

Identifying Mappings among Knowledge Graphs by Formal Concept Analysis

Guowei Chen and Songmao Zhang

Academy of Mathematics & Systems Science, Chinese Academy of Sciences

Beijing, China

OM-2019, ISWC 2019 Workshop Auckland, New Zealand October 26, 2019

Table of Contents

An Introduction to Formal Concept Analysis Formal Context, Derivation Operators, Formal Concepts and Concept Lattice

Our Method Identifying Lexical Anchors Identifying Structural Property Mappings

Evaluation on Knowledge Graph track for OAEI 2018 Lexical Matching for Classes, Properties and Instances Structural Property Matching

Results on Knowledge Graph track for OAEI 2019

Conclusions

An Introduction to Formal Concept Analysis

Introduction

Formal Concept Analysis (FCA) is a well-developed mathematical model for clustering individuals and structuring concepts. (Wille 1982; Ganter and Wille 1999)

- Conceptual data analysis.
- Knowledge processing.

Bernhard Ganter and Rudolf Wille. *Formal Concept Analysis* - *Mathematical Foundations*. Springer, 1999.

Rudolf Wille. "Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts". In: Ordered Sets. Springer, 1982, pp. 445–470.

Formal Concept Analysis - Formal Context

Definition

A formal context is a triple $\mathbb{K} := (G, M, I)$, where G is a set of objects, *M* is a set of attributes, and *I* is a relation between G and *M*.

 $(g, m) \in I$ reads "object g has attribute m" represented by "×" in the table cell. G. Chen & S. Zhang • Identifying Mappings among KGs by FCA • Oct. 26, 2019 OM@ISWC, NZ 5 / 35

Formal Concept Analysis - Formal Context

Definition

A formal context is a triple $\mathbb{K} := (G, M, I)$, where G is a set of **objects**, *M* is a set of **attributes**, and *I* is a relation between *G* and *M*.

Attributes Objects	Asgardian	Avenger	Female	Human	Infinity Stones User	Male	Scientist	Villain
Black Widow		×	×	×				
Captain America		×		×		×		
Hela	×		×					×
Hulk		×		×	×	×	×	
Iron Man		×		×	×	×	×	
Thanos					×	×		×
Thor	×	×				×		

 $(g, m) \in I$ reads "object g has attribute m" represented by "×" in the table cell. G. Chen & S. Zhang + Identifying Mappings among KGs by FCA + Oct. 26, 2019 OM@ISWC, NZ

Formal Concept Analysis - Derivation Operators

Definition

For a subset of objects $A \subseteq G$ and a subset of attributes $B \subseteq M$, two **derivation operators** are defined as follows:

$$\blacksquare A^{\uparrow} = \{ m \in M \mid \forall g \in A. (g, m) \in I \}$$

$$\blacksquare B^{\downarrow} = \{ g \in G \mid \forall m \in B. (g, m) \in I \}$$

For example,

Formal Concept Analysis - Derivation Operators

Attributes Objects	Asgardian	Avenger	Female	Human	Infinity Stones User	Male	Scientist	Villain
Black Widow		×	×	×				
Captain America		×		×		×		
Hela	×		×					×
Hulk		×		×	×	×	×	
Iron Man		×		×	×	×	×	
Thanos					×	×		×
Thor	×	×				×		

Example

Given $A = \{\text{Hulk}, \text{Iron Man}\}$. Each object in A has Avenger, Human, Infinity Stones User, Male and Scientist. Then $A^{\uparrow} = \{\text{Avenger}, \text{Human}, \text{Infinity Stones User}, \text{Male}, \text{Scientist}\}.$

Formal Concept Analysis - Derivation Operators

Attributes Objects	Asgardian	Avenger	Female	Human	Infinity Stones User	Male	Scientist	Villain
Black Widow		×	×	×				
Captain America		×		×		×		
Hela	×		×					×
Hulk		×		×	×	×	×	
Iron Man		×		×	×	×	×	
Thanos					×	×		×
Thor	×	×				×		

Example

Given $B = \{Avenger, Human, Male\}$. Each attribute in *B* is common to Captain America, Hulk and Iron Man. Then, $B_{\pm}^{\dagger} = \{Captain America, Hulk Iron Man\}$

 $B^{\downarrow} = \{$ Captain America, Hulk, Iron Man $\}$.

Formal Concept Analysis - Formal Concept

Definition

A formal concept of context \mathbb{K} is a pair (A, B), where $A \subseteq G$, $B \subseteq M$ such that $A = B^{\downarrow}$ and $B = A^{\uparrow}$.

Formal Concept Analysis - Formal Concept

Definition

A formal concept of context \mathbb{K} is a pair (A, B), where $A \subseteq G$, $B \subseteq M$ such that $A = B^{\downarrow}$ and $B = A^{\uparrow}$.

Attributes Objects	Asgardian	Avenger	Female	Human	Infinity Stones User	Male	Scientist	Villain
Black Widow		×	×	×				
Captain America		×		×		×		
Hela	×		×					×
Hulk		×		×	×	×	×	
Iron Man		×		×	×	×	×	
Thanos					×	×		×
Thor	×	×				×		

Example

({Captain America, Hulk, Iron Man}, {Avenger, Human, Male})

Formal Concept Analysis - Concept Lattice

Definition

The subconcept-superconcept relation is formalized by

$$(\mathbf{A}_1, \mathbf{B}_1) \preceq (\mathbf{A}_2, \mathbf{B}_2) : \Leftrightarrow \mathbf{A}_1 \subseteq \mathbf{A}_2 (\Leftrightarrow \mathbf{B}_1 \supseteq \mathbf{B}_2)$$

All formal concepts of $\mathbb K$ ordered by relation \preceq is called the concept lattice of $\mathbb K.$

For example,

Formal Concept Analysis - Concept Lattice

Our Method

Our Method

- 1. Identifying lexical anchors from a token-based formal context.
 - For classes, properties and instances.
 - Using the tokens from strings of labels/names.
- 2. Identifying additional property mappings from a structural formal context.
 - For properties.
 - Using the structure of the (subject, predicate, object) triples and lexical anchors.

Our Method

The Knowledge Graph Track for OAEI 2018 Description

Source	Hub	# Instances	# Properties	# Classes
RuneScape Wiki	Games	200,605	1,998	106
Old School RuneScape Wiki	Games	38,563	488	53
DarkScape Wiki	Games	19,623	686	65
Marvel Database	Comics	56,464	99	2
Hey Kids Comics Wiki	Comics	158,234	1,925	181
DC Database	Comics	128,495	177	5
Memory Alpha	TV	63,240	326	0
Star Trek Expanded Universe	TV	17,659	201	3
Memory Beta	Books	63,223	413	11

For convenience sake, MA stands for Memory Alpha, MB stands for Memory Beta and STEX stands for Star Trek Expanded Universe.

Identifying Lexical Anchors

Our Method Identifying Lexical Anchors

Lexical Anchors - Token-based Formal Context

	USS	tredictson	NCC	22/11	system
uss fredrickson	×	×			
uss fredrickson (ncc-42111)	×	×	×	×	
ncc-42111			×	×	
fredrickson system		×			×

Lexical Anchors - Token-based Formal Context

	US5	tredictson	NCC	22/11	system
uss fredrickson	×	×			
uss fredrickson (ncc-42111)	×	×	×	×	
ncc-42111			×	×	
fredrickson system		×			×

Lexical Anchors - Token-based Concept Lattice

Lexical Anchors - Token-based Concept Lattice

Lexical Anchors

String	Instance				
use fredrickson	MB:USS_Fredrickson				
	STEX:USS_Fredrickson				
use fradrickson (nec 42111)	MB:USS_Fredrickson_(NCC-42111)				
uss fredrickson (fice-42111)	STEX:USS_Fredrickson_(NCC-42111)				

Four instance mappings can be extracted as follows:

(MB:USS_Fredrickson_(NCC-42111),	STEX :USS_Fredrickson_(NCC-42111)
(MB:USS_Fredrickson_(NCC-42111),	$STEX:USS_Fredrickson$
(MB:USS_Fredrickson,	${\small {\tt STEX:}} USS_{\tt Fredrickson_(NCC-42111)} \\ \\$
(MB:USS_Fredrickson,	${f STEX:}{USS_Fredrickson}$

Identifying Structural Mappings

	(d, g)	(e, c)	(e, b)	(a, b)	(a, f)	(h, c)
MA:wsteleplayby	×	×			×	
MB:teleplay	×	×				×
MA:wsstoryby			×	×		
MB:story			×	×		

- $a = \langle MA:Battle_Lines_(episode), \rangle$
- b = (MA:Hilary_J._Bader,
- $c = \langle MA: Ira_Steven_Behr, \rangle$
- d = (MA:Paradise_Lost_(episode),
- e = (MA:Rules_of_Acquisition_(episode),
- $f = \langle MA: Richard_Danus, \rangle$
- $g = \langle MA:Robert_Hewitt_Wolfe,$
- $h = \langle MA:The_Nagus,$

```
MB:Battle_Lines_(episode) 
MB:Hilary_J._Bader 
MB:Ira_Steven_Behr 
MB:Paradise_Lost_(episode) 
MB:Rules_of_Acquisition_(episode) 
MB:Richard_Danus 
MB:Robert Hewitt Wolfe
```

```
MB:The_Nagus\rangle
```

e.g. MA:Paradise_Lost_(episode) $\xrightarrow{MA:wsteleplayby}$ MA:Robert_Hewitt_Wolfe

Our Method Identifying Structural Property Mappings

Our Method Identifying Structural Property Mappings

Our Method Identifying Structural Property Mappings

Evaluation on Knowledge Graph track for OAEI 2018

Evaluation - Knowledge Graph Track Description

Source	Hub	# Instances	# Properties	# Classes
RuneScape Wiki	Games	200,605	1,998	106
Old School RuneScape Wiki	Games	38,563	488	53
DarkScape Wiki	Games	19,623	686	65
Marvel Database	Comics	56,464	99	2
Hey Kids Comics Wiki	Comics	158,234	1,925	181
DC Database	Comics	128,495	177	5
Memory Alpha	TV	63,240	326	0
Star Trek Expanded Universe	ΤV	17,659	201	3
Memory Beta	Books	63,223	413	11

Evaluation on Lexical Matching - Games

Evaluation on Lexical Matching - Comics

Evaluation on Lexical Matching - TV & Books

Comparison - OAEI 2018

Evaluation - Structural Property Matching

memory-alpha~memory-beta

Additional Property Mappings Solely Identified Structurally

	Additional property mappings				
Those in the gold standard	<pre>(MA:relative,</pre>	$\begin{array}{l} MB: \mathtt{otherRelatives} \\ MB: \mathtt{teleplay} \\ \end{array}$			
Those not in the gold standard	<pre>{MA:wsstoryby,</pre>	MB:story) MB:before) MB:after) MB:narrator) MB:grandparents)			

Results on the Knowledge Graph track for OAEI 2019

System	#	Class			
		Size	Precision	Recall	F-measure
baselineAltLabel	5	16.4	1.00	0.59	0.74
baselineLabel	5	16.4	1.00	0.59	0.74
Wiktionary	5	21.4	1.00	0.67	0.80
DOME	4	22.5	0.74	0.53	0.62
AML	4	27.5	0.78	0.61	0.69
LogMapLt	4	23.0	0.80	0.43	0.56
LogMapKG	5	26.0	0.95	0.76	0.84
FCAMap-KG	5	18.6	1.00	0.70	0.82

http://oaei.ontologymatching.org/2019/results/knowledgegraph/

System	#	Property			
		Size	Precision	Recall	F-measure
baselineAltLabel	5	47.8	0.99	0.66	0.79
baselineLabel	5	47.8	0.99	0.66	0.79
Wiktionary	5	75.8	0.97	0.98	0.98
DOME	4	75.5	0.79	0.75	0.77
AML	4	58.2	0.72	0.49	0.59
LogMapLt	4	0.0	0.00	0.00	0.00
LogMapKG	5	0.0	0.00	0.00	0.00
FCAMap-KG	5	69.0	1.00	0.96	0.98

http://oaei.ontologymatching.org/2019/results/knowledgegraph/

System	#	Instance			
		Size	Precision	Recall	F-measure
baselineAltLabel	5	4674.2	0.89	0.80	0.84
baselineLabel	5	3641.2	0.95	0.71	0.81
Wiktionary	5	3483.6	0.91	0.70	0.79
DOME	4	4895.2	0.74	0.67	0.70
AML	4	7529.8	0.72	0.69	0.71
LogMapLt	4	6653.8	0.73	0.62	0.67
LogMapKG	5	29190.4	0.40	0.86	0.54
FCAMap-KG	5	4530.6	0.90	0.79	0.84

http://oaei.ontologymatching.org/2019/results/knowledgegraph/

System	#	Overall			
		Size	Precision	Recall	F-measure
baselineAltLabel	5	4739.0	0.89	0.80	0.84
baselineLabel	5	3706.0	0.95	0.71	0.81
Wiktionary	5	3581.8	0.91	0.71	0.80
DOME	4	4994.8	0.74	0.67	0.70
AML	4	7615.5	0.72	0.69	0.70
LogMapLt	4	6676.8	0.73	0.61	0.66
LogMapKG	5	29216.4	0.40	0.84	0.54
FCAMap-KG	5	4792.6	0.91	0.79	0.85

http://oaei.ontologymatching.org/2019/results/knowledgegraph/

Conclusions

FCA-based Systems - Ontology Matching

Systems	Objects	Attributes	External resources
FCA-Merge (Stumme and Maedche 2001)	Documents	Classes of ontologies	Textual documents from the Web
(Souza and Davis 2004; Zhao, Wang, and Halang 2006; Xu, Wu, and Chen 2010)	Classes of ontologies	Terms in thesaurus	Domain thesuarus
FCA-OntMerge (Guan- yu and Shu-peng 2010)	Classes of ontologies	Properties of ontologies	None
FCA-Map (Zhao and Zhang 2016; Zhao et al. 2018)	Names/labels/synonyms and classes of ontologies	Tokens and relations/axioms among classes	Domain thesuarus

Conclusions

- This work reveals the advantage of our FCA-based approach to knowledge graph matching.
- The lexical matching part already achieved high recall in class, property, and instance matching for OAEI 2018 Knowledge Graph track.
- The structural matching part using a property-based lattice is able to identify additional property mappings.

Future Work

- An alternative validation strategy so as to ensure the quality of mappings.
- An iterative framework so as to perform class, property, and instance matching in an augmented way until no further matches can be found.
- A formal context constructed from multiple sources so as to apply it to three or more knowledge graphs matching directly.
- This work is ongoing and the source code is open. (Chen 2019)
- Guowei Chen. FCA-Map source code. 2019. URL: https://github.com/icgw/FCA-Map (visited on 10/26/2019).

Thanks for your attention!