can be executed either synchronously or asyn-
chronously. A concrete service specification defines the job parameters and
the manner of execution is defined by separate resources below.

In addition to job list resources, DAL services also implement several
Virtual Observatory Support Interface (Graham and Rixon et al., 2017) re-
sources to describe service availability, capabilities, and content.

A concrete DAL service must define at least one DALI-async or DALI-
sync resource. It may define both with the same job semantics (e.g. TAP-1.0
(Dowler and Rixon et al., 2010)) or it may define one with one kind of job
and the other with a separate kind of job (a service that does some things
synchronously and others asynchronously).

The following table summarises the resources that are required in all
concrete DAL service specifications (and thus in all DAL services) and which
kinds of resources are defined and specified as required or optional in a
concrete specification.

resource type resource name required

DALI-sync service specific service specific
DALI-async service specific service specific
DALI-examples /examples no
VOSI-availability service specific no
VOSI-capabilities /capabilities registered
VOSI-tables service specific service specific

The resource name is the path (relative to the base URL of the service).
All implemented DALI and VOSI endpoints must be siblings, except for
VOSI-availability (see below); concrete service specifications may constrain
the names of these endpoints further. The relative path limitation enables a
client with just the URL for a single endpoint to find the VOSI-capabilities
endpoint and then discover all the capabilities provided by the service.

A VOSI-capabilities endpoint is required for services registered in the
IVOA registry system; the VOSI-capabilities endpoint is optional for services
that are not registered or only included as auxiliary capabilities (e.g. of a
data collection resource).

6

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

The URL for the VOSI-availability is not constrained; it may be a sibling
(e.g. /availability) or it may be hosted on a different server (e.g. VOSI-
availability may be implemented as a completely external resource that tests
the service from the user perspective).

A simple query-only DAL service like ConeSearch can be easily described
as having a single DALI-sync resource where the job is a query and the
response is the result of the query.

2.1 Asynchronous Execution: DALI-async

Asynchronous resources are resources that represent a list of asynchronous
jobs as defined by the Universal Worker Service (UWS) pattern (Harrison
and Rixon, 2016). Requests can create, modify, and delete jobs in the job
list. UWS also specifies special requests to modify the phase of the job (cause
the job to execute or abort).

As specified in UWS, a job is created by using the HTTP POST method
to modify the job list. The response will always be an HTTP redirect (status
code 303) and the Location (HTTP header) will contain the URL to the job.

POST http://example.com/base/async-jobs

The response will include the HTTP status code 303 (See Other) and
a header named Location with a URL to the created job as a value, for
example:

Location: http://example.com/base/async-jobs/123

The job description (an XML document defined by the UWS schema) can
always be retrieved by accessing the job URL with the HTTP GET method:

GET http://example.com/base/async-jobs/123

<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0">
<uws:jobId>123</uws:jobId>
<uws:runId>test</uws:runId>
<uws:ownerId xsi:nil="true" />
<uws:phase>PENDING</uws:phase>
<uws:quote>2013-01-01T12:34:56</uws:quote>
<uws:startTime/>
<uws:endTime/>
<uws:executionDuration>600</uws:executionDuration>

7

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

<uws:destruction>2013-02-01T00:00:00</uws:destruction>
<uws:parameters>
<uws:parameter id="LANG">ADQL</uws:parameter>
<uws:parameter id="REQUEST">doQuery</uws:parameter>
<uws:parameter id="QUERY">select ∗ from tab</uws:parameter>

</uws:parameters>
<uws:results/>

</uws:job>

In addition to the UWS job metadata, DAL jobs are defined by a set
of parameter-value pairs. The client may include parameters in the initial
POST that creates a job or it may add additional parameters by a POST to
the current list of parameters, for example:

http://example.com/base/async-jobs/123/parameters

DALI-async resources may provide other ways to interact with jobs as
specified in current or future UWS specifications, with the following excep-
tion: the UWS-1.0 standard may be interpreted to allow POSTing of job
parameters to the job URL, but DALI-async resources must not accept job
parameters at this URL.

Job parameters may only be POSTed while the job is in the PENDING
phase; once execution has been requested and the job is in any other phase,
job parameters may not be modified.

A concrete DAL service specification will specify zero or more asyn-
chronous job submission resources and whether they are mandatory or op-
tional. It may mandate a specific resource name to support simple client use,
or it can allow the resource name to be described in the service metadata
(Section 2.5).

2.2 Synchronous Execution: DALI-sync

Synchronous resources are resources that accept a request (a DAL job de-
scription) and return the response (the result) directly. Synchronous requests
can be made using either the HTTP GET or POST method. If a specific
type of job is exposed through both DALI-async and DALI-sync resources
(e.g. TAP queries), then the parameters used to specify the job are the same
for this pair of (synchronous and asynchronous) jobs. Service specifications
may also specify different types of jobs on different resources, which would
have different job parameters.

A synchronous job is created by a GET or POST request to a synchronous
job list, executed automatically, and the result returned in the response. The

8

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

web service is permitted to split the operation of a synchronous request into
multiple HTTP requests as long as it is transparent to standard clients. This
means that the service may use HTTP redirects (status code 302 or 303)
and the Location header to execute a synchronous job in multiple steps. For
example, a service may

• immediately execute and return the result in the response, or

• the response is an HTTP redirect (status code 303) and the Location
(HTTP header) will contain a URL; the client accesses this URL with
the HTTP GET method to execute the job and get the result

Clients must be prepared to get redirects and follow them (using normal
HTTP semantics) in order to complete requests.

A concrete DAL service specification will specify zero or more synchronous
job submission resources and whether they are mandatory or optional. It
may mandate a specific resource name to support simple client use, or it can
allow the resource name to be described in the service capability metadata
(Section 2.5).

2.3 DALI-examples

The DALI-examples resource returns a document with usage examples or
similar material to the user. In DAL services, this resource is always ac-
cessed as a resource named examples that is a child of the base URL for
the service. The following specification is intended to make sure the content
is usable for both machines and humans. As such, the DALI-examples re-
source contains additional markup conforming to the RDFa 1.1 Lite (Sporny,
2012) specification, which defines the following attributes: vocab, typeof,
property, resource, and prefix (although we do not include any use of the
prefix attribute).

The DALI-examples capability identifier is:

ivo://ivoa.net/std/DALI#examples

DAL services may implement the /examples resource and include it in
the capabilities described by the VOSI-capabilities resource (Section 2.5); if
they do not, retrieving its URL must yield a 404 HTTP error code.

The document at /examples must be well-formed XML. This restriction
is imposed in order to let clients parse the document using XML parsers

9

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

rather than much more complex parsers (e.g. HTML5 parsers). It is there-
fore advisable to author it in XHTML, although this specification does not
prescribe any document types.

The document should be viewable with “common web browsers”. Javascript
or CSS must not be necessary to find and interpret the elements specified be-
low. Apart from that, service operators are free to include whatever material
or styling they desire in addition and within the example elements defined
here.

The elements containing examples must be descendants of an element
that has a vocab attribute with the value as shown below:

<div vocab="http://www.ivoa.net/rdf/examples#">
...
</div>

The URI in the vocab attribute resolves to an IVOA vocabulary of con-
cepts useful for describing examples. That vocabulary complies to Vocabu-
laries in the VO version 2 (Demleitner and Gray et al., 2021). The values
of the property attributes below are described in it, and the concept URIs
formed according to RDFa rules resolve to elements within it, which may be
useful for documentation purposes. Clients purely interested in presenting
the examples to their users usually have no reason to retrieve the vocabulary.

No other vocab attributes are allowed in the document. Each example
resides in an element that has a typeof attribute with the value example.
All such elements must have an id attribute to allow external referencing via
fragments and a resource attribute with a reference pointing to the element
itself. As an example,

<div id="x" resource="#x" typeof="example"> ... </div>

located inside the element having the vocab attribute would contain an ex-
ample referable via the x fragment identifier. The div element is a suitable
HTML element to hold an example.

The content of the example is expressed using the property attribute.
For DALI-examples, we define the following values for the property at-
tribute:

• name

• capability

• generic-parameter

10

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

• continuation.

Each example must include one name. DAL service specifications may
define additional properties so they can mark up additional information in
their examples using the procedures described in Vocabularies in the VO 2.
For instance, TAP has introduced the notions of query and table.

In principle, any element permitted by the document type can include
the RDFa attributes, so authors may re-use existing markup intended for
display. Alternatively, the span element is a good choice when the example
values are included in surrounding text and the author does not want any
special rendering to be applied by the machine-readable additions.

To maintain compatibility with mainstream RDFa tools, extra care is
necessary with elements that have src or href attributes. According to
RDFa rules, in such cases the object of the relationship is the linked entity
rather than the element content. While this is intended in some cases – see
the continuation property below – this will lead to erroneous interpretations
in the typical case.

For instance,

<!-- Wrong! -->
<div id="x" resource="#x" typeof="example">
<p>The case of <a property="name"
href="http://object-resolver.edu/M42">Messier 42 is special.</p>

</div>

would imply that the name of the example x is http://object-resolver.edu/
M42 rather than just “Messier 42”. Full RDFa offers the content attribute
to allow correct markup even in the presence of href attributes, but since
DALI examples are restricted to RDFa lite, this cannot be used.

The rule of thumb is to only use elements with links when the relation-
ship’s object actually is a linked document or entity (for the terms given here,
this is only true for continuation). If document authors wants to express a
link with the relationship’s object anyway, they will have to restructure their
texts (which typically will also yield better link semantics). For instance, the
example above could be written as:

<div id="x" resource="#x" typeof="example">
<p>The case of Messier 42 (M42 at object resolver)
is special .</p>

</div>

11

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2.3.1 name property

The content of this element must be plain text (i.e., no child elements) and
should be suitable for display within a space-limited label in user interface
and still give some idea about the meaning of the example. In XHTML, a
head element (h2, say) would usually be a good choice for the example name,
for example:

<h2 property="name">Synchronous TAP query</h2>

2.3.2 capability property

The capability property for an example specifies which service capability the
example is to be used with by giving, in plain text, the standards URI as
given in the respective capability’s standardID attribute. For example, if
the text is describing how to use a SODA-1.0 service, the example could
contain:

ivo://ivoa.net/std/SODA#sync-1.0

IVOA standard service capabilities are defined as URIs, so example docu-
ments may want to show the URI or show more user-friendly text depending
on the expected audience for the document. For specifications that do not
define specific capability identifiers, the IVOID for the specification itself
should be used.

2.3.3 generic-parameter property

Request parameters are included within the example by using the generic-
parameter property. The element must also be assigned a typeof attribute
with value of keyval. Within this element, the document must include a
pair of elements with property attributes valued key and value, where the
plain-text content are the parameter name and value respectively. Multiple
generic-parameter(s) are permitted, for example:

REQUEST
doQuery

LANG
ADQL

12

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

QUERY
SELECT ∗ from tap_schema.tables

2.3.4 continuation property

If the examples are spread over multiple linked documents, the links to doc-
uments with additional examples must be within the parent element defin-
ing the vocab attribute and the link elements must contain the following
additional attributes: a property attribute with the value continuation, a
resource attribute with an empty value (referring to the current document),
and the href attribute with the URL of another document formatted as
above (i.e. another collection of examples that clients should read to collect
the full set of examples).
<div vocab="http://www.ivoa.net/rdf/examples#">
<div id="x" resource="#x" typeof="example">

...
</div>
<a property="continuation"

href="simple_examples.html">Simple examples
<a property="continuation"

href="fancy_examples.html">Fancy examples
</div>

In the above example, the two linked documents would also contain some
element with a vocab and examples as described above.

2.4 Availability: VOSI-availability

VOSI-availability (Graham and Rixon et al., 2017) defines a simple web
resource that reports on the current ability of the service to perform.

If the VOSI-availability resource is implemented a description of this
capability must be provided in the VOSI-capabilities document. The VOSI-
availability resource is intended to respond with a dynamically generated
document describing the current state of the service operation, e.g.:
<?xml version="1.0" encoding="UTF-8"?>
<vosi:availability
xmlns:vosi="http://www.ivoa.net/xml/VOSIAvailability/v1.0">
<vosi:available>true</vosi:available>
<vosi:note>service is accepting queries</vosi:note>

</vosi:availability>

13

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

2.5 Capabilities: VOSI-capabilities

VOSI-capabilities (Graham and Rixon et al., 2017) defines a simple web
resource that returns an XML document describing the service. In DAL
services, this resource is always accessed as a resource named capabilities
that is a child of the base URL for the service. The VOSI-capabilities should
describe all the resources exposed by the service, including which standards
each resource implements.

All registered DAL services must implement the /capabilities resource.
The following capabilities document shows the capabilities and tables VOSI
resources and a TAP base resource:
<?xml version="1.0" encoding="UTF-8"?>
<vosi:capabilities

xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">

<capability standardID="ivo://ivoa.net/std/VOSI#capabilities">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">

http://example.com/tap/capabilities
</accessURL>

</interface>
</capability>

<capability standardID="ivo://ivoa.net/std/VOSI#tables">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">

http://example.com/tap/tables
</accessURL>

</interface>
</capability>

<capability xmlns:tr="http://www.ivoa.net/xml/TAPRegExt/v1.0"
standardID="ivo://ivoa.net/std/TAP" xsi:type="tr:TableAccess">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessURL use="full">

http://example.com/tap/
</accessURL>

</interface>
<!-- service details from TAPRegExt go here -->

</capability>
</vosi:capabilities>

Note that while this example shows the use of a registry extension schema
(the inline xmlns:tr="http://www.ivoa.net/xml/TAPRegExt/v1.0" in the

14

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

last capability element) this is not required; services may be registered and
described without such an extension. The use of standardID – which should
contain the IVOID of the standard a capability adheres to – does not imply
a particular (or any) xsi:type be included.

2.6 Tables: VOSI-tables

VOSI-tables (Graham and Rixon et al., 2017) defines a simple web resource
that returns an XML document describing the content of the service. The
document format is defined by the VOSI (Graham and Rixon et al., 2017)
standard and allows the service to describe their content as a tableset:
schemas, tables, and columns.

A concrete DAL service specification will specify if the VOSI-tables re-
source is permitted or required and may restrict the resource name or lo-
cation. Since DAL services with a VOSI-tables resource will specify in the
capabilities which version they are using, DAL services can make use of new
versions without change to the DAL service specification.

3 Data Types and Literal Values

In this section we specify how values are to be expressed. These literal values
are used as input or output from DAL services: as parameter values when in-
voking simple services, as data values in response documents (e.g. VOTable),
etc. We define some general purpose values for the xtype attribute of the
VOTable FIELD and PARAM elements for simple structured values: timestamp,
interval, hms, dms, point, circle, range, polygon, moc, multipolygon, shape,
uri, and uuid (see below).

Services may use non-standard xtype values for non-standard datatypes,
but if they do so they should include a simple prefix (a string followed by
a colon followed by the non-standard xtype) so client software can easily
determine if a value is standard or not. For example, an xtype for a non-
standard 3D-vector might be geom:vector3d.

3.1 Numbers

Integer and real numbers must be represented in a manner consistent with
the specification for numbers in VOTable (Ochsenbein and Taylor et al.,
2019).

15

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

3.2 Boolean

Boolean values must be represented in a manner consistent with the specifi-
cation for Boolean in XML Schema Datatypes (Biron and Malhotra, 2004).
The values 0 and false are equivalent. The values 1 and true are equivalent.

FOO=1
FOO=true

BAR=0
BAR=false

3.3 Timestamp

Date and time values must be represented using the convention established
for FITS (Hanisch and Farris et al., 2001) and STC (Rots, 2007) for astro-
nomical times:

YYYY-MM-DD[’T’hh:mm:ss[.SSS]]

where the T is a character separating the date and time components. The
time component is optional, in which case the T separator is not used. Frac-
tions of a second are permitted but not required. For example:

2000-01-02T15:20:30.456
2001-02-03T04:05:06
2002-03-04

are all legal date or date plus time values. Astronomical values never include
a time zone indicator. However, values that are civil in nature (e.g. when
some processing was completed, when some record was last modified) may
include the time zone indicator Z to explicitly specify the UTC time zone.
Civil times conform to:

YYYY-MM-DD[’T’hh:mm:ss[.SSS][’Z’]]

where the optional Z character indicates the value is UTC. For example:

2000-01-02T15:20:30.456Z
2000-01-02T15:20:30Z

16

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

are valid civil time values. In cases where time values may be expressed
using Julian Date (JD) or Modified Julian Date (MJD), these follow the
rules for double precision numbers above and may have additional metadata
as described in the VOTable standard (Ochsenbein and Taylor et al., 2019).
All date-time values (formatted string, JD, and MJD) shall be interpreted as
referring to time scale UTC and time reference position UNKNOWN, unless
either or both of these are explicitly specified to be different (Rots, 2007).

Note that the format used here is very close to the standard ISO8601
timestamp format except with respect to timezone handling. ISO8601 re-
quires a Z character at the end of the string when the timezone is UTC;
here, we follow the FITS (Hanisch and Farris et al., 2001) convention for
astronomical values by omitting the Z but still defaulting to UTC.

Timestamp values serialised on VOTable or in service parameters must
have the following metadata in the FIELD element: datatype="char", arraysize="*",
xtype="timestamp"; the arraysize may be set to a more specific value if it
is known (e.g. arraysize="10" for dates only).

3.4 Intervals

Numeric intervals are pairs of numeric values (integer and floating-point).
For floating point intervals, special values for positive and negative infinity
may be used to specify open-ended intervals. Finite bounding values are
included in the interval. Open-ended floating-point intervals have one or
both bounding values that are infinite. Intervals with two identical values
are equivalent to a scalar value but must still be serialised as a pair of values.

The representation of an interval uses the numeric array serialisation
from VOTable. For example:

0.5 1.0
-Inf 0.0
0.0 +Inf
-Inf +Inf
1.0 1.0

are all legal floating-point interval values and:

0 2
-5 5
0 0

17

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

are all legal integer interval values.
Floating point interval values serialised in VOTable or service parameters

must have the following metadata in the FIELD element: datatype="double"
or datatype="float", arraysize="2", xtype="interval".

Integer interval values serialised in VOTable or service parameters must
have the following metadata in the FIELD element: datatype="short" or
datatype="int" or datatype="long", arraysize="2", xtype="interval".

Interval values serialised in VOTable (FIELD) or service parameters (PARAM)
with this xtype may include additional metadata like minimum or maximum
value. These are specified using the standard scalar MIN and MAX child ele-
ments to describe the (minimum) lower bound and (maximum) upper bound
of interval(s) respectively.

3.5 Sexagesimal Coordinates

Coordinate values expressed in sexagesimal form can be described using the
following xtypes in both VOTable FIELD and PARAM elements:

• right ascension: datatype="char" arraysize="*" xtype="hms"

• declination: datatype="char" arraysize="*" xtype="dms"

(the arraysize may also be a fixed length or variable length with limit).
For xtype="hms", the values are serialised as hours:minutes:seconds where

hours and minutes are integer values and seconds is a real value. For
xtype="dms", the values are serialised as degrees:minutes:seconds where de-
grees and minutes are integer values and seconds is a real value. All hours
must fall within [0,24], degrees (latitude) must fall within [-90,90], minutes
must fall within [0,60), and seconds must fall within [0,60). Valid values for
xtype="hms" are from 0:0:0 to 24:0:0. Valid values for xtype="dms" are from
-90:0:0 to 90:0:0; an optional + sign at the start is allowed (e.g. +10:20:30)
but not required. The upper bound on minutes and seconds is not part of
the valid range; for example 12:34:60 is not allowed and must be expressed
as 12:35:00 instead.

3.6 Point

Geometry values are two-dimensional; although they are usually longitude
and latitude values in spherical coordinates this is specified in the coordinate
metadata and not in the values.

18

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Point values serialised in VOTable or service parameters must have the
following metadata in the FIELD element: datatype="double" or datatype="float",
arraysize="2", xtype="point". For points in a spherical coordinate sys-
tem, the values are ordered as: longitude latitude. For example:

12.3 45.6

Coordinate values are not limited to fall within a defined valid range;
this is a change from DALI 1.1 where equatorial coordinates were explicitly
limited. Software may have to perform range reduction in some coordinate
systems (for example, spherical coordinates) in order to correctly interpret
or use the coordinate values. Coordinate values are more likely to work as
expected if they are expressed in the simplest form and do not require range
reduction. For example, in spherical coordinates, 362.0 2.0 is equivalent to
2.0 2.0, but the latter form is more likely to work as intended in all cases.

There is no general purpose definition of minimum and/or maximum
point values, but specific services may define something that is applicable in
a more limited context.

3.7 Circle

Circle values serialised in VOTable or service parameters must have the fol-
lowing metadata in the FIELD element: datatype="double" or datatype="float",
arraysize="3", xtype="circle". The values are ordered as a point followed
by a radius. For example:

12.3 45.6 0.5

Valid coordinate value limits are specified by xtype="point" above.
Circle-valued service parameters may include additional metadata like

minimum and or maximum value. These are specified using a custom inter-
pretation of the MAX child element with a value that is the largest circle that
makes sense for the operation. The value could be a maximum allowed by
the service or simply the circle where larger circles and circles outside the
specified maximum will not yield useful results. Since the maximum circle
includes coordinates and radius, it is useful for describing parameters of a
request related to a specific target location (for example, a SODA cutout of
specific archival data).

There is no general purpose definition of a minimum circle value for
parameters or a definition of a minimum or maximum circle to describe field

19

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

values (in a column of a table), but specific services may define something
that is applicable in a more limited context.

3.8 Range

Range values serialised in VOTable or service parameters must have the fol-
lowing metadata in the FIELD element: datatype="double" or datatype="float",
arraysize="4", xtype="range". A range is a coordinate bounding box spec-
ified as two pairs of coordinate values: min-coordinate1 max-coordinate1
min-coordinate2 max-coordinate2. For example:

10.0 11.0 20.0 21.0

includes values from 10 to 11 (coordinate1) and from 20 to 21 (coordinate2).
Valid coordinate value limits are specified by xtype="point" above. This

range form is used as part of the value of the POS parameter in (Dowler
and Bonnarel et al., 2015) and (Bonnarel and Dowler et al., 2017) (see also
"shape" below). For example, a range can span the meridian (longitude 0):
359 1 -1 1 is interpreted as the small (2x2 degree) coordinate range from 359
across the meridian to 1 degree longitude.

Range-valued service parameters may include additional metadata like
minimum and or maximum value. These are specified using a custom inter-
pretation of the MAX child element with a value that is the largest range that
makes sense for the operation. The value could be a maximum allowed by
the service or simply the range where larger ranges and ranges outside the
specified maximum will not yield useful results.

There is no general purpose definition of a minimum range value for
parameters or a definition of a minimum or maximum range to describe field
values (in a column of a table), but specific services may define something
that is applicable in a more limited context.

3.9 Polygon

Polygon values serialised in VOTable or service parameters must have the fol-
lowing metadata in the FIELD element: datatype="double" or datatype="float",
arraysize="*", xtype="polygon" (where arraysize may also be fixed length
or variable length with limit). The array holds a sequence of vertices (points)
(e.g. longitude latitude longitude latitude ...) with an even number of values
and at least three (3) points (six (6) numeric values). A polygon is always
implicitly closed: there is an implied edge from the last point back to the

20

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

first point; explicitly including the first point at the end is highly discouraged
because it creates an edge of length 0 that has negative side effects on some
polygon computations. For example:

10.0 10.0 10.2 10.0 10.2 10.2 10.0 10.2

Valid coordinate value limits are specified by xtype="point" above. Ver-
tices must be ordered such that the polygon winding direction is counter-
clockwise (when viewed from the origin toward the sky) as described in (Rots,
2007).

Polygon-valued service parameters may include additional metadata to
describe minimum and/or maximum values. These are specified using a
custom interpretation of the MAX child element with a value that is the largest
polygon that makes sense for the operation. The value could be a maximum
allowed by the service or simply the polygon that describes the target region.
Since the maximum polygon includes coordinates, it is useful for describing
parameters of a request related to a specific target location (for example, a
SODA cutout of specific archival data).

There is no general purpose definition of a minimum polygon value for
parameters or a definition of a minimum or maximum polygon to describe
field values (in a column of a table), but specific services may define some-
thing that is applicable in a more limited context.

3.10 MOC

Spatial MOC (Multi Order Coverage) values serialised in VOTable or ser-
vice parameters must have the following metadata in the FIELD element:
datatype="char", arraysize="*", xtype="moc" (where arraysize may also
be fixed length or variable length with limit). The value is the ascii seriali-
sation of a MOC specified in Fernique and Nebot et al. (2022) section 4.3.2
and may be a one- or two-dimension (spatial) MOC.

Note: explicit time MOC and space-time MOC xtypes may be added in
a future version.

3.11 Multi-Polygon

Multi-polygon values serialised in VOTable or service parameters must have
the following metadata in the FIELD element: datatype="double" or datatype="float",
arraysize="*", xtype="multipolygon" (where arraysize may also be fixed

21

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

length or variable length with limit). The array holds a sequence of non-
overlapping polygon(s) separated by a pair of NaN values (a NaN point). For
example:

10.0 10.0 10.2 10.0 10.2 10.2 10.0 10.2 NaN NaN
11.0 11.0 11.2 11.0 11.2 11.2 11.0 11.2

A multi-polygon without a separator is allowed, so all (simple) polygons
are also valid multi-polygons. The component polygons in a multipolygon
may touch (vertex of one on an edge of another, including sharing vertices)
but may not have any common area.

Multi-polygon-valued service parameters can have additional metadata
as described for polygon above, except that the maximum value may be a
multipolygon.

3.12 Shape

Shape values serialised in VOTable or service parameters must have the fol-
lowing metadata in the FIELD element: datatype="char", arraysize="*",
xtype="shape" (where arraysize may also be fixed length or variable length
with limit). The value is a polymorphic shape made up of a type label
(equivalent to an existing simple geometric xtype and the string serialisation
of the value as described above.

The allowed shapes are: circle, range, polygon. For example:

circle 12.3 45.6 0.5

range 10.0 11.0 20.0 21.0

polygon 10.0 10.0 10.2 10.0 10.2 10.2 10.0 10.2

The interpretation and constraints on the coordinate values are as spec-
ified for the individual xtypes above.

The shape xtype provides a compatible description of the POS parameter
in (Dowler and Bonnarel et al., 2015) and (Bonnarel and Dowler et al., 2017).

Shape-valued service parameters may include additional metadata to de-
scribe minimum and/or maximum values. These are specified using a custom
interpretation of the MAX child element with a value that is the largest shape
that makes sense for the operation. The value could be a maximum allowed
by the service or simply the shape that describes the target region. Since the

22

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

maximum shape includes coordinates and radius, it is useful for describing
parameters of a request related to a specific target location (for example, a
SODA cutout of specific archival data).

For example, the following would describe the maximum shape for an
input POS parameter for a large (IRIS) data file (accessible via the CADC
SODA service):
<GROUP name="inputParams">
<PARAM name="ID" datatype="char" arraysize="23"

ucd="meta.id;meta.dataset" value="cadc:IRIS/I212B2H0.fits" />
...
<PARAM name="POS" datatytpe="char" arraysize="*" xtype="shape"

ucd="obs.field" value="">
<VALUES>
<MAX value="polygon␣134.38␣-6.37␣134.42␣6.01

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣146.87␣5.97␣146.84␣-6.41" />
</VALUES>

</PARAM>
...

</GROUP>

In the specific context of a SODA service, the maximum shape is generally
going to be the bounds of the data. The type label used in the maximum
shape only tells the client how to interpret the value; it does not limit the
caller to only using that type of shape.

There is no general purpose definition of a minimum shape value for
parameters or a definition of a minimum or maximum shape to describe field
values (in a column of a table), but specific services may define something
that is applicable in a more limited context.

3.13 URI

URI values (Berners-Lee and Fielding et al., 2005) serialised in VOTable or
service parameters should have the following metadata in the FIELD element:
datatype="char", arraysize="*", xtype="uri" (where arraysize may also
be fixed length or variable length with limit).

3.14 UUID

Universal Unique Identifier (UUID) values serialised in VOTable or ser-
vice parameters should have the following metadata in the FIELD element:
datatype="char", arraysize="36", xtype="uuid" (where arraysize may
also be fixed length or variable length with limit).

23

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

UUID values (Leach and Mealling et al., 2005) are serialised using the
canonical ascii (hex) representation, for example: e0b895ca-2ee4-4f0f-b595-
cbd83be40b04.

3.15 Unsupported Types

Support for any specific xtype in implementations (client or service) is speci-
fied in the service standard document. However, support for a specific xtype
as input (params and uploaded content) should generally be considered op-
tional. Implementations should be able to read and write the underlying
data type without knowing the semantics added by the xtype. In cases
where understanding the meaning of an xtype is required (for example, the
POS param in SODA) and a service does not support the serialized value,
the service should issue an error message that starts with the following text
with the most specific xtype noted:

unsupported-xtype: {xtype} [optional detail here]

and may include additional detail where noted. For example, the value of
the SODA POS parameter is a xtype="shape", but if the implementation
does not support the "range" construct, it would respond (minimally) with:

unsupported-xtype: range

This behaviour will allow for new xtypes to be introduced and for xtype="shape"
to be extended to include additional subtypes in the future.

4 Parameters

A DAL job is defined by a set of parameter-value pairs. Some of these
parameters have a standard meaning and are defined here, but most are
defined by the service specification or another related standard.

4.1 Case Sensitivity

Parameter names are not case sensitive; a DAL service must treat upper-,
lower-, and mixed-case parameter names as equal. Parameter values are
case sensitive unless a concrete DAL service specification explicitly states
that the values of a specific parameter are to be treated as case-insensitive.
For example, the following are equivalent:

24

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

FOO=bar
Foo=bar
foo=bar

Unless explicitly stated by the service specification, these are not equiv-
alent:

FOO=bar
FOO=Bar
FOO=BAR

In this document, parameter names are typically shown in upper-case for
typographical clarity, not as a requirement.

4.2 Multiple Values

Parameters may be assigned multiple values with multiple parameter=value
pairs using the same parameter name. Whether or not multiple values are
permitted and the meaning of multiple values is specified for each parameter
by the specification that defines the parameter. For example, the UPLOAD
parameter (section 4.3.5) permits multiple occurrences of the specified pair
(table,uri), e.g.:

UPLOAD=foo,http://example.com/foo
UPLOAD=bar,http://example.com/bar

Services must respond with an error if the request includes multiple values
for parameters defined to be single-valued.

4.3 Standard Parameters

4.3.1 REQUEST

The REQUEST parameter is intended for service capabilities that have mul-
tiple modes or operations, including non-standard (site-specific) optional
features. Most standard service capabilities will not define values for this
parameter.

If defined for a specific service capability, the REQUEST parameter is
always single-valued.

25

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

4.3.2 VERSION

The VERSION parameter has been removed because the different meaning
of request parameters it is intended to disambiguate are not allowed within
minor revisions of a standard; there are no useful scenarios where VERSION
would work.

4.3.3 RESPONSEFORMAT

The RESPONSEFORMAT parameter is used so the client can specify the
format of the response (e.g. the output of the job). For DALI-sync requests,
this is the content-type of the response. For DALI-async requests, this is
the content-type of the result resource(s) the client can retrieve from the
UWS result list resource; if a DALI-async job creates multiple results, the
RESPONSEFORMAT should control the primary result type, but details
can be specific to individual service specifications. While the list of supported
values are specific to a concrete service specification, the general usage is to
support values that are MIME media types (Freed and Borenstein, 1996) for
known formats as well as shortcut symbolic values.

table type media type short form

VOTable application/x-votable+xml votable
VOTable text/xml votable
comma-separated values text/csv csv
tab separated values text/tab-separated-values tsv
FITS file application/fits fits
pretty-printed text text/plain text
pretty-printed Web page text/html html

In some cases, the specification for a specific format may be parame-
terised (e.g., the media type may include optional semi-colon and additional
key-value parameters). A DAL service must accept a RESPONSEFORMAT
parameter indicating a format that the service supports and should fail (Sec-
tion 5.2) where the RESPONSEFORMAT parameter specifies a format not
supported by the service implementation.

A concrete DAL service specification will specify any mandatory or op-
tional formats as well as new formats not listed above; it may also place
limitations on the structure for formats that are flexible. For example, a
resource that responds with tabular output may impose a limitation that

26

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

FITS files only contain FITS tables, possibly only of specific types (ascii or
binary).

If a client requests a format by specifying the media type (as opposed
to one of the short forms), the response that delivers that content must set
that media type in the Content-Type header. This is only an issue when
a format has multiple acceptable media types (e.g., VOTable). This allows
the client to control the Content-Type so that it can reliably cause specific
applications to handle the response (e.g., a browser rendering a VOTable gen-
erally requires the text/xml media type). If the client requests a plain media
type (e.g., not parameterised) and the media type does allow optional pa-
rameters, the service may respond with a parameterised media type to more
clearly describe the output. For example, the text/csv media type allows two
optional parameters: charset and header. If the request includes RESPON-
SEFORMAT=text/csv the response could have Content-Type text/csv or
text/csv;header=absent at the discretion of the service. If the request spec-
ifies specific values for parameters, the response must be equivalent.

Individual DAL services (not just specifications) are free to support cus-
tom formats by accepting non-standard values for the RESPONSEFORMAT
parameter.

The RESPONSEFORMAT parameter should not be confused with the
FORMAT parameter used in many DAL services. The latter is generally used
as a query parameter to search for data in the specified format; FORMAT
and RESPONSEFORMAT have the same sense in TAP-1.0, but this is not
generally the case.

The RESPONSEFORMAT parameter is always single-valued.

4.3.4 MAXREC

For resources performing discovery (querying for an arbitrary number of
records), the resource must accept a MAXREC parameter specifying the
maximum number of records to be returned. If MAXREC is not specified
in a request, the service may apply a default value or may set no limit. The
service may also enforce a limit on the value of MAXREC that is smaller
than the value in the request. If the size of the result exceeds the resulting
limit, the service must only return the requested number of rows. If the
result set is truncated in this fashion, it must include an overflow indicator
where possible as specified in Section 5.4.1.

The service must support the special value of MAXREC=0. This value
indicates that, in the event of an otherwise valid request, a valid response

27

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

be returned containing metadata, no results, and an overflow indicator. The
service is not required to execute the request and the overflow indicator does
not necessarily mean that there is at least one record satisfying the query.
The service may perform validation and may try to execute the request, in
which case a MAXREC=0 request can fail.

The MAXREC parameter is always single-valued.

4.3.5 UPLOAD

The UPLOAD parameter is used to reference read-only external resources
(typically files) via their URI, to be uploaded for use as input resources to
the query. The value of the UPLOAD parameter is a resource name-URI
pair. For example:

UPLOAD=table1,http://example.com/t1

would define an input named table1 at the given URI. Resource names must
be simple strings made up of alphabetic, numeric, and the underscore char-
acters only and must start with an alphabetic character.

Services that implement UPLOAD must support http or https as a URI
scheme. A VOSpace URI (vos:<something>) is a more generic example of a
URI that requires more service-side functionality; support for the vos scheme
is optional.

To upload a resource inline, the caller specifies the UPLOAD parameter
(as above) using a special URI scheme param. This scheme indicates that
the value after the colon will be the name of the inline content. The content
type used is multipart/form-data, using a file type input element. The name
attribute must match that used in the UPLOAD parameter.

For example, in the POST data we would have this parameter:

UPLOAD=table3,param:t3

and this content:

Content-Type: multipart/form-data; boundary=AaB03
[...]
--AaB03x
Content-disposition: form-data; name="t3"; filename="t3.xml"
Content-type: application/x-votable+xml
[...]

28

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

--AaB03x
[...]

If inline upload is used by a client, the client must POST both the UP-
LOAD parameter and the associated inline content in the same request. Ser-
vices that implement upload of resources must support the param scheme
for inline uploads.

In principle, any number of resources can be uploaded using the UP-
LOAD parameter and any combination of URI schemes supported by the
service as long as they are assigned unique names in the request. For exam-
ple:

UPLOAD=table1,http://example.com/t1.xml
UPLOAD=image1,vos://example.authority!tempSpace/foo.fits
UPLOAD=table3,param:t3

Services may limit the size and number of uploaded resources; if the ser-
vice refuses to accept the upload, it must respond with an error as described
in Section 5.2. Concrete service specifications will typically provide a mech-
anism for referring to uploaded resources (e.g. in other request parameters)
where necessary.

4.3.6 RUNID

The service should implement the RUNID parameter, used to tag service
requests with the identifier of a larger job of which the request may be part.
The RUNID value is a string with a maximum length of 64 characters.

For example, if a cross match portal issues multiple requests to remote
services to carry out a cross-match operation, all would receive the same
RUNID, and the service logs could later be analysed to reconstruct the ser-
vice operations initiated in response to the job. The service should ensure
that RUNID is preserved in any service logs and should pass on the RUNID
value in calls to other services made while processing the request.

The RUNID parameter is always single-valued.

5 Responses

All DAL service requests eventually (after zero or more HTTP redirects)
result in one of three kinds of responses: successful HTTP status code (200)
and a service- and resource-specific representation of the results, or an HTTP

29

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

status code and a standard error document (see below), or an HTTP status
code and a service- and resource-specific error document.

5.1 Successful Requests

Successfully executed requests must eventually (after zero or more redirects)
result in a response with HTTP status code 200 (OK) and a response in the
format requested by the client (Section 4.3.3) or in the default format for the
service. The service should set HTTP headers (Fielding and Gettys et al.,
1999) that are useful to the correct values where possible. Recommended
headers to set when possible:

Content-Type
Content-Encoding
Content-Length
Last-Modified

For jobs executed using a DALI-async resource, the result(s) must be
made available as child resources of the result list and directly accessible
there. For jobs that inherently create a fixed result, service specifications
may specify the name of the result explicitly. For example, TAP-1.0 has a
single result and it must be named result, e.g.:

GET http://example.com/base/joblist/123/results/result

For concrete DAL service specifications where multiple result files may
be produced, the specification may dictate the names or it may leave it up
to implementations to choose suitable names.

5.2 Errors

If the service detects an exceptional condition, it must return an error doc-
ument with an appropriate HTTP-status code. DAL services distinguish
three classes of errors:

• Errors in communicating with the DAL service

• Errors in the use of the specific DAL protocol, including an invalid
request

• Errors caused by a failure of the service to complete a valid request

30

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Error documents for communication errors, including those caused by ac-
cessing non-existent resources, authentication or authorization failures, ser-
vices being off-line or broken are not specified here since responses to these
errors may be generated by other off-the-shelf software and cannot be con-
trolled by service implementations. There are several cases where a DAL
service could return such an error. First, a DALI-async resource must re-
turn a 404 (not found) error if the client accesses a job within the UWS
job list that does not exist, or accesses a child resource of the job that does
not exist (e.g., the error resource of a job that has not run and failed, or
a specific result resource in the result list that does not exist). Second, ac-
cess to a resource could result in an HTTP 401 (not authorized) response
if authentication is required or an HTTP 403 (forbidden) error if the client
is not allowed to access the requested resource. Although UWS is currently
specified for HTTP transport only, if it were to be extended for use via other
transport protocols, the normal mechanisms of those protocols should be
used.

An error document describing errors in use of the DAL service protocol
may be a VOTable document (Ochsenbein and Taylor et al., 2019) or a plain
text document. The content of VOTable error documents is described in
Section 5.4 below. Service specifications will enumerate specific text to be
included. For plain text error documents the required text would be included
at the start of the document; for VOTable error documents, the required (and
optional) text would be included as content of the INFO element described
in Section 5.4.2. In either case, DAL services will allow service implementers
to add additional explanatory text after the required text (on the same line
or on subsequent lines). In all cases, these are errors that occur when the
job is executed and do not override any error behaviour for a UWS resource
which specifies the behaviour and errors associated with interacting with the
job itself.

If the invalid job is being executed using a DALI-async resource, the
error document must be accessible from the <DALI-async>/<jobid>/error
resource (specified by UWS) and when accessed via that resource it must be
returned with an HTTP status code 200, e.g.:

GET http://example.com/base/joblist/123/error

For DALI-async errors, services should recommend and may mandate
that required text be included in the error summary field of the UWS job in
addition to the error document; this permits generic UWS clients to consume
the standard part of the error description.

31

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

If the error document is being returned directly after a DALI-sync re-
quest, the service should use a suitable error code to describe the failure and
include the error document in the body of the response. The Content-Type
header will tell the client the format of the error document that is included
in the body of the response. In general, HTTP status codes from 400-499
signify a problem with the client request and status codes greater than or
equal to 500 signify that the request is (probably) valid but the server has
failed to function. For transport protocols other than HTTP, the normal
error reporting mechanisms of those protocols should be used.

5.3 Redirection

A concrete DAL service specification may require that HTTP redirects (302
or 303) be used to communicate the location of an alternate resource which
should be accessed by the client via the HTTP GET method. For exam-
ple, the UWS pattern used for DALI-async (2.1) requires this behaviour.
Even when not required, concrete DAL service specifications must allow im-
plementers to use redirects and clients must be prepared to follow these
redirects using normal HTTP semantics (Fielding and Gettys et al., 1999).

5.4 Use of VOTable

VOTable is a general format. In DAL services we require that it be used in a
particular way. The result VOTable document must comply with VOTable
v1.2 or later versions (Ochsenbein and Taylor et al., 2019).

The VOTable format permits table creators to add additional metadata
to describe the values in the table. Once a standard for including such
metadata is available, service implementers should use such mechanisms to
augment the results with additional metadata. Concrete DAL service speci-
fications may require additional metadata of this form.

The VOTable must contain one RESOURCE element identified with the
attribute type="results"; this resource contains the primary result (e.g.,
the only result for simple DAL services). Concrete DAL service specifications
define what goes into the primary result. The primary RESOURCE element
must contain, before the TABLE element, an INFO element with attribute
name valued QUERY_STATUS. The value attribute must contain one of the
following values:

32

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

QUERY_STATUS Interpretation

OK the job executed successfully and the result is
included in the resource

ERROR an error was detected at the level of the protocol,
the job failed to execute, or an error occurred
while writing the table data

OVERFLOW the job executed successfully, the result is in-
cluded in the resource, and the result was trun-
cated

The content of the INFO element conveying the status should be a message
suitable for display to the user describing the status.

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

<INFO name="QUERY_STATUS" value="ERROR">
value out of range in POS=45,91
</INFO>

Additional RESOURCE elements may be present, but the usage of any such
elements is not defined here. Concrete DAL service specifications may define
additional resources (and the type attribute to describe them) and service
implementers are also free to add their own.

5.4.1 Overflow

If an overflow occurs (for example, result exceeds MAXREC) and the output
format is VOTable, the service must include an INFO element in the RESOURCE
with name="QUERY_STATUS" and the value="OVERFLOW". If the initial INFO
element (above) specified the overflow, no further elements are needed, e.g.:

<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="OVERFLOW"/>
...
<TABLE>...</TABLE>
</RESOURCE>

If the initial INFO element specified a status of OK then the service must
append an INFO element for the overflow after the table, e.g.:

33

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="OVERFLOW"/>
</RESOURCE>

There is no defined mechanism to indicate overflow (truncation) of out-
put for formats other than VOTable. Specifically, simple text formats like
text/csv and text/tab-separated-values do not support indicating over-
flow.

In general, services may truncate the output results when reaching a
limit. A default or user-specified value of the MAXREC parameter defined
in Section 4.3.4 is a common mechanism that causes truncation of results, but
service providers may also impose limits in services that do not use MAXREC
and indicate that the limit was reached with the overflow indicator.

5.4.2 Errors

If an error occurs, the service must include an INFO element with name="QUERY_STATUS"
and the value="ERROR". If the initial info element (above) specified the er-
ror, no further elements are needed, e.g.:

<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="ERROR"/>
...
</RESOURCE>

If the initial INFO element specified a status of OK then the service must
append an INFO element for the error after the table, e.g.:

<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="ERROR">
unexpected IO error while converting something
</INFO>
</RESOURCE>

The use of trailing INFO element allows a service to stream output and
still report overflows or errors to the client. The content of these trailing
INFO elements is optional and intended for users; client software should not
depend on it.

34

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

5.4.3 Additional Information

Additional INFO elements should be provided, e.g., to echo the input param-
eters back to the client in the query response (a useful feature for debugging
or to self-document the query response), but clients should not depend on
these. For example:

<RESOURCE type="results">
...
<INFO name="standardID" value="ivo://ivoa.net/std/SIA"/>
...
</RESOURCE>

The following names for INFO elements should be used if applicable, but
this list is not definitive.

Info Name Value Interpretation

standardID IVOA standardID for the service specification
citation Reference to a publication that can/should be

referenced if the result is used

The standardID of a service specification is the IVOA resource identifier
for the StandardsRegExt record not including capability-specific fragments.
For example, a VOTable produced by the ivo://ivoa.net/std/SIA#query-2.0
capability would use the base ivo://ivoa.net/SIA (as in the above exam-
ple) to say that the VOTable was produced by a SIA service.

For citations, the INFO element should also include a ucd attribute with
the value meta.bib (if the value is a free-text reference) or meta.bib.bibcode (if
the value is a bibcode). If other meta.bib UCDs are added to the vocabulary
in future, they may also be used to describe the value.

A Changes

A.1 PR-DALI-1.2

• Clarified that truncation indicated by OVERFLOW can occur inde-
pendent of MAXREC

• added new xtypes: hms, dms, moc, multipolygon, range, shape, uri,
uuid

• changed VOSI-availability to optional

• changed VOSI-capability so it is only required for registered services

35

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

A.2 PR-DALI-1.1-20170412

• Changed vocabulary URI from ivo://ivoa.net/std/DALI#examples to
http://www.ivoa.net/rdf/examples#. While this, in theory, is an in-
compatible change, no client has so far actually used the old vocabulary
URI, and the old URI has very unintended consequences (e.g., an ex-
amples query term in DALI’s registry record). Hence, we consider the
change benign for a point release.

A.3 PR-DALI-1.1-20161101

• added explicit allowance for the use of non-standard xtypes with an
arbitrary prefix

A.4 WD-DALI-1.1-20160920

• modified timestamp serialisation to allow the Z timezone indicator for
civil time values

• specified counter-clockwise winding direction for polygons

A.5 WD-DALI-1.1-20160415

• Removed introductory language on including capability-propertied el-
ements in examples.

• Expanded section on intervals to allow use of all integer and floating
point datatypes supported by VOTable; only floating point intervals
support open-ended intervals.

• Expanded section on geometry to allow use of datatype="float" in
addition to double.

• Removed restrictions on the resource name and location for VOSI-
availability resource.

• Removed restrictions on resource name for VOSI-tables resources.

• Fixed the timestamp format specification to correctly specify optional
parts.

• Added reference to RFC2616 and minimised discussion of HTTP head-
ers.

36

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

A.6 WD-DALI-1.1-20151027

Removed the requirement that the REQUEST must be a standard parame-
ter. It is now recommended if a service capability supports more than one
mode or operation. Removed VERSION parameter following experiences
with TAP-1.1 prototypes.

Re-organised the section on literal values and clarified that these rules are
intended to make input (parameters and other input docs) and output (re-
sponse documents like VOTable) of services consistent. Added specification
of interval, point, circle, and polygon literal values and specified VOTable
xtype values for serialising such values in VOTable. Added VOTable serial-
isation and xtype for timestamp values. (Needed by SIA-2.0 and TAP-1.1)

Added bibtex cross-references.

A.7 PR-DALI-1.0-20130919

The following changes are in response to additional RFC commands and
during the TCG review.

New architecture diagram and minor editorial changes to improve docu-
ment.

Clarified RESPONSEFORMAT text to allow services to append mime-
type parameters if the client did not specify them.

Relaxed the VERSION parameter so services should default to latest
(instead of must) and to not differentiate between REC and pre-REC status.

Clarified the requirement for a VOTable RESOURCE with type="results"
attribute so it is clear that this is the primary result and other RESOURCES
may be present.

Clarified that HTTP-specific rules apply to RESTful web services and
that although we describe such services here we do not preclude future use
of other transport protocols.

A.8 PR-DALI-1.0-20130521

The following changes are in response to comments from the RFC period.
Made editorial changes from the DALI wiki page that were missed during

WG review.
Changed all cross-references to be readable text.
Replaced example curl output from a POST with explanatory text.
POST of job parameters directly to job: restricted to creation and /pa-

rameters resource

37

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Changed number of DALI-async and DALI-sync resources to zero or
more.

Clarified that job parameters are the same if the type of job is the same,
but services can have different types of jobs (and hence different parameters)
on different job-list resources.

Fixed text forbidding any other vocab attributes in DALI-examples doc-
ument.

Replace http-action and base-url with something or add sync vs async:
replaced with capability property

Preventing loops with continuation in examples: removed.
Clarified that VOSI-capabilities does not require a registry extension

schema and use of xsi:type.
Explicitly require that if VOSI-tables is not implemented, the service

responds with a 404.
Clarified the purpose of requiring the service to use client-specified RE-

SPONSEFORMAT as the Content-Type of the response.
Attempted to clarify the acceptable use of status codes for errors.
Removed single-table restriction from votable usage.
Clarified interpretation of dates and times as UTC timescale by default

but permitting specific metadata to be specified.
Removed formatting of example links so they are not real hyperlinks in

output documents.
Clarified that services can enforce a smaller limit than a requested MAXREC.
Removed text refering to IVOA notes on STC and Photometric metadata;

added more general text that services should include additional metadata
once standards for such are in place.

Explain the table at start of section 2.
Clarify requests that effect UWS job phase in DALI-async.
Removed malformed http post example from DALI-async section.
Remove reference to SGML specifically, but mention HTML5 as a poor

choice for DALI-examples.
Add reference to RFC2616 in the RESPONSEFORMAT section since it

talks about mimetypes.
Clarified text about setting job parameters and banned posting parame-

ters directly to the job URL.
Replaced the base-url and http-action properties with a single capability

property in DAL-examples. Changed the vocab identifier to be the IVOID for
DALI with fragment indicating the DALI-examples section of the document.

38

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

A.9 WD-DALI-1.0-20130212

Simplified DALI-examples to conform to RDFa-1.1 Lite in usage of attributes.

References

Berners-Lee, T., Fielding, R. and Masinter, L. (2005), ‘Uniform Resource
Identifier (URI): Generic syntax’, RFC 3986.
http://www.ietf.org/rfc/rfc3986.txt

Biron, P. and Malhotra, A. (2004), ‘XML schema part 2: Datatypes second
edition’, W3C Recommendation.
http://www.w3.org/TR/xmlschema-2/

Bonnarel, F., Dowler, P., Demleitner, M., Tody, D. and Dempsey, J. (2017),
‘IVOA Server-side Operations for Data Access Version 1.0’, IVOA Recom-
mendation 17 May 2017, arXiv:1710.08791.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517B

Demleitner, M., Gray, N. and Taylor, M. (2021), ‘Vocabularies in the VO
Version 2.0’, IVOA Recommendation 25 May 2021.
http://doi.org/10.5479/ADS/bib/2021ivoa.spec.0525D

Demleitner, M., Plante, R., Stébé, A., Benson, K., Dowler, P., Graham, M.,
Greene, G., Harrison, P., Lemson, G., Linde, T. and Rixon, G. (2021),
‘VODataService: A VOResource Schema Extension for Describing Collec-
tions, Services Version 1.2’, IVOA Recommendation 02 November 2021.
http://doi.org/10.5479/ADS/bib/2021ivoa.spec.1102D

Dowler, P., Bonnarel, F. and Tody, D. (2015), ‘IVOA Simple Image Access
Version 2.0’, IVOA Recommendation 23 December 2015.
http://doi.org/10.5479/ADS/bib/2015ivoa.spec.1223D

Dowler, P., Evans, J., Arviset, C., Gaudet, S. and Technical Coordination
Group (2021), ‘IVOA Architecture Version 2.0’, IVOA Endorsed Note 01
November 2021.
http://doi.org/10.5479/ADS/bib/2021ivoa.spec.1101D

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table Access Protocol Version
1.0’, IVOA Recommendation 27 March 2010, arXiv:1110.0497.
http://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D

39

http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/xmlschema-2/
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517B
http://doi.org/10.5479/ADS/bib/2021ivoa.spec.0525D
http://doi.org/10.5479/ADS/bib/2021ivoa.spec.1102D
http://doi.org/10.5479/ADS/bib/2015ivoa.spec.1223D
http://doi.org/10.5479/ADS/bib/2021ivoa.spec.1101D
http://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Fernique, P., Nebot, A., Durand, D., Baumann, M., Boch, T., Greco, G.,
Donaldson, T., Pineau, F.-X., Taylor, M., O’Mullane, W., Reinecke, M.
and Derrière, S. (2022), ‘MOC: Multi-Order Coverage map Version 2.0’,
IVOA Recommendation 27 July 2022.
https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0727F

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.
and Berners-Lee, T. (1999), ‘Hypertext transfer protocol – HTTP/1.1’,
rfc2616.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Fielding, R. T. (2000), Architectural Styles and the Design of Network-based
Software Architectures, PhD thesis, University of California, Irvine.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Freed, N. and Borenstein, N. (1996), ‘Mulitpurpose internet mail extensions’,
IETF RFC.
http://www.ietf.org/rfc/rfc2046.txt

Graham, M., Rixon, G., Dowler, P., Major, B., Grid and Web Services Work-
ing Group (2017), ‘IVOA Support Interfaces Version 1.1’, IVOA Recom-
mendation 24 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0524G

Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M.,
Teuben, P. J., Thompson, R. W. and Warnock, III, A. (2001), ‘Definition
of the Flexible Image Transport System (FITS)’.
http://doi.org/10.1051/0004-6361:20010923

Harrison, P. A. and Rixon, G. (2016), ‘Universal Worker Service Pattern
Version 1.1’, IVOA Recommendation 24 October 2016.
http://doi.org/10.5479/ADS/bib/2016ivoa.spec.1024H

Leach, P., Mealling, M. and Salz, R. (2005), ‘A Universally Unique IDentifier
(UUID) URN namespace’, RFC 4122.
https://www.ietf.org/rfc/rfc4122.txt

Ochsenbein, F., Taylor, M., Donaldson, T., Williams, R., Davenhall, C.,
Demleitner, M., Durand, D., Fernique, P., Giaretta, D., Hanisch, R., McG-
lynn, T., Szalay, A. and Wicenec, A. (2019), ‘VOTable Format Definition
Version 1.4’, IVOA Recommendation 21 October 2019.
http://doi.org/10.5479/ADS/bib/2019ivoa.spec.1021O

40

https://ui.adsabs.harvard.edu/abs/2022ivoa.spec.0727F
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ietf.org/rfc/rfc2046.txt
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0524G
http://doi.org/10.1051/0004-6361:20010923
http://doi.org/10.5479/ADS/bib/2016ivoa.spec.1024H
https://www.ietf.org/rfc/rfc4122.txt
http://doi.org/10.5479/ADS/bib/2019ivoa.spec.1021O

D
R
A
F
T

–
p
le
a
se

d
o
n
o
t
d
is
tr
ib
u
te

Rots, A. H. (2007), ‘Space-Time Coordinate Metadata for the Virtual
Observatory Version 1.33’, IVOA Recommendation 30 October 2007,
arXiv:1110.0504.
http://doi.org/10.5479/ADS/bib/2007ivoa.spec.1030R

Sporny, M. (2012), ‘RDFA lite 1.1’, W3C Recommendation.

41

http://doi.org/10.5479/ADS/bib/2007ivoa.spec.1030R

	Introduction
	Role within the VO Architecture
	Example Usage of the DALI Specification

	Resources
	Asynchronous Execution: DALI-async
	Synchronous Execution: DALI-sync
	DALI-examples
	name property
	capability property
	generic-parameter property
	continuation property

	Availability: VOSI-availability
	Capabilities: VOSI-capabilities
	Tables: VOSI-tables

	Data Types and Literal Values
	Numbers
	Boolean
	Timestamp
	Intervals
	Sexagesimal Coordinates
	Point
	Circle
	Range
	Polygon
	MOC
	Multi-Polygon
	Shape
	URI
	UUID
	Unsupported Types

	Parameters
	Case Sensitivity
	Multiple Values
	Standard Parameters
	REQUEST
	VERSION
	RESPONSEFORMAT
	MAXREC
	UPLOAD
	RUNID

	Responses
	Successful Requests
	Errors
	Redirection
	Use of VOTable
	Overflow
	Errors
	Additional Information

	Changes
	PR-DALI-1.2
	PR-DALI-1.1-20170412
	PR-DALI-1.1-20161101
	WD-DALI-1.1-20160920
	WD-DALI-1.1-20160415
	WD-DALI-1.1-20151027
	PR-DALI-1.0-20130919
	PR-DALI-1.0-20130521
	WD-DALI-1.0-20130212

	References

