
Extending Yuck for Vehicle Routing

Michael Marte

May 1, 2021

1 Introduction

Yuck is a FlatZinc solver that combines local search with restarting, global constraints, and
lexicographic cost functions. It is open source and provided under the terms of the Mozilla
Public License 2.0. Source code, binary packages, and documentation are available from GitHub:
https://github.com/informarte/yuck.

Recent research [BFP19] has identified challenges posed to local-search solvers by typical
MiniZinc models for vehicle routing. To address these issues, Yuck has been extended with
support for single-depot vehicle routing in the form of two global constraints: giant tour and
delivery.

This system description introduces giant tour and delivery, presents a comparative, com-
putational study with very promising results, and closes with perspectives for future work.

2 The giant tour Constraint

The delivery contraint requires the model to be based on the giant-tour representation (see
[RBW06], section 23.3.1) where, in addition to the nodes to be visited, there is a pair of start
and end nodes for each vehicle:

predicate giant_tour(

set of int: StartNodes,

set of int: EndNodes,

array[int] of var int: succ)

=

let {

set of int: Nodes = index_set(succ),

int: K = card(StartNodes)

}

in circuit(succ)

/\ forall(i in 1..(K - 1))(succ[min(EndNodes) + i - 1] = min(StartNodes) + i)

/\ succ[max(EndNodes)] = min(StartNodes);

Yuck’s implementation of giant tour extends the above decomposition with sanity checks. Its
use is recommended because there are plans to provide a native implementation, see section 5.

https://github.com/informarte/yuck


3 The delivery Constraint

Given a giant-tour representation, delivery can be used to constrain the arrival times to con-
sider the given service and travel times:

predicate delivery(

set of int: StartNodes,

set of int: EndNodes,

array[int] of var int: succ,

array[int] of var int: arrivalTimes,

array[int] of int: ServiceTimes,

array[int, int] of int: TravelTimes,

bool: WithWaiting,

var int: totalTravelTime)

=

let {

set of int: Nodes = index_set(succ)

}

in forall(i in Nodes diff EndNodes)(

let {

var int: j = succ[i],

var int: t = arrivalTimes[i] + ServiceTimes[i] + TravelTimes[i, j],

var int: u = arrivalTimes[j]

}

in if WithWaiting then u >= t else u = t endif

)

/\ totalTravelTime = sum(i in Nodes diff EndNodes)(TravelTimes[i, succ[i]]);

Yuck provides a native implementation of delivery which avoids the performance issues iden-
tified by [BFP19]. Departing from the given arrival-times at start nodes, this implementation
maintains the arrival times for all other nodes, the total travel time, and the constraint violation

∑

x∈arrivalTimes

δ(x) + δ(totalTravelTime)

where

δ(x) =











0 if the value a(x) of x is contained in the domain d(x) of x
min(d(x)) − a(x) if a(x) < min(d(x))
a(x)−max(d(x)) otherwise.

When a vehicle arrives too early at a node x (earlier than min(d(x))) and waiting is enabled,
then delivery will postpone the arrival until min(d(x)) but not until later.

With the above cost model, delivery can also be used in reified contexts, allowing for soft
delivery constraints when used in combination with Yuck’s goal hierarchy annotation. For
example,

solve :: goal_hierarchy(sat_goal(delivery(...)) satisfy;

would search a solution which minimizes the violation of the given delivery constraint.
Regarding the delivery constraint and its implementation in Yuck, there are several note-

worthy aspects:

2



� The above definition of delivery uses times only for the purpose of presentation. In
practice, delivery can be used to track all kinds of other things like distances, vehicle
loads, or costs.

� Conceptionally, delivery corresponds to the routing dimensions1 of Google OR-Tools.

� Yuck’s delivery implementation extends the above definition with sanity checks and
allows ServiceTimes and TravelTimes to be empty.

� Yuck’s delivery implementation requires the assignment to the succ variables to form a
Hamiltonian circuit at any time during search. The practical implication is that delivery
can only be used in conjunction with circuit.

� Support for time windows is implicit: To impose time windows, just constrain the arrival-
time variables accordingly.

� The above signature of delivery is not carved into stone as there are ideas for future
extensions, see section 5.

� Regarding vehicle routing without waiting, [BFP19] pointed out that arrivalTimes[j]

cannot be considered as functionally determined by arrivalTimes[i] unless the circuit
constraint is taken into account. The resulting circular dependency requires to treat all
arrival-time variables as search variables, rendering vehicle routing very hard for local
search. With its native delivery implementation, Yuck avoids this issue by collapsing
the entire constraint subgraph for defining arrival times into a single node. To achieve
the same effect for vehicle routing with waiting, Yuck waits only as long as necessary, as
explained above. This behaviour reduces the solution space in comparison to the above
definition of delivery.

4 Computational Study

To verify the efficacy of Yuck’s native delivery implementation, a computational study was
performed. In this study, various FlatZinc solvers were applied to various VRP benchmarks,
968 instances in total and with the common goal to minimize total travel time. The following
FlatZinc solvers were tested and compared:

� Chuffed2 0.10.4, as packaged with MiniZinc 2.5.5

� Gecode3 6.3.0, as packaged with MiniZinc 2.5.5

� Google OR-Tools4 8.1.8487 CP-SAT solver
(Notice that Google OR-Tools has a routing library based on local search, but it cannot
be used via MiniZinc.)

� Oscar/CBLS5 20201007

� Yuck

The following benchmarks were used:

1https://developers.google.com/optimization/routing/dimensions
2https://github.com/chuffed/chuffed
3https://www.gecode.org/
4https://developers.google.com/optimization
5https://www.it.uu.se/research/group/optimisation/software#fznoscarcbls

3

https://developers.google.com/optimization/routing/dimensions
https://github.com/chuffed/chuffed
https://www.gecode.org/
https://developers.google.com/optimization
https://www.it.uu.se/research/group/optimisation/software#fznoscarcbls


� CVRP (VRP with vehicle capacities):

– Augerat (A, B, and P) [Aug+98] (30 - 100 nodes to visit)

– Uchoa [Uch+17] (100 - 1000 nodes to visit)

� TSPTW (TSP with time windows):

– Ascheuer [AFG01] (10 - 233 nodes to visit)

– Dumas [Dum+95] (20 - 200 nodes to visit)

– Gendreau [Gen+98] (20 - 100 nodes to visit)

� CVRPTW (VRP with vehicle capacities and time windows):

– Homberger [GH99] (200 - 1000 nodes to visit)

– Solomon [Sol87] (25 - 100 nodes to visit)

The MiniZinc models and the instances are available from Github:
https://github.com/informarte/minizinc-benchmarks/tree/yuck-testing

The MiniZinc models were derived from the CVRP model which was used in the Mini-
Zinc challenge 2015. For each problem, there are two top-level models, e.g. cvrp cp.mzn and
cvrp yuck.mzn where the CP model uses the delivery decomposition while the Yuck model
uses the native delivery implementation. To avoid code duplication, both top-level models
are based on a common ancestor, e.g. cvrp.mzn, which in turn is based on vrp.mzn; it’s like
a class hierarchy with super classes which forward-declare and use predicates to be defined by
sub classes.

The DataZinc files were generated from Keld Helsgaun’s collection of VRP benchmarks6.
Two things about the instance files are worth noting:

� The CVRP and CVRPTW instances come with a number k of vehicles or tours, either as
part of their filename, or defined by the VEHICLES property.

� The instance files neither specify the optimization goal nor the semantics ok k. (This
makes sense because these benchmarks can be used with various primary optimization
goals, like minimizing the total travel time, the makespan, or the number of vehicles.)

Now, to avoid comparing apples to oranges, it is important to know the circumstances un-
der which the best-known total travel times were computed. To answer this question, it was
necessary to consult the original papers:

� [Aug+98], introduction: ”The Capacitated Vehicle Routing Problem (CVRP) we consider
in this paper consists in an optimization that deals with the distribution of a commodity
from a single depot to a given set of n customers with known demand, using a given
number k of vehicles having all the same capacity C.”

� [Uch+17], section 3.3.2: ”The number Kmin indicated in each instance should be taken
only as a lower bound on the number of routes in a solution.”

� [GH99], introduction: ”The objective function considered here combines the minimization
of the number of vehicles (primary criterion) and the total travel distance (secondary
criterion).”

6http://akira.ruc.dk/~keld/research/LKH-3/

4

https://github.com/informarte/minizinc-benchmarks/tree/yuck-testing
http://akira.ruc.dk/~keld/research/LKH-3/


� [Sol87], introduction: ”We also assume that the number of vehicles used is free, i.e., the
fleet size is determined simultaneously, using the best set of routes and schedules.”

Concluding, the k values of the Augerat instances are hard constraints, in all other cases they
are lower bounds.

To support the different requirements, the MiniZinc models introduce the parameters MinK
(the lower bound on the number of vehicles) and MaxKToMinKRatio from which they compute
MaxK (the maximum number of vehicles) as the product of MinK and MaxKToMinKRatio.

We are left with the task of choosing the ratio. On the one hand, a higher ratio entails more
start and end nodes and hence more search variables, on the other hand it gives solvers more
wiggle room. A pre-study revealed that the ratio is crucial for solver performance and is best
defined for each pair of solver and problem. For the main study, the following ratios were used:

Uchoa Homberger Solomon

Chuffed 2 4 2
Gecode 2 3 2

OR-Tools 2 4 2
Oscar/CBLS 2 4 4

Yuck 2 4 4

The studies were performed on a first-gen i7 quad-core with 20 GB RAM. The runtime was
limited to 60 seconds per instance, four instances were solved in parallel, and solver heap space
was limited to 4 GB, with exception of the Homberger benchmark: High memory demands by
Chuffed, Gecode, and OR-Tools required to double memory and to halve the number of solvers
running in parallel.

Oscar/CBLS was run with the -XuseCMG option. (”CMG” is short for ”Compound Move
Generation”, a generic technique developed by [BFP19] to improve the performance of local
search.)

Appendix A presents the results of the main study in terms of gaps, i.e. the ratios of the
objective values to the best known objective values. Table 1 summarizes the key performance
indicators while the remaining figures (one per benchmark) compare the results graphically.
Regarding the new version of Yuck, the key findings are:

� Yuck solved all of the CVRP instances, all TSPTW but 7 (out of 135) Dumas instances,
and all CVRPTW but 2 (out of 300) Homberger instances.

� Regarding the quality of solutions, the mean gap was 1 or very close to 1 for Augerat,
Ascheuer, Dumas, Gendreau, and Solomon, 1.29 for Uchoa, and 2 for Homberger.

� Yuck outperformed the other solvers.

5 Future Work

There are several ideas for future work:

� Provide a native giant tour implementation: The circuit constraint does not know
about the giant-tour representation with its start and end nodes. A specialized implemen-
tation could exploit this knowledge to provide better moves more efficiently.

� Improve the versatility of the delivery constraint: Replace the WithWaiting flag with
waiting-time variables to allow for computing and minimizing the total waiting time as in
[Sol87]. (To forbid waiting, the waiting-time variables could be set to 0.)

5



� Consider a renaming of delivery and its arguments: The application of delivery is
neither limited to delivery problems nor to travel times and hence it might make sense to
generalize the current definition.

� Put the Yuck results into perspective: Compare Yuck to a specialized TSP/VRP solver,
like LKH-3 [Hel17].

6



References

[AFG01] N. Ascheuer, M. Fischetti, and M. Grötschel. “Solving the Asymmetric Travelling
Salesman Problem with time windows by branch-and-cut”. In: Mathematical Pro-

gramming 90.3 (2001), pp. 475–506.

[Aug+98] P. Augerat et al. Computational results with a branch and cut code for the capaci-

tated vehicle routing problem. Tech. rep. R.495. IASI-CNR, 1998.

[BFP19] G. Björdal, P. Flener, and J. Pearson. “Generating Compound Moves in Local
Search by Hybridisation with Complete Search”. In: Integration of Constraint Pro-

gramming, Artificial Intelligence, and Operations Research - 16th International

Conference, CPAIOR 2019, Proceedings. Ed. by L.-M. Rousseau and K. Stergiou.
Vol. 11494. Lecture Notes in Computer Science. Springer, 2019, pp. 95–111.

[Dum+95] Y. Dumas et al. “An Optimal Algorithm for the Traveling Salesman Problem with
Time Windows”. In: Operations Research 43.2 (1995), pp. 367–371.

[Gen+98] M. Gendreau et al. “A Generalized Insertion Heuristic for the Traveling Salesman
Problem with Time Windows”. In: Operations Research 46.3 (1998), pp. 330–335.

[GH99] H. Gehring and J. Homberger. “A Parallel Hybrid Evolutionary Metaheuristic for
the Vehicle Routing Problem with Time Windows”. In: Evolutionary Algorithms in

Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evo-

lution Strategies, Evolutionary Programming, Genetic Programming and Industrial

Applications. Ed. by K. Miettinen et al. Wiley, 1999, pp. 57–64. isbn: 978-0-471-
99902-7.

[Hel17] K. Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Con-

strained Traveling Salesman and Vehicle Routing Problems. Tech. rep. Roskilde
Universitet, 2017.

[RBW06] F. Rossi, P. van Beek, and T. Walsh, eds. Handbook of Constraint Programming.
Elsevier, 2006. isbn: 978-0-444-52726-4.

[Sol87] M. M. Solomon. “Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints”. In: Operations Research 35.2 (1987), pp. 254–265.

[Uch+17] E. Uchoa et al. “New benchmark instances for the Capacitated Vehicle Routing
Problem”. In: European Journal of Operational Research 257.3 (2017), pp. 845–
858.

7



A Results

Benchmark Solver Success rate Min gap Mean gap Median gap Max gap

Augerat chuffed 95.95% 1.12 2.56 2.57 3.93
gecode 95.95% 1.11 2.51 2.48 3.75
or-tools 95.95% 1.11 2.46 2.45 3.75
oscar-cbls 5.41% 1.00 1.04 1.03 1.08
yuck 100.00% 1.00 1.02 1.01 1.09

Uchoa chuffed 79.00% 1.64 4.11 4.01 9.00
gecode 74.00% 1.64 4.19 4.06 9.00
or-tools 9.00% 2.16 3.89 4.01 5.25
oscar-cbls 0.00%
yuck 100.00% 1.04 1.29 1.23 2.31

Ascheuer chuffed 86.00% 1.00 1.04 1.04 1.14
gecode 78.00% 1.00 1.04 1.03 1.15
or-tools 96.00% 1.00 1.04 1.00 1.14
oscar-cbls 50.00% 1.00 1.01 1.00 1.04
yuck 100.00% 1.00 1.00 1.00 1.01

Dumas chuffed 53.33% 1.00 1.03 1.00 1.21
gecode 84.44% 1.00 1.08 1.04 1.45
or-tools 51.85% 1.00 1.03 1.00 1.23
oscar-cbls 48.15% 1.00 1.01 1.00 1.08
yuck 94.81% 1.00 1.00 1.00 1.08

Gendreau chuffed 15.71% 1.00 1.06 1.00 1.27
gecode 20.00% 1.00 1.04 1.00 1.51
or-tools 11.43% 1.00 1.04 1.00 1.27
oscar-cbls 18.57% 1.00 1.01 1.00 1.11
yuck 100.00% 1.00 1.01 1.00 1.12

Homberger chuffed 52.67% 1.67 5.54 4.92 12.11
gecode 33.33% 1.71 4.38 4.13 8.08
or-tools 0.67% 6.47 6.66 6.66 6.85
oscar-cbls 0.00%
yuck 99.33% 1.00 2.00 1.67 28.43

Solomon chuffed 97.04% 1.00 2.36 2.16 6.58
gecode 83.43% 1.00 2.51 2.17 7.30
or-tools 92.31% 1.00 2.19 2.03 6.32
oscar-cbls 71.60% 1.00 1.45 1.27 3.36
yuck 100.00% 1.00 1.03 1.00 1.20

Table 1: Key performance indicators

8



0

20

40

60
Nu

m
be

r o
f r

es
ul

ts chuffed
gecode
or-tools
oscar-cbls
yuck

0

20

40

60

Cu
m

ul
at

iv
e 

nu
m

be
r

of
 re

su
lts

1.0 1.5 2.0 2.5 3.0 3.5 4.0

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 1: Augerat (CVRP)

0

20

40

60

Nu
m
be

r o
f r
es
ul
ts chuffed

gecode
or-tools
oscar-cbls
yuck

0

50

100

Cu
m
ul
at
iv
e 
nu

m
be

r
of
 re

su
lts

1 2 3 4 5 6 7 8 9

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 2: Uchoa (CVRP)

9



0

20

40
Nu

m
be

r o
f r

es
ul

ts chuffed
gecode
or-tools
oscar-cbls
yuck

0

20

40

Cu
m

ul
at

iv
e 

nu
m

be
r

of
 re

su
lts

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 3: Ascheuer (TSPTW)

0

50

100

Nu
m

be
r o

f r
es

ul
ts chuffed

gecode
or-tools
oscar-cbls
yuck

0

50

100

Cu
m

ul
at

iv
e 

nu
m

be
r

of
 re

su
lts

1.0 1.1 1.2 1.3 1.4

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 4: Dumas (TSPTW)

10



0

50

100
Nu

m
be

r o
f r

es
ul

ts chuffed
gecode
or-tools
oscar-cbls
yuck

0

50

100

Cu
m

ul
at

iv
e 

nu
m

be
r

of
 re

su
lts

1.0 1.1 1.2 1.3 1.4 1.5

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 5: Gendreau (TSPTW)

0

100

200

Nu
m

be
r o

f r
es

ul
ts chuffed

gecode
or-tools
oscar-cbls
yuck

0

100

200

300

Cu
m

ul
at

iv
e 

nu
m

be
r

of
 re

su
lts

0 5 10 15 20 25

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 6: Homberger (CVRPTW)

11



0

50

100

150

Nu
m

be
r o

f r
es

ul
ts chuffed

gecode
or-tools
oscar-cbls
yuck

0

50

100

150

Cu
m

ul
at

iv
e 

nu
m

be
r

of
 re

su
lts

1 2 3 4 5 6 7

yuck
oscar-cbls

or-tools
gecode
chuffed

Figure 7: Solomon (CVRPTW)

12


	Introduction
	The giant_tour Constraint
	The delivery Constraint
	Computational Study
	Future Work
	Results

