Evaluating causal inference methods in a scientifically thorough way is a cumbersome and error-prone task. To foster good scientific practice JustCause provides a framework to easily:
- evaluate your method using common data sets like IHDP, IBM ACIC, and others;
- create synthetic data sets with a generic but standardized approach;
- benchmark your method against several baseline and state-of-the-art methods.
Our cause is to develop a framework that allows you to compare methods for causal inference in a fair and just way. JustCause is a work in progress and new contributors are always welcome.
If you just want to use the functionality of JustCause, install it with:
pip install justcause
Consider using conda to create a virtual environment first.
Developers that want to develop and contribute own algorithms and data sets to the JustCause framework, should:
-
clone the repository and change into the directory
git clone https://github.com/inovex/justcause.git cd justcause
-
create an environment
justcause
with the help of conda,conda env create -f environment.yaml
-
activate the new environment with
conda activate justcause
-
install
justcause
with:python setup.py install # or `develop`
Optional and needed only once after git clone
:
- install several pre-commit git hooks with:
and checkout the configuration under
pre-commit install
.pre-commit-config.yaml
. The-n, --no-verify
flag ofgit commit
can be used to deactivate pre-commit hooks temporarily.
- causalml: causal inference with machine learning algorithms in Python
- DoWhy: causal inference using graphs for identification
- EconML: Heterogeneous Effect Estimation in Python
- awesome-list: A very extensive list of causal methods and respective code
- IBM-Causal-Inference-Benchmarking-Framework: Causal Inference Benchmarking Framework by IBM
This project has been set up using PyScaffold 3.2.2 and the dsproject extension 0.4. For details and usage information on PyScaffold see https://pyscaffold.org/.