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CHAPTER I. PRELIMINARIES: SET THEORY AND CATEGORIES

Chapter I. Preliminaries: Set theory and categories

§1. Naive Set Theory

1.1 Locate a discussion of Russel’s paradox, and understand it.

Recall that, in naive set theory, any collection of objects that satisfy some property can be

called a set. Russel’s paradox can be illustrated as follows. Let R be the set of all sets that

do not contain themselves. Then, if R /∈ R, then by definition it must be the case that

R ∈ R; similarly, if R ∈ R then it must be the case that R /∈ R. ■

1.2 ▷ Prove that if ∼ is an equivalence relation on a set S, then the corresponding family

P∼ defined in §1.5 is indeed a partition of S; that is, its elements are nonempty, disjoint,

and their union is S. [§1.5]

Let S be a set with an equivalence relation ∼. Consider the family of equivalence classes

w.r.t. ∼ over S:

P∼ = {[a]∼ | a ∈ S}

Let [a]∼ ∈ P∼. Since ∼ is an equivalence relation, by reflexivity we have a ∼ a, so [a]∼
is nonempty. Now, suppose a and b are arbitrary elements in S such that a ̸∼ b. For

contradiction, suppose that there is an x ∈ [a]∼∩ [b]∼. This means that x ∼ a and x ∼ b. By

transitivity, we get that a ∼ b; this is a contradiction. Hence the [a]∼ are disjoint. Finally,

let x ∈ S. Then x ∈ [x]∼ ∈P∼. This means that⋃
[a]∼∈P∼

[a]∼ = S,

that is, the union of the elements of P∼ is S. ■

1.3 ▷ Given a partition P on a set S, show how to define an equivalence relation ∼ such

that P = P∼. [§1.5]

Define, for a, b ∈ S, a ∼ b if and only if there exists an X ∈P such that a ∈ X and b ∈ X.

We can check that ∼ is an equivalence relation as follows.

1. (Reflexivity) ∃X ∈P, a ∈ X ∧ a ∈ X ⇐⇒ a ∼ a.

2. (Symmetry)

a ∼ b ⇐⇒ ∃X ∈P, a ∈ X ∧ b ∈ X ⇐⇒ ∃X ∈P, b ∈ X ∧ a ∈ X ⇐⇒ b ∼ a.
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CHAPTER I. PRELIMINARIES: SET THEORY AND CATEGORIES

3. (Transitivity)

a ∼ b ∧ b ∼ c ⇐⇒ (∃X ∈P, a ∈ X ∧ b ∈ X) ∧ (∃Y ∈P, b ∈ Y ∧ c ∈ Y )

=⇒ ∃X, Y ∈P, (a ∈ X) ∧ (c ∈ Y ) ∧ (b ∈ X ∩ Y )

=⇒ ∃X, Y ∈P, (a ∈ X) ∧ (c ∈ Y ) ∧ (X ∩ Y ̸= ∅)

=⇒ ∃X, Y ∈P, (a ∈ X) ∧ (c ∈ Y ) ∧ (X = Y )

=⇒ ∃X ∈P, (a ∈ X) ∧ (c ∈ X)

⇐⇒ a ∼ c.

We will show that P = P∼.

1. (P ⊆P∼). Note that

X ∈P =⇒ ∀a, b ∈ X, ∃Y ∈P, a ∈ Y ∧ b ∈ Y
⇐⇒ ∀a, b ∈ X, a ∼ b

⇐⇒ X ∈P∼.

2. (P∼ ⊆P). Given any [a]∼ ∈P∼, there exists X ∈P such that a ∈ X. Since

a′ ∈ X =⇒ ∃Y ∈P, a ∈ Y ∧ a′ ∈ Y ⇐⇒ a ∼ a′ ⇐⇒ a′ ∈ [a]∼ ,

we get X ⊆ [a]∼. Also we have

a′ ∈ [a]∼ ⇐⇒ ∃Y ∈P, (a ∈ Y ) ∧ (a′ ∈ Y )

=⇒ ∃Y ∈P, (a ∈ X ∩ Y ) ∧ (a′ ∈ Y )

=⇒ ∃Y ∈P, (X ∩ Y ̸= ∅) ∧ (a′ ∈ Y )

=⇒ ∃Y ∈P, (Y = X) ∧ (a′ ∈ Y )

=⇒ a′ ∈ X,

which means that [a]∼ ⊆ X and accordingly [a]∼ = X ∈P. Therefore, P∼ ⊆P, and

with 1. we can finally conclude that P and P∼ is equal.

■

1.4 How many different equivalence relations can be defined on the set {1, 2, 3}?

From the definition of an equivalence relation and the solution to Exercise I.1.3, we can see

that an equivalence relation on S is equivalent to a partition of S. Thus the number of

equivalence relations on S is equal to the number of partitions of S. Since {1, 2, 3} is small

we can determine this by hand:

P0 = { {1, 2, 3} }
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CHAPTER I. PRELIMINARIES: SET THEORY AND CATEGORIES

P1 = { {1}, {2}, {3}} }

P2 = { {1, 2}, {3} }

P3 = { {1}, {2, 3} }

P4 = { {1, 3}, {2} }

Thus there can be only 5 equivalence relations defined on {1, 2, 3}. ■

1.5 Give an example of a relation that is reflexive and symmetric but not transitive. What

happens if you attempt to use this relation to define a partition on the set? (Hint: Thinking

about the second question will help you answer the first one.)

For a, b ∈ Z, define a ⋄ b to be true if and only if |a− b| ≤ 1. It is reflexive, since a ⋄ a =

|a− a| = 0 ≤ 1 for any a ∈ Z, and it is symmetric since a ⋄ b = |a− b| = |b− a| = b ⋄ a for

any a, b ∈ Z. However, it is not transitive. Take for example a = 0, b = 1, c = 2. Then we

have |a− b| = 1 ≤ 1, and |b− c| = 1 ≤ 1, but |a− c| = 2 > 1; so a⋄ b and b⋄ c, but not a⋄ c.
When we try to build a partition of Z using ⋄, we get ”equivalence classes” that are not

disjoint. For example, [2]⋄ = {1, 2, 3}, but [3]⋄ = {2, 3, 4}. Hence P⋄ is not a partition of Z.
■

1.6 Define a relation ∼ on the set R of real numbers, by setting a ∼ b ⇐⇒ b − a ∈ Z.
Prove that this is an equivalence relation, and find a ‘compelling’ description for R/ ∼. Do
the same for the relation ≈ on the plane R×R defined by declaring (a1, a2) ≈ (b1, b2) ⇐⇒
b1 − a1 ∈ Z and b2 − a2 ∈ Z. [§II.8.1, II.8.10]

Suppose a, b, c ∈ R. We have that a − a = 0 ∈ Z, so ∼ is reflexive. If a ∼ b, then

b − a = k for some k ∈ Z, so a − b = −k ∈ Z, hence b ∼ a. So ∼ is symmetric. Now,

suppose that a ∼ b and b ∼ c, in particular that b − a = k ∈ Z and c − b = l ∈ Z. Then

c− a = (c− b) + (b− a) = l + k ∈ Z, so a ∼ c. So ∼ is transitive.

An equivalence class [a]∼ ∈ R /∼ is the set of integers Z transposed by some real number

ϵ ∈ [0, 1). That is, for every set X ∈ R /∼, there is a real number ϵ ∈ [0, 1) such that every

x ∈ X is of the form k + ϵ for some integer k.

Now we will show that ≈ is an equivalence relation over R×R. Supposing a1, a2 ∈ R×R,
we have a1−a1 = a2−a2 = 0 ∈ Z, so (a1, a2) ≈ (a1, a2). If we also suppose that b1, b2, c1, c2 ∈
R×R, then symmetry and transitivity can be shown as well: (a1, a2) ≈ (b1, b2) =⇒ b1−a1 =
k for some integer k and b2 − a2 = l for some integer l, hence a1 − b1 = −k ∈ Z and

a2 − b2 = −l ∈ Z, so (b1, b2) ≈ (a1, a2); also if (a1, a2) ≈ (b1, b2) and (b1, b2) ≈ (c1, c2),

then (b1, b2) − (a1, a2) = (k1, k2) ∈ Z × Z as well as (c1, c2) − (b1, b2) = (l1, l2) ∈ Z × Z, so
(c1, c2)− (a1, a2) = (c1, c2)− (b1, b2) + (b1, b2)− (a1, a2) = (k1 + l1, k2 + l2 ∈ Z× Z. Thus ≈
is an equivalence relation.

The interpretation of ≈ is similar to ∼. An equivalence class X ∈ R× R / ≈ is just the

2-dimensional integer lattice Z×Z transposed by some pair of values (ϵ1, ϵ2) ∈ [0, 1)× [0, 1).
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Imaginatively, R/ ∼ can be viewed as a ring of length 1 by bending the real line R and

gluing the points in the same equivalence class. And R× R/ ≈ can be viewed as a torus in

a similar way. ■

§2. Functions between sets

2.1 How many different bijections are there between a set S with n elements and itself?

[§II.2.1]

A function f : S → S is a graph Γf ⊆ S × S. Since f is bijective, then for all y ∈ S there

exists a unique x ∈ S such that (x, y) ∈ Γf . We can see that |Γf | = n. Since each x must

be unique, all the elements x ∈ S must be present in the first component of exactly one pair

in Γf . Furthermore, if we order the elements (x, y) in Γf by the first component, we can see

that Γf is just a permutation on the n elements in S. For example, for S = {1, 2, 3} one

such Γf is:

{ (1, 3), (2, 2), (3, 1) }

Since |S| = n, the number of permutations of S is n!. Hence there are n! different bijections

between S and itself. ■

2.2 ▷ Prove statement (2) in Proposition 2.1. You may assume that given a family of

disjoint subsets of a set, there is a way to choose one element in each member of the family.

[§2.5, V3.3]

Proposition 2.1. Assume A ̸= ∅, and let f : A→ B be a function. Then

(1) f has a left-inverse if and only if f is injective; and

(2) f has a right-inverse if and only if f is surjective.

Let A ̸= ∅ and suppose f : A→ B is a function.

( =⇒ ) Suppose there exists a function g that is a right-inverse of f . Then f ◦ g = idB.

Let b ∈ B. We have that f(g(b)) = b, so there exists an a = g(b) such that f(a) = b. Hence

f is surjective.

( ⇐= ) Suppose that f is surjective. We want to construct a function g : B → A such

that f(g(a)) = a for all a ∈ A. Since f is surjective, for all b ∈ B there is an a ∈ A such

that f(a) = b. For each b ∈ B construct a set Λb of such pairs:

Λb = { (a, b) | a ∈ A, f(a) = b }

Note that Λb is non-empty for all b ∈ B. So that we can choose one pair (a, b) (a not

necessarily unique) from each set in Λ = {Λb | b ∈ B } to define g : B → A:

g(b) = a, where a is in some (a, b) ∈ Λb
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Now, g is a right-inverse of f . To show this, let b ∈ B. Since f in surjective, g has been

defined such that when a = g(b), f(a) = b, so we get that f(g(b)) = (f ◦ g)(b) = b, thus g is

a right-inverse of f . ■

2.3 Prove that the inverse of a bijection is a bijection and that the composition of two

bijections is a bijection.

1. Suppose f : A → B is a bijection, and that f−1 : B → A is its inverse. We have that

f ◦ f−1 = idB and f−1 ◦ f = idA. Hence f is the left- and right-inverse of f−1, so f−1

must be a bijection.

2. Let f : B → C and g : A → B be bijections, and consider f ◦ g. To show that f

is injective, let a, a′ ∈ A such that (f ◦ g)(a) = (f ◦ g)(a′). Since f is a bijection,

f(g(a)) = f(g(a′)) =⇒ g(a) = g(a′). Also, since g is a bijection, g(a) = g(a′) =⇒
a = a′. Hence f ◦ g is injective. Now, let c ∈ C. Since f is surjective, there is a b ∈ B
such that f(b) = c. Also, since g is surjective, there is an a ∈ A such that g(a) = b;

this means that there is an a ∈ A such that (f ◦ g)(a) = c. So f ◦ g is bijective.

2.4 ▷ Prove that ‘isomorphism’ is an equivalence relation (on any set of sets.) [§4.1]

Let S be a set. Then idS is a bijection from S to itself, so S ∼= S. Let T be another set

with S ∼= T , i.e. that there exists a bijection f : S → T . Since f is a bijection, it has an

inverse f−1 : T → S, so T ∼= S. Finally, let U also be a set, and assume that there exists

bijections f : S → T and g : T → U , i.e. that S ∼= T and T ∼= U . From exercise I.2.3 we

know that the composition of bijections is itself a bijection. This means that g ◦ f : S → U

is a bijection, so S ∼= U . Hence ∼= is an equivalence relation. ■

2.5 ▷ Formulate a notion of epimorphism, in the style of the notion ofmonomorphism seen

in §2.6, and prove a result analogous to Proposition 2.3, for epimorphisms and surjections.

A function f : A → B is an epimorphism if and only if for all sets Z and all functions

b′ : Z → B, there is a function a′ : Z → A such that f ◦ a′ = b′. Now we will show that f is

a surjection if and only if it is an epimorphism.

( =⇒ ) Suppose that f : A→ B is surjective. Let Z be a set and b′ : Z → B a function.

We need to construct a function a′ : Z → A such that f ◦ a′ = b′. Fix z ∈ Z. Suppose

b = b′(z) ∈ B. Since b ∈ B and f is surjective, there exists an a ∈ A such f(a) = b. Now,

define a′(z) = a this way for each z ∈ Z. Then f ◦ a′(z) = b′(z) for all z ∈ Z, so f ◦ a′ = b′.

Hence f is an epimorphism.

(⇐= ) Suppose that f is an epimorphism. Let b′ : B → B be a bijection. Since f is an

epimophism, there is a function a′ : B → A such that f ◦ a′ = b′. Let b ∈ B. Since b′ is a

bijection, there is a unique element y ∈ B such that b′(y) = b. Furthermore, we have that

(f ◦ a′)(y) = b. In other words, a = a′(y) is an element in a such that f(a) = b. Hence f is

surjective, as required. ■
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2.6 With notation as in Example 2.4, explain how any function f : A→ B determines a

section of πA.

Let f : A → B and let πA : A × B → A be such that πA(a, b) = a for all (a, b) ∈ A × B.

Construct g : A → A × B defined as g(a) = (a, f(a)) for all a ∈ A. The function g can be

thought of as ‘determined by’ f . Now, since (πA ◦ g)(a) = πA(g(a)) = πA(a, f(a)) = a for all

a ∈ A, g is a right inverse of πA, i.e. g is a section of πA as required. ■

2.7 Let f : A→ B be any function. Prove that the graph Γf of f is isomorphic to A.

Recall that sets ΓA and A are isomorphic, written ΓA ∼= A, if and only if there exists a

bijection g : ΓA → A. Let’s construct such a function g, defined to be g(a, b) = a. Keep in

mind that here (a, b) ∈ Γf ⊆ A×B.

Let (a′, b′), (a′′, b′′) ∈ Γf such that f(a′, b′) = f(a′′, b′′). For contradiction, suppose that

(a′, b′) ̸= (a′′, b′′). Since f(a′, b′) = a′ = a′′ = f(a′′, b′′), it must be that b′ ̸= b′′. However, this

would mean that both (a′, b′) and (a′, b′′) are in Γf ; this would mean that f(a′) = b′ ̸= b′′ =

f(a′), which is impossible since f is a function. Hence g is injective.

Let a′ ∈ A. Since f is a well-defined function with A as its domain, there must exists a

pair (a′, b′) ∈ Γf for some b′ ∈ B, in particular that g(a′, b′) = a′; thus g is surjective, so it

is a bijection. ■

2.8 Describe as explicitly as you can all terms in the canonical decomposition (cf. §2.8)
of the function R→ C defined by r 7→ e2πir. (This exercise matches one previously. Which

one?)

Let f : R→ C be as above. The first piece in the canonical decomposition is the equivalence

relation ∼ defined as x ∼ x′ ⇐⇒ f(x) = f(x′), i.e. [x]∼ is the set of all elements in R that

get mapped to the same element in C by f as x.

The second piece is the set P∼. This set is the set of all equivalence classes of R over

equality up to f . Note that, since f(x) = e2πix = cos(2πx) + i sin(2πx), f is periodic with

period 1. That is, f(x) = e2πix = e2πix+2π = e2πi(x+1) = f(x + 1). In other words, we can

write P∼ as,

P∼ = { { r + k | k ∈ Z } | r ∈ [0, 1) ⊆ R } ,

and it is here when we notice uncanny similarities to Exercise I.1.6 where x ∼ y, for x, y ∈ R,
if and only if x− y ∈ Z, in which we could have written P∼ in the same way.

Now we will explain the mysterious f̃ : P∼ → imf . This function is taking each

equivalence class [x]∼ over the reals w.r.t. ∼ and mapping it to the element in C that f maps

each element x′ ∈ [x]∼ to; indeed, since x ∼ x′ is true for x, x′ ∈ R if and only if f(x) = f(x′),

we can see that for any x ∈ R, for all x′ ∈ [x]∼, there exists a c ∈ C such that f(x′) = c. To

illustrate with the equivalence class over R w.r.t. ∼ corresponding to the element 0 ∈ R, we
have [0]∼ = { . . . ,−2,−1, 0, 1, 2, . . . }. We can see that e−4πi = e−2πi = e0πi = 1 = e2πi = e4πi,

etc; so the function would map [0]∼ 7→ 1 ∈ C, and so on. Furthermore, we can see that f̃ is
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surjective, since for y to be in imf is to say that there is an x ∈ R such that f(x) = y; so

there must be an equivalence class [x]∼ which is mapped to y by f̃ .

Finally, the simple map from imf → C that simply takes c 7→ c. This can be thought

of as a potential “expansion” of the domain of f̃ . It is obviously injective, since (trivially)

c ̸= c′ =⇒ c ̸= c′. However, it may not be surjective: for example, 2 ∈ C is not in imf as

it is defined above. ■

2.9 ▷ Show that if A′ ∼= A′′ and B′ ∼= B′′, and further A′∩B′ = ∅ and A′′∩B′′ = ∅, then

A′ ∪ B′ ∼= A′′ ∪ B′′. Conclude that the operation A⨿ B is well-defined up to isomorphism

(cf. §2.9) [§2.9, 5.7]

Let A′, A′′, B′, B′′ be sets as described above. Since A′ ∼= A′′ and B′ ∼= B′′, we know there

exists respective bijections f : A′ → A′′ and g : B′ → B′′. Now, we wish to show that

A′ ∪B′ ∼= A′′ ∪B′′. Define a function h : A′ ∪B′ → A′′ ∪B′′ such that h(x) = f(x) if x ∈ A′

and g(x) if x ∈ B′.

We will now show that h is a bijection. Let y ∈ A′′∪B′′. Then, since A′′∩B′′ = ∅, either

y ∈ A′′ or y ∈ B′′. Without loss of generality suppose that y ∈ A′′. Then, since f : A′ → A′′

is a bijection, it is surjective, so there exists an x ∈ A′ ⊆ A′ ∪B′ such that h(x) = f(x) = y.

So h is surjective. Now, suppose that x ̸= x′, for x, x′ ∈ A′ ∪ B′. If x, x′ ∈ A′, then since

f is injective and h(x) = f(x) for all x ∈ A′, then h(x) ̸= h(x′). Similarly for if x, x′ ∈ B′.

Now, without loss of generality if x ∈ A′ and x′ ∈ B′, then h(x) = f(x) ̸= g(x′) = h(x′)

since A′′ ∩B′′ = ∅. Hence h is a bijection, so A′ ∪B′ ∼= A′′ ∪B′′.

Since these constructions of A′, A′′, B′, B′′ correspond to creating “copies” of sets A and B

for use in the disjoint union operation, we have that disjoint union is a well-defined function

up to isomorphism. In particular, since ∼= is an equivalence relation, we can consider ⨿ to

be well-defined from P∼= to A′ ∪B′. ■

2.10 ▷ Show that if A and B are finite sets, then
∣∣BA

∣∣ = |B||A|. [§2.1, 2.11, I.4.1]
Let A and B be sets with |A| = n and |B| = m, with n,m being non-negative integers.

Recall that BA denotes the set of functions f : A → B. Now, if A = B = ∅ or A = ∅ and

|B| = 1, we get one function, the empty function Γf = ∅, and 00 = 10 = 1. If |A| = |B| = 1,

then we get the singleton function Γf = {(a, b)}, and 11 = 1. If A ̸= ∅ and B = ∅, then no

well-defined function can exist from A to B since there will be no value for the elements in

A to take; this explains
∣∣BA

∣∣ = |B||A| = 0|A| = 0.

Suppose that B ̸= ∅ and B is finite. We will show inductively that
∣∣BA

∣∣ = |B||A|.
First, suppose that |A| = 1. Then there are exactly |B| functions from A to B: if B =

{ b1, b2, . . . , bm }, then the functions are {(a, b1)}, {(a, b2)}, etc. Hence
∣∣BA

∣∣ = |B||A| = |B|.
Now, fix k ≥ 2, and assume that

∣∣BA
∣∣ = |B||A| for all sets A such that |A| = k− 1. Suppose

that |A| = k. Let a ∈ A. (We can do this since |A| = k ≥ 2.) Then, by the inductive

hypothesis, since |A\{a}| = k − 1,
∣∣B(A\{a})

∣∣ = |B||A|−1. Let F be the set of functions from
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A\{a} to B. Then, for each of those functions f ∈ F , there is |B| “choices” of where to

assign a: one choice for each element in B. Hence,
∣∣BA

∣∣ = |B| |B||A|−1 = |B||A| as required.
■

2.11 ▷ In view of Exercise 2.10, it is not unreasonable to use 2A to denote the set of

functions from an arbitrary set A to a set with 2 elements (say {0, 1}). Prove that there is
a bijection between 2A and the power set of A (cf. §1.2). [§1.2, III.2.3]

Let S = {0, 1}, and consider f : P(A)→ 2A, defined as

f(X) = { (a, 1) if a ∈ X, and (a, 0) otherwise }

We will show that f is bijective. Let g ∈ 2A. Then f is a function from A to S. Let

A1 = { a ∈ A | g(a) = 1 }. Then A1 is a set such that A1 ∈ P(A), and f(A1) = g. Hence f

is surjective.

Now, suppose that X, Y ⊆ A and f(X) = f(Y ). Then, for all a ∈ A, a ∈ X ⇐⇒
f(X)(a) = 1 ⇐⇒ f(Y )(a) = 1 ⇐⇒ a ∈ Y . Hence f is injective, so 2A ∼= P(A). ■

§3. Categories

3.1 Let C be a category. Consider a structure Cop with:

• Obj(Cop) := Obj(C);

• for A, B objects of Cop (hence, objects of C), HomCop(A,B) := HomC(B,A)

Show how to make this into a category (that is, define composition of morphisms in Cop

and verify the properties listed in §3.1). Intuitively, the ‘opposite’ category Cop is simply

obtained by ‘reversing all the arrows’ in C. [5.1, §VIII.1.1, §IX.1.2, IX.1.10]

• For every object A of C, there exists one identity morphism 1A ∈ HomC(A,A). Since

Obj(Cop) := Obj(C) and HomCop(A,A) := HomC(A,A), for every object A of Cop, the

identity on A coincides with 1A ∈ C.

• For A, B, C objects of Cop and f ∈ HomCop(A,B) = HomC(B,A), g ∈ HomCop(B,C) =

HomC(C,B), the composition laws in C determines a morphism f ∗ g in HomC(C,A),

which deduces the composition defined on Cop:

HomCop(A,B)× HomCop(B,C) −→ HomCop(A,C)

(f, g) 7−→ g ◦ f := f ∗ g

• Associativity. If f ∈ HomCop(A,B), g ∈ HomCop(B,C), h ∈ HomCop(C,D), then

f ◦ (g ◦ h) = f ◦ (h ∗ g) = (h ∗ g) ∗ f = h ∗ (g ∗ f) = (g ∗ f) ◦ h = (f ◦ g) ◦ h.

- 11 -



CHAPTER I. PRELIMINARIES: SET THEORY AND CATEGORIES

• Identity. For all f ∈ HomCop(A,B), we have

f ◦ 1A = 1A ∗ f = f, 1B ◦ f = f ∗ 1B = f.

Thus we get the full construction of Cop. ■

3.2 If A is a finite set, how large is EndSet(A)?

The set EndSet(A) is the set of functions f : A → A. Since A is finite, write |A| = n for

some n ∈ Z. By Exercise I.2.10, we know that
∣∣AA∣∣ = |A||A| = nn. So the the set EndSet(A)

has size nn. ■

3.3 ▷ Formulate precisely what it means to say that 1a is an identity with respect to

composition in Example 3.3, and prove this assertion. [§3.2]

Suppose S is a set, and ∼ is a relation on S satisfying the reflexive and transitive property.

Then we can encode this data into a category C:

• Objects: the elements of S;

• Morphisms: if a, b are objects (that is: if a, b ∈ S) then let Hom(a, b) be the set

consisting of the element (a, b) ∈ S × S if a ∼ b, and Hom(a, b) = ∅. otherwise.

Given the composition of two morphisms

HomC(A,B)× HomC(B,C) −→ HomC(A,C)

(a, b) ◦ (b, c) 7−→ (a, c)

we are asked to check 1a = (a, a) is an identity with respect to this composition. ■

3.4 Can we define a category in the style of Example 3.3 using the relation < on the set

Z?

No, we can’t. This is because < isn’t reflexive: x ̸< x for any x ∈ Z. ■

3.5 ▷ Explain in what sense Example 3.4 is an instance of the categories considered in

Example 3.3. [§3.2]

Let S be a set. Example 3.4 considers the category Ŝ with objects Obj(Ŝ) = P(S) and

morphisms HomŜ(A,B) = { (A,B) } if A ⊆ B and ∅ otherwise, for all sets A,B ∈P. The

category Ŝ is an instance of the categories explained in Example 3.3 because ⊆ is a reflexive

and transitive relation on the power set of any set S. Indeed, for X, Y, Z ⊆ S, we have that

X ⊆ X and, if X ⊆ Y and Y ⊆ Z, then if x ∈ X, then x ∈ Y and x ∈ Z so X ⊆ Z. ■
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3.6 ▷ (Assuming some familiarity with linear algebra.) Define a category V by taking

Obj(V) = N and letting HomV(m,n) = the set of m× n matrices with real entries, for all

m,n ∈ N. (We will leave the reader the task of making sense of a matrix with 0 rows or

columns.) Use product of matrices to define composition. Does this category ‘feel’ familiar?

[§VI.2.1, §VIII.1.3]

Yes! It is yet another instance of Example 3.3. The binary relation ∼ on N×N holds for all

values (n,m) ∈ N×N, and means that a matrix of size m× n “can be built”. It is reflexive

trivially. It is transitive trivially as well—a matrix of any size can be built. However, it

would also hold, for example, if we had to in some sense “deduce” that a 3× 3 matrix could

be built using the fact that 3× 1 and 1× 3 matrices can be built. ■

3.7 ▷ Define carefully the objects and morphisms in Example 3.7, and draw the diagram

corresponding to compositon. [§3.2]

Let C be a category, and A ∈ C. We want to define CA. Let Obj(CA) include all morphisms

f ∈ HomC(A,Z) for all Z ∈ Obj(C). For any two objects f, g ∈ Obj(CA), f : A → Z1 and

g : A → Z2, we define the morphisms HomCA(f, g) to be the morphisms σ ∈ HomC(Z1, Z2)

such that g = σf . Now we must check that these morphisms satisfy the axioms.

1. Let f ∈ Obj(CA) ∈ HomC(A,Z) for some object Z ∈ Obj(C). Then there exists an

identity morphism 1Z ∈ HomC(Z,Z) since C is a category. This is a morphism such

that f = 1zf , so HomCA(f, f) is also nonempty.

2. Let f, g, h ∈ Obj(CA) such that there are morphisms σ ∈ HomCA(f, g) and τ ∈
HomCA(g, h). Then there is a morphism υ ∈ HomCA(f, h), namely τσ, which ex-

ists because of morphism composition in C. For clarity, we write that f : A → Z1,

g : A → Z2, h : A → Z3, with σ : Z1 → Z2 and τ : Z2 → Z3. We have g = σf and

h = τg. Hence, υf = τσf = τg = h as required.

3. Lastly, let f, g, h, i ∈ Obj(CA) with Z1, Z2, Z3, Z4 codomains respectively, and with

σ ∈ HomCA(f, g), τ ∈ HomCA(g, h), and υ ∈ HomCA(h, i). Since σ, τ , and υ are

morphisms in C taking Z1 → Z2, etc., morphism composition is associative; hence

morphism composition is associative in CA as well.

■

3.8 ▷ A subcategory C′ of a category C consists of a collection of objects of C, with

morphisms HomC′(A,B) ⊆ HomC(A,B) for all objects A,B ∈ Obj(C′), such that identities

and compositions in C make C′ into a category. A subcategory C′ is full if HomC′(A,B) =

HomC(A,B) for all A,B ∈ Obj(C′). Construct a category of infinite sets and explain how

it may be viewed as a full subcategory of Set. [4.4,§VI.1.1, §VIII.1.3]
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Let InfSet be a subcategory of Set with Obj(InfSet) being all infinite sets and HomInfSet(A,B)

for infinite sets A,B being the functions from A to B. Since HomSet(A,B) is just the set

of all functions from A to B and not, say, the set of all functions from subsets of A that

are in Obj(Set) to B, InfSet is full since HomInfSet(A,B) = HomSet(A,B) for all infinite sets

A,B ∈ Obj(InfSet). ■

3.9 ▷ An alternative to the notion of multiset introduced in §2.2 is obtained by consider-

ing sets endowed with equivalence relations; equivalent elements are taken to be multiple

instance of elements ‘of the same kind’. Define a notion of morphism between such en-

hanced sets, obtaining a category MSet containing (a ‘copy’ of) Set as a full subcategory.

(There may be more than one reasonable way to do this! This is intentionally an open-

ended exercise.) Which objects in MSet determine ordinary multisets as defined in §2.2 and

how? Spell out what a morphism of multisets would be from this point of view. (There

are several natural motions of morphisms of multisets. Try to define morphisms in MSet

so that the notion you obtain for ordinary multisets captures your intuitive understanding

of these objects.) [§2.2, §3.2, 4.5]

Define Obj(MSet) as all tuples (S,∼) where S is a set and ∼ is an equivalence relation

on S. For two multisets Ŝ = (S,∼), T̂ = (T,≈) ∈ Obj(MSet), we define a morphism

f ∈ HomMSet(Ŝ, T̂ ) to be a set-function f : S → T such that, for x, y ∈ S, x ∼ y =⇒
f(x) ≈ f(y), and morphism composition the same way as set-functions. Now we verify the

axioms:

1. For a multiset (S,∼), we borrow the set-function 1S : S → S and note that it neces-

sarily preserves equivalence, i.e. x ∼ y =⇒ 1S(x) ∼ 1S(y).

2. Let there be objects Ŝ = (S,∼), T̂ = (T,≈), Û = (U,∼=) with morphisms f ∈
HomMSet(Ŝ, T̂ ) and g ∈ HomMSet(T̂ , Û). Note that gf : S → U is a set-function

since Set is a category. Now, since f is a morphism in MSet, for x, y ∈ S, if x ∼ y, then

f(x) ≈ f(y), and since f(x), f(y) ∈ T and g is a morphism in MSet, g(f(x)) ∼= g(f(y)).

3. Associativity can be proven similarly.

Hence MSet as defined above is a category. Now, recall that multisets are defined in

§2.2 as a set S and a multiplicity function m : S → N. So, for any set S and function

m : S → N, if we define the equivalence relation corresponding to m as ∼m then the tuple

(S,∼m) ∈ Obj(MSet). The objects inMSet which don’t correspond to any multiset as defined

in §2.2 are sets S with equivalence relations ∼ such that both S and P∼ are uncountable;

this way, one cannot construct a function m : S → N corresponding to each set in the

partition P∼, since N is countable. ■

3.10 Since the objects of a category C are not (necessarily) sets, it is not clear how to

make sense of a notion of ‘subobject’ in general. In some situations it does make sense

to talk about subobjects, and the subobjects of any given object A in C are in one-to-one

correspondence with the morphisms A → Ω for a fixed, special object Ω of C, called a

subobject classifier. Show that Set has a subobject classifier.
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Let A ∈ Obj(Set). Any set X ⊆ A corresponds to a mapping A → {0, 1}; the elements

x ∈ A that are also in X are mapped to 1, and the elements x ∈ A that aren’t in X are

mapped to 0. Hence the “subobject classifier” for Set is Ω = {0, 1}. ■

3.11 ▷ Draw the relevant diagrams and define composition and identities for the category

CA,B mentioned in Example 3.9. Do the same for the category Cα,β mentioned in Example

3.10. [§5.5, 5.12]

Let C be a category, with A,B ∈ Obj(C). The objects of CA,B are then diagrams:

A

Z

B

f

g

Namely, tuples (Z, f, g) where Z ∈ Obj(C), g ∈ HomC(A,Z), and f ∈ HomC(B,Z). For

objects O1 = (Z1, f1, g1) and O2 = (Z2, f2, g2) in Obj(CA,B), the morphisms between them

are morphisms σ ∈ HomC(Z1, Z2) such that σf1 = f2 and σg1 = g2. This forms the following

commutative diagram:

A

Z1 Z2

B

f1
f2

σ

g1
g2

Given a third object O3 = (Z3, f3, g3), with another morphism τ : O2 → O3 (which is a

morphism from Z2 → Z3), composition in CA,B is defined the same way as composition in

C: τσ : Z1 → Z3. Since σ and τ both commute (i.e. σf1 = f2, σg1 = g2, τf2 = f3, and

τg2 = g3), then τσ also commutes: τσf1 = τf2 = f3 and τσg1 = τg2 = g3. This is how

we can define composition the same in CA,B as in C. Diagrammatically, this is like ”taking

away” the (Z2, f2, g2) object in the joint commutative diagram for σ and τ :

A

Z1 Z2 Z3

B

f1
f2

f3

σ τ

g1
g2

g3

A

Z1 Z3

B

f1
f3

τσ

g1
g3

Let C be a category. Fix two morphisms α ∈ HomC(C,A) and β ∈ HomC(C,B) with

the same source C, and where A,B,C ∈ Obj(C). We wish to formalize the fibered version
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of CA,B: Call, where instead of specifying specific objects in C we use morphisms α and β

directly.

The objects in Cα,β are triples (Z, f, g) where Z ∈ Obj(C), f ∈ HomC(A,Z), and g ∈
HomC(B,Z) such that fα = gβ; intuitively, starting with object C we can use α and β to

map to objects A and B, respectively, and the objects in Cα,β specify a fourth object Z and

morphisms f : Z ← A and g : Z ← B that both map to Z.

Morphisms in Cα,β between objects (Z1, f1, g1) and (Z2, f2, g2) are morphisms σ ∈ HomC(Z1, Z2)

such that everything commutes: σf1α = f2α and σg1β = g2β. In short, we diverge to A and

B from C, then simultaneously converge to Z1 and Z2 in such a way that we can continue

to Z2 from Z1 mapping with σ.

■

§4. Morphisms

4.1 ▷ Composition is defined for two morphisms. If more than two morphisms are given,

e.g.,

A
f−→ B

g−→ C
h−→ D

i−→ E

then one may compose them in several ways, for example,

(ih)(gf), (i(hg))f, i((hg)f), etc.

so that at every step one is only composing two morphisms. Prove that the result of any

such nested composition is independent of the placement of the parentheses.

For three morphisms f, g, h in a category C:

A
f−→ B

g−→ C
h−→ D

we have that (hg)f = h(gf) due to C being a category. Now, fix n ≥ 4 and suppose that all

parenthesizations of n− 1 morphisms are equivalent. Imagine that f1, . . . , fn are morphisms

in a category C:

Z1
f1−→ Z2

f2−→ · · ·Zn
fn−→ Zn+1

Suppose that some parenthesization of fn, fn−1, . . . , f1 is f and furthermore that f = hg,

where h is some parenthesization of fn, . . . , fi+1, and g is some parenthesization of fi, . . . , f1,

where 1 ≤ i ≤ n. Since h and g are parenthesizations of n− i and i morphisms, respectively,

they can be written in the following forms:

h = ((· · · ((fnfn−1)fn−2) · · · )fi+1)

g = (fi(fi−1(· · · (f2f1) · · · ))) = fig
′

in hence f = hg = h(fig
′) = (hfi)g

′. Inductively, we can “pop” morphisms off the left hand
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side of g′ and add them to the right hand side of h, resulting in the canonical form:

f = ((· · · ((fnfn−1)fn−2) · · · )f1)

■

4.2 In Example 3.3 we have seen how to construct a category from a set endowed with a

relation, provided this latter is reflexive and transitive. For what types of relations is the

corresponding category a groupoid (cf. Example 4.6)? [§4.1]

For a reflexive and transitive relation ∼ on a set S, define the category C as follows:

• Objects: Obj(C) = S;

• Morphisms: if a, b are objects (that is: if a, b ∈ S) then let

HomC(a, b) =

{{
(a, b)

}
⊂ S × S if a ∼ b

∅ otherwise

In Example 3.3 we have shown the category. If the relation ∼ is endowed with symmetry,

we have

(a, b) ∈ HomC(a, b) =⇒ a ∼ b =⇒ b ∼ a =⇒ (b, a) ∈ HomC(b, a).

Since

(a, b)(b, a) = (a, a) = 1a, (b, a)(a, b) = (b, b) = 1b,

in fact (a, b) is an isomorphism. From the arbitrariness of the choice of (a, b), we show that

C is a groupoid. Conversely, if C is a groupoid, we can show the relation ∼ is symmetric.

To sum up, the category C is a groupoid if and only if the corresponding relation ∼ is an

equivalence relation. ■

4.3 Let A, B be objects of a category C, and let f ∈ HomC(A,B) be a morphism.

• Prove that if f has a right-inverse, then f is an epimorphism.

• Show that the converse does not hold, by giving an explicit example of a category

and an epimorphism without a right-inverse.

Let A,B,C, and f be as above.

• Suppose that f has a right-inverse g : B → A so that f ◦ g : B → B = idB. Let

Z ∈ Obj(C) and β′, β′′ : A → Z, and suppose that β′ ◦ f = β′′ ◦ f . Then we apply g

to both sides to get β′ ◦ (f ◦ g) = β′′ ◦ (f ◦ g) =⇒ β′ ◦ idB = β′′ ◦ idB since fg = idB,

which in turn implies that β′ = β′′ since idB is the identity.
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• Let C be such that Obj(C) = Z, HomC(a, b) = {(a, b)} if a ≤ b and ∅ otherwise, and

for any objects a, b, c and morphisms f : a → b and g : b → c, define g ◦ f = {(c, a)}.
Then every morphism f ∈ HomC(a, b) is an epimorphism; this is given in the text.

However, if f : a → b = (a, b) for a ̸= b (hence a ≤ b,) we have that HomC(b, a) = ∅;

so f in general. This implies that epimorphisms do not in general have right inverses.

■

4.4 Prove that the composition of two monomorphisms is a monomorphism. Deduce that

one can define a subcategory Cmono of a category C by taking the same objects as in C and

defining HomCmono(A,B) to be the subset of HomC(A,B) consisting of monomorphisms, for

all objects A,B. (Cf. Exercise 3.8; of course, in general Cmono is not full in C.) Do the same

for epimorphisms. Can you define a subcategory Cnonmono of C by restricting to morphisms

that are not monomorphisms?

Let C be a category with A,B,C ∈ Obj(C), and let f : A → B and g : B → C be

monomorphisms. Let Z ∈ Obj(C) and α′, α′′ : Z → A. Suppose gfα′ = gfα′′. Since g is a

mono, fα′ = fα′′. Since f is a mono, α′ = α′′. Therefore (gf)α′ = (gf)α′′ =⇒ α′ = α′′, so

gf is a mono.

This means that we can take the category Cmono as detailed in the question. Since

identities are isomorphisms, they are also monomorphisms, so we still have identities. We

just proved that the composition of monomorphisms is a monomorphism, so the composition

of any two appropriate monomorphisms in Cmono between, say A and B, and B and C,

respectively, will also be a monomorphism hence in HomCmono(A,C), so composition “works”

in Cmono.

The Cnonmono as described above is not a category since it doesn’t have any identities

(since all identities are monomorphisms.)

Now, fix f : A → B and g : B → C to be epimorphisms. Let Z ∈ Obj(C) and

β′, β′′ : C → Z. Suppose β′gf = β′′gf . Since f is an epi, β′g = β′′g. Since g is an epi,

β′ = β′′. Hence gf is an epi as above.

By the same reasoning as above we deduce that Cepi is a category and Cnonepi is not a

category. ■

4.5 Give a concrete description of monomorphisms and epimorphisms in the categoryMSet

you constructed in Exercise I.3.9. (Your answer will depend on the notion of morphism

you defined in that exercise!)

Recall that, for two multisets Ŝ = (S,∼), T̂ = (T,≈) (where S, T are sets and ∼,≈ are

equivalence relations on S and T , respectively,) we defined a morphism f : Ŝ → T̂ in MSet

to be a normal set-function except with the extra condition that for any s, s′ ∈ S, we require
that f preserves equivalence, so if s ∼ s′ then f(s) ≈ f(s′).

The notions of monomorphism and epimorphism transfer over as follows.
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1. A morphism f : Ŝ → T̂ is a monomorphism iff f as a set mapping from S to T is

injective.

2. A morphism f : Ŝ → T̂ is an epimorphism iff f as a set mapping from S to T is

surjective.

■

§5. Universal properties

5.1 Prove that a final object in a category C is initial in the opposite category Cop (cf.

Exercise I.3.1).

An object F of C is final in C if and only if

∀A ∈ Obj(C) : HomC(A,F ) is a singleton.

That is equivalent to

∀A ∈ Obj(Cop) : HomCop(F,A) is a singleton,

which means F is initial in the opposite category Cop. ■

5.2 ▷ Prove that ∅ is the unique initial object in Set. [§5.1].

Suppose there is another set I which is initial in Set. Then ∅ ≃ I, so |∅| = 0 = |I|. But

then vacuously we get that ∅ = I (since all the elements in ∅ are in I and vice versa,) so ∅
is the unique initial object in Set. ■

5.3 ▷ Prove that final objects are unique up to isomorphism. [§5.1]

Let C be a category and F1, F2 be two final objects in C. Then there are unique morphisms

f : F1 → F2 and g : F2 → F1. Since there are only one of each identities 1F1 and 1F2 , then

necessarily gf = 1F2 and fg = 1F1 , hence f is an isomorphism. ■

5.4 What are initial and final objects in the category of ‘pointed sets’ (Example 3.8)? Are

they unique?

Recall that Set∗ is the set of pairs (S, s) where S is a set and s ∈ S. We claim that objects

({s}, s), i.e. pointed singleton sets, are the initial and final objects in Set∗. Note that

there can be no ”empty function” between pointed sets, since each set has to have a point.

Suppose (T, t) ∈ Obj(Set∗). Then there is only one function f : S → T such that f(s) = t:

the function f = {(s, t)}. There is also only one function f : T → S, namely the function

that maps each element t in T to s. Hence singleton pointed sets are initial and final.
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Furthermore, clearly morphisms between pointed sets (S, s) and (T, t) such that |S| , |T | ≥
2, there are more than one function f : S → T and g : T → S: we could take f(s) = f(s′) = t,

or f(s) = t, f(s′) = t′.

They are not unique; any singleton pointed set is initial and final. ■

5.5 What are the final objects in the category considered in §5.3? [§5.3]

■

5.6 Consider the category corresponding to endowing (as in Example 3.3) the set Z+ of

positive integers with the divisibility relation. Thus there is exactly one morphism d→ m

in this category if and only if d divides m without remainder; there is no morphism between

d and m otherwise. Show that this category has products and coproducts. What are their

‘conventional’ names? [§VII.5.1]

Let Div be the above category. Letm,n ∈ Obj(Div). We claim that gcd(m,n) corresponds to

a final object (namely (gcd(m,n),m, n)) in Divm,n. Note that for any z ∈ Obj(Div) such that

z | m and z | n, z | gcd(m,n) (by definition of gcd;) hence HomDivm,n((z,m, n), (gcd(m,n),m, n))

is non-empty. Furthermore, since there can only be at most 1 morphism between any two

objects in Div, (gcd(m,n),m, n) is final. The conventional name for this is the ‘greatest

common divisor.’

The coproducts in Div are the ‘least common multiple’. For any z ∈ Z+, if m | z and

n | z, then lcm(n,m) | z. Hence ((lcm(m,n),m, n), (z,m, n)) is the unique morphism from

(lcm(m,n),m, n) in Divm,n, so (lcm(m,n),m, n) is initial. ■

5.7 Redo Exercise I.2.9, this time using Proposition 5.4.

Suppose A,B,A′, B′ are sets with A ∩ B = ∅, A′ ∩ B′ = ∅, A ∼= A′, and B ∼= B′. We will

show that there are two isomorphic disjoint unions corresponding to A ∪B and A′ ∪B′.

First, take iA : A→ A ∪ B, iA(a) = a for all a ∈ A and analogous for B. Then if Z is a

set with morphisms fA : A→ Z and fB : B → Z, we can take σ : A⨿B = A∪B → Z, σ(x)

to be fA(x) if x ∈ A and fB(x) otherwise. This is analogous to the proof for disjoint union

being a coproduct, hence A⨿B = A ∪B is a disjoint union.

Second, since A ∼= A′ and B ∼= B′, let f : A→ A′ and g : B → B′ be isomorphisms. We

can take iA′ : A→ A′ ∪B′, iA′(a) = f(a) for all a ∈ A and similar for iB′ . Then if Z is a set

with morphisms fA : A→ Z and fB : B → Z, we can take σ : A′ ⨿ B′ = A′ ∪ B′ → Z, σ(x)

to be fA ◦ f−1 if x ∈ A′ and fB ◦ g−1 otherwise (which works since A′ ∩ B′ = ∅.) Hence

A′ ⨿B′ = A′ ∪B′ is a disjoint union.

By Proposition 5.4, since both A ⨿ B and A′ ⨿ B′ are initial objects in some auxiliary

category of Set, they are isomorphic, as required. ■

5.8 Show that in every category C the products A×B and B ×A are isomorphic, if they

exist. (Hint: Observe that they both satisfy the universal property for the product of A

and B; then use Proposition 5.4.)
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Let C be a category with products A × B and B × A. First, consider how f : A × B →
B×A, f(a, b) = (b, a) is an isomorphism between A×B and B×A (with inverse f−1(b, a) =

(a, b).) Since B×A is a product in C, for each object Z ∈ Obj(C) with morphisms fB : B → Z

and fA : A→ Z, there is a unique morphism τ : Z → B×A such that everything commutes.

However, using f we can construct a unique morphism σ : Z → A × B in terms of τ by

taking σ = f−1 ◦ τ . Hence B ×A is a product for A×B as well, i.e. B ×A is a final object

in some auxiliary category.

Hence, by Proposition 5.4, A×B and B × A are isomorphic. ■

5.9 Let C be a category with products. Find a reasonable candidate for the universal

property that the product A×B×C of three objects of C ought to satisfy, and prove that

both (A×B)×C and A×(B×C) satisfy this universal property. Deduce that (A×B)×C
and A× (B × C) are necessarily isomorphic.

Let C be a category with products, and let A,B,C ∈ Obj(C). The three-product is an object

A×B × C ∈ Obj(C) with morphisms πA : A×B × C → A, πB : A×B × C → B, and

πC : A×B × C → C such that for all Z ∈ Obj(C) with morphisms fA : Z → A, fB : Z →
B, fC : Z → C, there is a unique morphism σ : Z → A×B × C such that the following

diagram commutes:

A

Z A×B × C

B

C

σ

fA

fB

fC

πA

πB πC

First, we will show that (A × B) × C is a three-product. Since A × B and Z × C are

products, there are a unique morphisms τ : A × B → Z and υ : Z × C → Z for every

object Z. We can use these two morphisms to build σ : A×B × C → Z for any object Z

as follows: σ : (A×B)×C → Z, σ(a, b, c) = υ(τ(a, b), c). Since υ and τ are well-defined and

unique, σ is well-defined and unique. Hence (A×B)× C is a three-product.

Now, considerA×(B×C). Similarly, this corresponds to unique morphisms τ : A×Z → Z

and υ : B×C → Z from which we can construct σ : A×(B×C)→ Z, σ(a, b, c) = τ(a, υ(b, c)).

By the same logic as above, A× (B × C) is a three product.

Thus by Proposition 5.4, (A×B)× C and A× (B × C) are isomorphic. ■

5.10 Push the envelope a little further still, and define products and coproducts for families

(i.e., indexed sets) of objects of a category.

Do these exist in Set?

It is common to denote the product A× · · · × A︸ ︷︷ ︸
n times

by An.

- 21 -



CHAPTER I. PRELIMINARIES: SET THEORY AND CATEGORIES

Let C be a category and I be a set. Consider {Ai}i∈I with each Ai ∈ Obj(C). An infinitary

product
∏

i∈I Ai ∈ Obj(C) with morphisms {πAi
}i∈I must satisfy the universal property that,

for all Z ∈ Obj(C) and morphisms {fAi
}i∈I , there must be a unique σ : Z →

∏
i∈I Ai such

that σπAi
= fAi

for all i ∈ I.
These should exist in Set as long as we have the axiom of choice. ■

5.11 Let A, resp. B, be a set, endowed with an equivalence relation ∼A, resp. ∼B. Define
a relation ∼ on A×B by setting

(a1, b1) ∼ (a2, b2) ⇐⇒ a1 ∼A a2 and b1 ∼B b2.

(This is immediately seen to be an equivalence relation.)

• Use the universal property for quotients (§5.3) to establish that there are functions

(A×B)/∼ → A/∼A, (A×B)/∼ → B/∼B .

• Prove that (A × B)/∼, with these two functions, satisfies the universal property for

the product of A/∼A and B/∼B.

• Conclude (without further work) that (A×B)/∼ ∼= (A/∼A)× (B/∼B).

Let A,B,∼,∼A,∼B be as above. Let πA : A×B → A and πB : A×B → B be the product

canonical projections for A and B. Let πZ∼ : Z → Z/∼ be the canonical quotient mapping

for all objects Z and equivalence relations ∼. Then we can apply the universal property for

quotients twice to get the required two functions:

(A×B)/∼ A/∼A

A×B

πA
∼A

◦πA

πA×B
∼ πA

∼A
◦πA

(A×B)/∼ B/∼B

A×B

πB
∼B

◦πB

πA×B
∼ πB

∼B
◦πB

Now, we wish to show that (A×B)/∼ satisfies the universal property for the product of

A/∼A and B/∼B. Rename the two functions proved above to be ∗A and ∗B. Let Z be a set

with morphisms fA : Z → A/∼A and fB : Z → B/∼B. We wish to construct a function σ
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so that the following diagram commutes:

A/∼A

Z (A×B)/∼

B/∼B

σ

fA

fB

∗A

∗B

First, define f : Z → A/∼A ×B/∼B to be f(z) = (fA(z), fB(z)). Next, we observe that we

can use the quotient universal property with A/∼A to get a map 1A : A/∼A → A and likewise

for 1B : B/∼B → B. Define 1A×B : A/∼A ×B/∼B → A × B to be 1A×B([a]∼A
, [b]∼B

) =

(1A([a]∼A
), 1B([b]∼B

)). Finally, we can take σ = πA×B∼ ◦ 1A×B ◦ f : Z → (A×B)/∼ to satisfy

the universal property for product of A/∼A and B/∼B (it is uniquely determined by its

respective pieces.)

Therefore, by Proposition 5.4, (A×B)/∼ ∼= A/∼A ×B/∼B. ■

5.12 Define the notions of fibered products and fibered coproducts, as terminal objects

of the categories Cα,β,C
α,β considered in Example 3.10 (cf. also Exercise 3.11), by stating

carefully the corresponding universal properties.

As it happens, Set has both fibered products and coproducts. Define these objects ‘con-

cretely’, in terms of naive set theory. [II.2.9, III.6.10, III.6.11]

In the category Cα,β, where C = Set, let A ×C B = {(a, b) ∈ A × B | α(a) = β(b)} and let

πA : A×C B → A, πB : A×C B → B be projections. Given any fA : Z → A and fB : Z → B

such that α ◦ fA = β ◦ fB, define

σ : Z −→ A×C B,
z 7−→ (fA(z), fB(z)).

α(fA(z)) = β(fB(z)) guarantees that σ is well-defined. Then we can check that for all z ∈ Z,

πA ◦ σ(z) = fA(z), πB ◦ σ(z) = fB(z),

that is, the following diagram commutes.

A

Z A×C B C

B

α

σ

fA

fB

πA

πB β
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Suppose that there exists some mapping η : Z → A×C B such that for all z ∈ Z,

πA ◦ η(z) = fA(z), πB ◦ η(z) = fB(z),

which means η(z) = (fA(z), fB(z)) or η = σ. Thus we show that there exists a unique

mapping σ : Z → A×C B such that πA ◦ σ = fA, πB ◦ σ = fB, which implies A×C B along

with πA, πB is a final object in Cα,β. Therefore, A ×C B together with π1, π2 is a fibered

product.

In the category Cα,β, we can define a reflexive and symmetric relation ∼∗ on the set A⊔B
as

(x1, A) ∼∗ (x2, B) ⇐⇒ α−1(x1) ∩ β−1(x2) ̸= ∅,
(x1, B) ∼∗ (x2, A) ⇐⇒ α−1(x1) ∩ β−1(x2) ̸= ∅,
(x1, A) ∼∗ (x2, A) ⇐⇒ x1 = x2,

(x1, B) ∼∗ (x2, B) ⇐⇒ x1 = x2.

Let ∼ be the transitive closure of ∼∗. Thus we see ∼ is an equivalence relation. Let

A ⊔C B = A ⊔ B/ ∼ and let iA : A → A ⊔C B, iB : B → A ⊔C B be the composition of

inclusions and projections defined in the following diagram, that is iA = p ◦ jA, iB = p ◦ jB.

A

C A ⊔B A ⊔C B Z

B

iA
jA

gA

α

β

p φ

jB
iB

gB

We can check that for all c ∈ C, we have

α−1(α(c)) ∩ β−1(β(c)) ̸= ∅ =⇒ (α(c), A) ∼ (β(c), B)

=⇒ jA ◦ α(c) ∼ jB ◦ β(c)
=⇒ p ◦ jA ◦ α(c) = p ◦ jB ◦ β(c)
=⇒ iA ◦ α(c) = iB ◦ β(c),

which means iA ◦ α = iB ◦ β.
Given any gA : A→ Z and gB : B → Z such that gA ◦ α = gB ◦ β, define

φ : A ⊔C B −→ Z,

[(x,A)] 7−→ gA(x)

[(x,B)] 7−→ gB(x).

φ is well-defined because if (x1, A) ∼ (x2, B) then there exists c ∈ C such that α(c) = x1,
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β(c) = x2, which implies

gA ◦ α(c) = gB ◦ β(c) =⇒ gA(x1) = gB(x2) =⇒ φ ([(x1, A)]) = φ ([(x2, B)]) .

We can check that

φ ◦ iA(a) = φ ([(a,A)]) = gA(a), ∀a ∈ A,
φ ◦ iB(b) = φ ([(b, B)]) = gB(b), ∀b ∈ B,

that is, the following diagram commutes.

A

C A ⊔C B Z

B

iA

gA

α

β

φ

iB

gB

It is clear that φ is the unique mapping such that the diagram commutes. Thus we show

that the fibered coproduct is A ⊔C B together with two mappings iA : A → A ⊔C B,

iB : B → A ⊔C B.

■
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Chapter II. Groups, first encounter

§1. Definition of group

1.1 Write a careful proof that every group is the group of isomorphisms of a groupoid. In

particular, every group is the group of automorphisms of some object in some category.

Assume G is a group. Define a category C as follows:

• Objects: Obj(C) = {∗};

• Morphisms: HomC(∗, ∗) = EndC(∗) = G.

The composition of homomorphism is corresponding to the multiplication between two ele-

ments in G. The identity morphism on ∗ is 1∗ = eG, which satisfies for all g ∈ HomC(∗, ∗),

geG = eGg = g,

and

gg−1 = eG, g
−1g = eG.

Thus any homomorphism g ∈ HomC(∗, ∗) is an isomorphism and accordingly C is a groupoid.

Now we see G = EndC(∗) is the group of isomorphisms of a groupoid. Moreover, supposing

that ∗ is an object in some category D, G would be the group of automorphisms of ∗, which
is denoted as AutD(∗). ■

1.2 Consider the ’sets of numbers’ listed in §1.1, and decide which are made into groups

by conventional operations such as + and ·. Even if the answer is negative(for example,

(R, ·) is not a group), see if variations on the definition of these sets lead to groups (for

example, (R∗, ·) is a group; cf. §1.4).

We will consider next sequence of nested sets of numbers:

Z ⊂ Q ⊂ R ⊂ C.

Let’s check, that any set above is group under addition: let X be some set from above, then

∃0 ∈ X such that ∀a ∈ X : a+ 0 = a = 0 + a; for any element a from X there exists such

b ∈ X : b = −a that a+ b = 0 = b+ a and associativity also holds.

Now let’s consider multiplication instead of addition. Now we need to modify our sets in

order to get a group: since 0 lies in every group above, it doesn’t have an inverse(we can’t

divide by 0), thus we need to consider X∗ := X \ {0} in order to get a group. This works

out well for all ’sets of numbers’ – pair (X∗, ·) is a group, but for Z it does not: only {−1, 1}
has inverses under multiplication, therefore ({−1, 1}, ·) form a group. ■

1.3 Prove that (gh)−1 = h−1g−1 for all elements g, h of a group G.
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We have:

(h−1g−1)(gh) = (h−1(g−1g))h = (h−1e)h = h−1h = e

(gh)(h−1g−1) = (g(hh−1))g−1 = (ge)g−1 = gg−1 = e

Hence h−1g−1 is a two-sided inverse of gh. ■

1.4 Suppose that g2 = e for all elements g of a group G; prove that G is commutative.

For all a, b ∈ G,

abab = e =⇒ a(abab)b = ab =⇒ (aa)ba(bb) = ab =⇒ ba = ab.

■

1.5 The ‘multiplication table’ of a group is an array compiling the results of all multipli-

cations g • h:

• e · · · h · · ·
e e · · · h · · ·
· · · · · · · · · · · · · · ·
g g · · · g • h · · ·
· · · · · · · · · · · · · · ·

(Here e is the identity element. Of course the table depends on the order in which the

elements are listed in the top row and leftmost column.) Prove that every row and every

column of the multiplication table of a group contains all elements of the group exactly

once (like Sudoku diagrams!).

Without loss of generality suppose that two elements in a column are equal, i.e. for some

fixed element f we have f • g = f • h. Then by (left-)cancellation we get that g = h. Hence

the columns must be the same. ■
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§2. Examples of groups

2.1 One can associate an n×n matrixMσ with a permutation σ ∈ Sn, by letting the entry

at (i, σ(i)) be 1, and letting all other entries be 0. For example, the matrix corresponding

to the permutation

σ =

(
1 2 3

3 1 2

)
∈ S3

would be

Mσ =

0 0 1

1 0 0

0 1 0


Prove that, with this notation,

Mστ =MσMτ

for all σ, τ ∈ Sn, where the product on the right is the ordinary product of matrices.

By introducing the Kronecker delta function

δi,j =

{
0 if i ̸= j,

1 if i = j,

the entry at (i, j) of the matrix Mστ can be written as

(Mστ )i,j = δτ(σ(i)),j

and the entry at (i, j) of the matrix MσMτ can be written as

(MσMτ )i,j =
n∑
k=1

(Mσ)i,k(Mτ )k,j =
n∑
k=1

δσ(i),k · δτ(k),j =
n∑
k=1

δσ(i),k · δk,τ−1(j) = δσ(i),τ−1(j),

where the last but one equality holds by the fact

τ(k) = j ⇐⇒ k = τ−1(j).

Noticing that

τ(σ(i)) = j ⇐⇒ σ(i) = τ−1(j),

we see Mστ =MσMτ for all σ, τ ∈ Sn. ■

2.2 Prove that if d ≤ n, then Sn contains elements of order d.

The cyclic permutation

σ = (1 2 3 · · · d)

is an element of order d in Sn. ■
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2.3 For every positive integer n find an element of order n in SN.

The cyclic permutation

σ = (1 2 3 · · ·n)

is an element of order d in Sn. ■

2.4 Define a homomorphism D8 → S4 by labeling vertices of a square, as we did for a

triangle in §2.2. List the 8 permutations in the image of this homomorphism.

The image of n rotations under the homomorphism are

σ1 = eD8 , σ2 = (1 2 3 4), σ3 = (1 3)(2 4), σ4 = (1 4 3 2).

The image of n reflections under the homomorphism are

σ5 = (1 3), σ6 = (2 4), σ7 = (1 2)(3 4), σ8 = (1 4)(3 2).

■

2.11 Prove that the square of every odd integer is congruent to 1 modulo 8.

Given an odd integer 2k + 1, we have

(2k + 1)2 = 4k(k + 1) + 1,

where k(k + 1) is an even integer. So (2k + 1)2 ≡ 1 mod 8. ■

2.12 Prove that there are no nonzero integers a, b, c such that a2 + b2 = 3c2. (Hint:

studying the equation [a]24+[b]24 = 3[c]24 in Z/4Z, show that a, b, c would all have to be even.

Letting a = 2k, b = 2l, c = 2m, you would have k2 + l2 = 3m2. What’s wrong with that?)

a2 + b2 = 3c2 =⇒ [a]24 + [b]24 = 3[c]24.

Noting that [0]24 = [0]4, [1]
2
4 = [1]4, [2]

2
4 = [0]4, [3]

2
4 = [1]4, we see [c]24 must be [0]4 and so do

[a]24 and [b]24. Hence [a]4, [b]4, [b]4 can only be [0]4 or [2]4, which justifies letting a = 2k1, b =

2l2, c = 2m1. After substitution we have k2 + l2 = 3m2. Repeating this process n times

yields a = 2nkn, b = 2nln, c = 2nmn. For a sufficiently large number N , the absolute value of

kN , lN ,mN must be less than 1. Thus we conclude that a = b = c = 0 is the unique solution

to the equation a2 + b2 = 3c2. ■

2.13 Prove that if gcd(m,n) = 1, then there exist integers a and b such that am+ bn = 1.

(Use Corollary 2.5.) Conversely, prove that if am+ bn = 1 for some integers a and b, then

gcd(m,n) = 1. [2.15, §V.2.1, V.2.4]
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Applying Corollary 2.5, we have gcd(m,n) = 1 if and only if [m]n generates Z/nZ. Hence

gcd(m,n) = 1 ⇐⇒ a[m]n = [1]n ⇐⇒ [am]n = [1]n ⇐⇒ am+ bn = 1.

■

2.15 Let n > 0 be an odd integer.

• Prove that if gcd(m,n) = 1, then gcd(2m+ n, 2n) = 1. (Use Exercise 2.13.)

• Prove that if gcd(r, 2n) = 1, then gcd( r−n
2
, n) = 1. (Ditto.)

• Conclude that the function [m]n → [2m + n]2n is a bijection between (Z/nZ)∗ and

(Z/2nZ)∗.

The number ϕ(n) of elements of (Z/nZ)∗ is Euler’s ϕ(n)-function. The reader has just

proved that if n is odd, then ϕ(2n) = ϕ(n). Much more general formulas will be given later

on (cf. Exercise V.6.8). [VII.5.11]

• Since 2m+n is an odd integer, gcd(2m+n, 2n) = 1 is actually equivalent to gcd(2m+

n, n) = 1. According to Exercise II.2.13,

gcd(m,n) = 1 =⇒ am+ bn = 1 =⇒ a

2
(2m+ n) +

(
b− a

2

)
n = 1.

If a is even, we have shown gcd(2m+n, n) = 1. Otherwise we can let a′ = a+n be an

even integer and b′ = b−m. Then it holds that

a′

2
(2m+ n) +

(
b′ − a′

2

)
n = 1,

which also implies gcd(2m+ n, n) = 1.

• If gcd(r, 2n) = 1, then r must be an odd integer and accordingly

gcd(r, n) = 1 =⇒ ar + bn = 1 =⇒ 2a

(
r − n
2

)
+ (a+ b)n = 1,

which is gcd( r−n
2
, n) = 1.

• It is easy to check that the function f : (Z/nZ)∗ → (Z/2nZ)∗, [m]n 7→ [2m + n]2n is

well-defined. The fact

f([m1]n) = f([m2]n) =⇒ f([2m1 + n]2n) = f([2m2 + n]2n)

=⇒ (2m1 + n)− (2m2 + n) = 2kn

=⇒ m1 −m2 = kn

=⇒ [m1]n = [m2]n
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indicates that f is injective. For any [r]2n ∈ (Z/2nZ)∗, we have

gcd(r, 2n) = 1 =⇒ gcd

(
r − n
2

, n

)
= 1 =⇒

[
r − n
2

]
n

∈ (Z/nZ)∗,

and

f

([
r − n
2

]
n

)
= [r]2n,

which indicates that f is surjective. Thus we show f is a bijection.

■

2.16 Find the last digit of 123823718238456. (Work in Z/10Z.)

123823718238456 ≡ 718238456 ≡ (74)4559614 ≡ 24014559614 ≡ 1 mod 10,

which indicates that the last digit of 123823718238456 is 1. ■

2.17 Show that if m ≡ m′ mod n, then gcd(m,n) = 1 if and only if gcd(m′, n) = 1. [§2.3]

Assume that m−m′ = kn. If gcd(m,n) = 1, for any common divisor d of m′ and n

d|m′, d|n =⇒ d|(m′ + kn) =⇒ d|m =⇒ d = 1,

which means gcd(m′, n) = 1. Likewise, we can show gcd(m′, n) = 1 =⇒ gcd(m,n) = 1 ■

§3. The category Grp

3.1 Let φ : G → H be a morphism in a category C with products. Explain why there is

a unique morphism

(φ× φ) : G×G −→ H ×H.

compatible in the evident way with the natural projections.

(This morphism is defined explicitly for C = Set in §3.1.) [§3.1, 3.2]

By the universal property of product in C, there exist a unique morphism (φ×φ) : G×G −→
H ×H such that the following diagram commutes.

G
φ // H

G×G

πG

OO

πG
��

φ×φ // H ×H

πH

OO

πH
��

G
φ // H

■
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3.2 Let φ : G→ H,ψ : H → K be morphisms in a category with products, and consider

morphisms between the products G×G,H ×H,K ×K as in Exercise 3.1. Prove that

(ψφ)× (ψφ) = (ψ × ψ)(φ× φ).

(This is part of the commutativity of the diagram displayed in §3.2.)

By the universal property of product in C, there exists a unique morphism

(ψφ)× (ψφ) : G×G→ K ×K

such that the following diagram commutes.

G
ψφ // H

G×G

πG

OO

πG
��

(ψφ)×(ψφ) // H ×H

πH

OO

πH
��

G
ψφ // H

As the following commutative diagram tells us the composition

(ψ × ψ)(φ× φ) : G×G→ K ×K

can make the above diagram commute,

G
φ //

ψφ

''
H

ψ // K

G×G

πG

OO

πG
��

φ×φ // H ×H

πH

OO

πH
��

ψ×ψ // K ×K

πK

OO

πK
��

G
φ //

ψφ

77H
ψ // K

there must be (ψφ)× (ψφ) = (ψ × ψ)(φ× φ).
■

3.3 Show that if G,H are abelian groups, then G×H satisfies the universal property for

coproducts in Ab.

Define two monomorphisms:

iG : G −→ G×H, a 7−→ (a, 0H)
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iH : H −→ G×H, b 7−→ (0G, b)

We are to show that for any two homomorphisms g : G → M and h : H → M in Ab, the

mapping
φ : G×H −→M,

(a, b) 7−→ g(a) + h(b)

is a homomorphism and makes the following diagram commute.

G
g

##
iG
��

G×H φ //M

H
h

;;

iH

OO

Exploiting the fact that g, h are homomorphisms and M is an abelian group, it is easy to

check that φ preserves the addition operation

φ((a1, b1) + (a2, b2)) = φ((a1 + a2, b1 + b2))

= g(a1 + a2) + h(b1 + b2)

= (g(a1) + g(a2)) + (h(b1) + h(b2))

= (g(a1) + h(b1)) + (g(a2) + h(b2))

= φ((a1, b1)) + φ((a2, b2))

and the diagram commutes

φ ◦ iG(a) = φ((a, 0H)) = g(a) + h(0H) = g(a) + 0M = g(a),

φ ◦ iH(b) = φ((0G, b)) = g(0G) + h(b) = 0M + h(b) = h(b).

To show the uniqueness of the homomorphism φ we have constructed, suppose a homomor-

phism φ′ can make the diagram commute. Then we have

φ′((a, b)) = φ′((a, 0H) + (0G, b)) = φ′(iG(a)) + φ′(iH(b)) = g(a) + h(b) = φ((a, b)),

that is φ′ = φ. Hence we show that there exist a unique homomorphism φ such that the

diagram commutes, which amounts to the universal property for coproducts in Ab.

■

3.4 Let G,H be groups, and assume that G ∼= H×G. Can you conclude that H is trivial?

(Hint: No. Can you construct a counterexample?)

Consider the function
φ : Z× Z[x] −→ Z[x]

(n, f(x)) 7−→ n+ xf(x)
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Firstly, we can show φ is a homomorphism as follows

φ((n1, f1(x)) + (n2, f2(x))) = φ((n1 + n2, f1(x) + f2(x)))

= (n1 + n2) + x(f1(x) + f2(x))

= (n1 + xf1(x)) + (n2 + xf2(x))

= φ(n1, f1(x)) + φ(n2, f2(x)).

Secondly, we are to show φ is a monomorphism. It follows by

φ(n, f(x)) = n+ xf(x) = 0 =⇒ n = 0, f(x) = 0 =⇒ kerφ = {(0, 0)}.

Lastly, since given any f(x) =
∑

n≥0 anx
n ∈ Z[x] we have

φ

(
a0,
∑
n≥1

anx
n−1

)
= a0 +

∑
n≥1

anx
n = f(x),

we claim φ is surjective and indeed an isomorphism. Therefore, as a counterexample we have

Z[x] ∼= Z× Z[x] where Z is non-trivial. ■

3.5 Prove that Q is not the direct product of two nontrivial groups.

Consider the additive group of rationals (Q,+). Assume that φ is a isomorphism between

the product G×H = {(a, b)|a ∈ G, b ∈ H} and (Q,+). Note that {eG} ×H and G× {eH}
are subgroups in G ×H and their intersection is the trivial group {(eG, eH)}. It is easy to

check that bijection φ satisfies φ(A ∩B) = φ(A) ∩ φ(B). So applying the fact we have

φ({(eG, eH)}) = φ({eG} ×H ∩G× {eH}) = φ({eG} ×H) ∩ φ(G× {eH}) = {0}.

Suppose both φ({eG}×H) and φ(G×{eH}) are nontrivial groups. If
p

q
∈ φ({eG}×H)−{0}

and
r

s
∈ φ(G× {eH})− {0}, there must be

rp = rq · p
q
= ps · r

s
∈ φ({eG} ×H) ∩ φ(G× {eH}),

which implies rp = 0. Since both
p

q
and

r

s
are non-zero, it leads to a contradiction. Thus

without loss of generality we can assume φ({eG} × H) is a trivial group {0}. Since φ is

isomorphism, we see that for all h ∈ H,

φ(eG, h) = φ(eG, eH) = 0 ⇐⇒ h = eH .

That is, H is a trivial group. Therefore, we have shown (Q,+) will never be isomorphic to

the direct product of two nontrivial groups. ■
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3.6 Consider the product of the cyclic groups C2, C3 (cf. §2.3): C2×C3. By Exercise 3.3,

this group is a coproduct of C2 and C3 in Ab. Show that it is not a coproduct of C2 and

C3 in Grp, as follows:

• find injective homomorphisms C2 → S3, C3 → S3;

• arguing by contradiction, assume that C2 × C3 is a coproduct of C2, C3, and deduce

that there would be a group homomorphism C2 × C3 → S3 with certain properties;

• show that there is no such homomorphism.

• Monomorphisms g : C2 → S3, h : C3 → S3 can be constructed as follows:

g([0]2) = e, g([1]2) =

(
1 2 3

1 3 2

)
.

h([0]3) = e, h([1]3) =

(
1 2 3

3 1 2

)
, h([2]3) =

(
1 2 3

2 3 1

)
.

• Supposing that C2 × C3 is a coproduct of C2, C3, there would be a unique group

homomorphism φ : C2 × C3 → S3 such that the following diagram commutes

C2

g

$$
iC2

��
C2 × C3

φ // S3

C3

h

::

iC3

OO

In other words, for all a ∈ C2, b ∈ C3,

φ(a, b) = φ(([0]2, b) + (a, [0]3)) = φ(([0]2, b))φ((a, [0]3)) = φ(iC3(b))φ(iC2(a)) = h(b)g(a)

= φ((a, [0]3) + ([0]2, b)) = φ((a, [0]3))φ(([0]2, b)) = φ(iC2(a))φ(iC3(b)) = g(a)h(b).

• Since

g([1]2)h([1]3) =

(
1 2 3

1 3 2

)(
1 2 3

3 1 2

)
=

(
1 2 3

3 2 1

)
,

h([1]3)g([1]2) =

(
1 2 3

3 1 2

)(
1 2 3

1 3 2

)
=

(
1 2 3

2 1 3

)
,

we see g(a)h(b) ̸= h(b)g(a) not always holds. The derived contradiction shows that

C2 × C3 is not a coproduct of C2, C3 in Grp.

■

3.7 Show that there is a surjective homomorphism Z ∗Z → C2 ∗C3. (∗ denotes coproduct
in Grp.)
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Consider the mapping

φ : Z ∗ Z −→ C2 ∗ C3

xm1yn1 · · ·xmkynk 7−→ x[m1]2y[n1]3 · · ·x[mk]2y[nk]3

Since
φ(xm1yn1 · · · xmkynkxm

′
1yn

′
1 · · ·xm′

k′yn
′
k)

=x[m1]2y[n1]3 · · ·x[mk]2y[nk]3x[m
′
1]2y[n

′
1]3 · · ·x[m′

k]2y[n
′
k]3

=φ(xm1yn1 · · · xmkynk)φ(xm
′
1yn

′
1 · · ·xm′

k′yn
′
k)

,

φ is a homomorphism. It is clear that φ is surjective. Thus we show there exists a surjective

homomorphism Z ∗ Z → C2 ∗ C3. ■

3.8 Define a group G with two generators x, y, subject (only) to the relations x2 = eG, y
3 =

eG. Prove that G is a coproduct of C2 and C3 in Grp. (The reader will obtain an even more

concrete description for C2 ∗ C3 in Exercise 9.14; it is called the modular group.) [§3.4,
9.14]

Given the maps i1 : C2 → G, [m]2 7→ xm and i2 : C3 → G, [n]3 7→ yn, we can check

that i1, i2 are homomorphisms. We are to show that for every group H endowed with two

homomorphisms f1 : C2 → H, f2 : C3 → H , there would be a unique group homomorphism

φ : G→ H such that the following diagram commutes

C2

f1

  
i1
��
G

φ // H

C3

f2

>>

i2

OO

or

φ(i1([m]2)) = φ(xm) = φ(x)m = f1([m]2),

φ(i2([n]3)) = φ(yn) = φ(y)n = f2([n]3).

Define ϕ : G → H as ϕ(xmyn) = f1([m]2)f2([n]3), ϕ(y
nxm) = f2([n]3)f1([m]2). It is clear to

see ϕ makes the diagram commute. Moreover, if φ makes the diagram commute, it follows

that for all xmyn, ynxm ∈ G,

φ(xmyn) = φ(xm)φ(yn) = f1([m]2)f2([n]3),

φ(ynxm) = φ(yn)φ(xm) = f2([n]3)f1([m]2),

which implies φ = ϕ. Thus we can conclude G is the coproduct of C2 and C3 in Grp.

■
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§4. Group homomorphisms

4.1 Check that the function πnm defined in §4.1 is well-defined, and makes the diagram

commute. Verify that it is a group homomorphism. Why is the hypothesis m|n necessary?

[§4.1]

In §4.1 the function πnm is defined as

πnm : Z/nZ −→ Z/mZ
[a]n 7−→ [a]m

with the condition m|n. We can check that πnm is well-defined as

[a1]n = [a2]n ⇐⇒ a1 − a2 = kn = (kl)m =⇒ [a1]m = [a2]m ⇐⇒ πnm([a1]n) = πnm([a2]n).

Note πnm(πn(a)) = πnm([a]n) = [a]m = πm(a). The diagram in §4.1 must commute.

Z
πm

$$
πn
��

Z/nZ
πn
m

// Z/mZ

Since

πnm([a]n + [b]n) = [a+ b]m = [a]m + [b]m = πnm([a]n) + πnm([b]n),

it follows that πnm is a group homomorphism. Actually we have shown that without the

hypothesis m|n, πnm may not be well-defined. ■

4.2 Show that the homomorphism π4
2×π4

2 : C4 → C2×C2 is not an isomorphism. In fact,

is there any isomorphism C4 → C2 × C2?

Let calculate the order of each non-zero element in both C4 and C2×C2. For the group C4,

|[2]4| = 2, |[1]4| = |[3]4| = 4.

For the group C2 × C2,

|([1]2, [0]2)| = |([0]2, [1]2)| = |([1]2, [1]2)| = 2.

Since isomorphism must preserve the order, we can assert that there is no such isomorphism

C4 → C2 × C2. ■

4.3 Prove that a group of order n is isomorphic to Z/nZ if and only if it contains an

element of order n. [§4.3]
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Assume some group G is isomorphic to Z/nZ. Since |[1]n| = n and isomorphism preserves

the order, we can affirm that there is an element of order n in G.

Conversely, assume there is a group G of order n in which g is an element of order n. By

definition we see g0, g1, g2 · · · gn−1 are distinct pairwise. Noticing group G has exactly n

elements, G must consist of g0, g1, g2 · · · gn−1. We can easily check that the function

f : G −→ Z/nZ
gk 7−→ [k]n

is an isomorphism. ■

4.4 Prove that no two of the groups (Z,+), (Q,+), (R,+) are isomorphic to one another.

Can you decide whether (R,+), (C,+) are isomorphic to one another? (Cf. Exercise

VI.1.1.)

Suppose there exists an isomorphism f : Z→ Q. Let f(1) = p/q (p, q ∈ Z). If p = 1, for all

n ∈ Z, we have

f(n) =
n

q
̸= 1

2q
.

If p ̸= 1, for all n ∈ Z, we have

f(n) =
np

q
̸= p+ 1

q
.

In both cases, it implies f(Z) ⊈ Q. Hence we see f is not a surjection, which contradicts

the fact that f : Z→ Q is an isomorphism. Comparing the cardinality of Z, Q, R

|Z| = |Q| < |R|,

we see there exist no such isomorphisms like f : Z→ R or f : Q→ R.
We can prove (R,+), (C,+) are isomorphic, if considering the both as vector spaces over Q.

The proof is given in Exercise VI.1.1. ■

4.5 Prove that the groups (R \ {0}, ·) and (C \ {0}, ·) are not isomorphic.

Suppose f : R→ C is an isomorphism. Then there exists a real number x such that f(x) = i.

f(x4) = f(x)4 = i4 = 1.

Since isomorphism preserves the identity, we have

f(1) = 1 = f(x4).

which indicates x4 = 1. Noticing that x ∈ R, there must be x2 = 1. Now we see

f(1) = f(x2) = f(x)2 = i2 = −1,
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which derives a contradiction. Thus we can conclude that groups (R \ {0}, ·) and (C \ {0}, ·)
are not isomorphic.

■

4.6 We have seen that (R,+) and (R>0, ·) are isomorphic (Example 4.4). Are the groups

(Q,+) and (Q>0, ·) isomorphic?

Suppose f : Q → Q>0 is an isomorphism. Since isomorphism preserves the multiplication,

we have

f(1) = f

(
n · 1

n

)
= f

(
1

n

)n
(n ∈ Z>0),

which implies

f

(
1

n

)
= f(1)

1
n .

Assume

f(1) =
p

q
=
pr11 p

r2
2 · · · p

rk
k

qs11 q
s2
2 · · · q

sl
l

where pi, qi are pairwise distinct positive prime numbers. Then let

M = max{p, q}+ 1 > max{r1, · · · , rk, s1, · · · , sl}.

Thus we assert

f

(
1

M

)
=

(
pr11 p

r2
2 · · · p

rk
k

qs11 q
s2
2 · · · q

sl
l

) 1
M

/∈ Q,

which can be proved by contradiction. In fact, Suppose

(
p

q

) 1
M

=
a

b
∈ Q

or say

pbM = qaM ,

where a, b are coprime. Note that bM , aM are also coprime and that the prime factorization of

aM can be written as aMt1
1 aMt2

2 · · · aMtj
j where ai are pairwise distinct positive prime numbers.

That forces

p = pr11 p
r2
2 · · · p

rk
k = N · aMt1

1 aMt2
2 · · · aMtj

j .

Noticing that ai must coincide with one number in {p1, p2, · · · pk}, we can assume a1 = p1
without loss of generality. However, since M > max{r1, · · · , rk}, we see the exponent of

p1 is distinct from that of a1, which violates the unique factorization property of Z. Hence

we get a contradiction and verify f
(

1
M

)
/∈ Q. Moreover, it contradicts our assumption that

f : Q → Q>0 is an isomorphism. Eventually we show that the groups (Q,+) and (Q>0, ·)
are not isomorphic.

■
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4.7 Let G be a group. Prove that the function G→ G defined by g 7→ g−1 is a homomor-

phism if and only if G is abelian. Prove that g 7→ g2 is a homomorphism if and only if G

is abelian.

Given the function
f : G −→ G

g 7−→ g−1

we have

f(g1g2) = (g1g2)
−1 = g−1

2 g−1
1 , f(g1)f(g2) = g−1

1 g−1
2 .

If G is abelian, it is clear to see f(g1g2) = f(g1)f(g2). If f is a homomorphism, ∀h1, h2 ∈ G,

h1h2 = (h−1
2 h−1

1 )−1 = f(h−1
2 h−1

1 ) = f(h−1
2 )f(h−1

1 ) = h2h1.

Given the function
h : G −→ G

g 7−→ g2

we have

h(g1g2) = (g1g2)
2 = g1g2g1g2, h(g1)h(g2) = g21g

2
2 = g1g1g2g2.

If G is abelian, it is clear to see h(g1g2) = h(g1)h(g2). If h is a homomorphism, by cancellation

we have

h(g1g2) = h(g1)h(g2) =⇒ g2g1 = g1g2.

■

4.8 Let G be a group, and g ∈ G. Prove that the function γg : G → G defined by

(∀a ∈ G) : γg(a) = gag−1 is an automorphism of G. (The automorphisms γg are called

‘inner’ automorphisms of G.) Prove that the function G→ Aut(G) defined by g 7→ γg is a

homomorphism. Prove that this homomorphism is trivial if and only if G is abelian.

Since

γg(ab) = gabg−1 = gag−1gbg−1 = γg(a)γg(b),

γg is an automorphism of G. For all a ∈ G, we have

γg1g2(a) = g1g2ag
−1
2 g−1

1 = γg1(g2ag
−1
2 ) = (γg1 ◦ γg2)(a),

which implies γg1g2 = γg1 ◦ γg2 and g 7→ γg is a homomorphism. If G is abelian, for all g the

homomorphism

γg(a) = gag−1 = gg−1a = a

is the identity in Aut(G). That is, the homomorphism g 7→ γg is trivial. If the homomorphism

g 7→ γg is trivial, we have for all g, a ∈ G,

gag−1 = a,
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which implies for all a, b ∈ G,
ab = bab−1b = ba.

Thus we show the homomorphism g 7→ γg is trivial if and only if G is abelian. ■

4.9 Prove that if m, n are positive integers such that gcd(m,n) = 1, then Cmn ∼= Cm×Cn.

Define a function
φ : Cm × Cn −→ Cmn

([a]m, [b]n) 7−→ [anp+ bmq]mn

where [pn]m = [1]m and [qm]n = [1]n, as gcd(m,n) = 1 guarantees the existence of p, q (see

textbook p56). First of all, we have to check whether φ is well-defined. Note that

[(anp1 + bmq1)− (anp2 + bmp2)]m = [a(p1n− p2n) + b(q1m− q2m)]m = [0]m

[(anp1 + bmq1)− (anp2 + bmp2)]n = [a(p1n− p2n) + b(q1m− q2m)]n = [0]n

and gcd(m,n) = 1. Thus we have

[(anp1 + bmq1)− (anp2 + bmp2)]mn = [0]mn,

or

[anp1 + bmq1]mn = [anp2 + bmp2]mn.

Then we show φ is a homomorphism.

φ(([a1]m, [b1]n) + ([a2]m, [b2]n)) = φ([a1 + a2]m, [b1 + b2]n)

= [(a1 + a2)np+ (b1 + b2)mq]mn

= [a1np+ b1mq]mn + [a2np+ b2mq]mn

= φ([a1]m, [b1]n) + φ([a2]m, [b2]n).

In order to show φ is a monomorphism, we can check

φ([a1]m, [b1]n) = φ([a2]m, [b2]n)

=⇒ [a1np+ b1mq]mn = [a2np+ b2mq]mn

=⇒ [(a1 − a2)np+ (b1 − b2)mq]mn = [0]mn

=⇒ [(a1 − a2)np+ (b1 − b2)mq]m = [a1 − a2]m = [0]m,

[(a1 − a2)np+ (b1 − b2)mq]n = [b1 − b2]n = [0]n

=⇒ [a1]m = [a2]m, [b1]m = [b2]m.

Since |Cm × Cn| = |Cmn| = mn, we can conclude φ is an isomorphism. Thus we complete

proving Cmn ∼= Cm × Cn.
■
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§5. Free groups

5.1 Does the category FA defined in §5.2 have final objects? If so, what are they?

Yes, they are functions from A to any trivial group, for example T = {t}.

G
∃!φ // {t}

A

e

>>
j

OO

For any object (j, G) in FA, the trivial homomorphism φ : g 7→ t is the unique homomor-

phism such that the diagram commutes. That is, Hom((j,G), (e, T )) = {φ}. ■

5.2 Since trivial groups T are initial in Grp, one may be led to think that (e, T ) should

be initial in FA, for every A: e would be defined by sending every element of A to the

(only) element in T ; and for any other group G, there is a unique homomorphism T → G.

Explain why (e, T ) is not initial in FA (unless A = ∅).

Let G = C2 = {[0]2, [1]2}. Note that φ ◦ e(A) must be the trivial subgroup {[0]2}. If x ∈ A
and j(x) = [1]2, we see φ ◦ e ̸= j and the following diagram does not commute.

T
φ // G

A
j

??

e

OO

That implies (e, T ) is not initial in FA unless A = ∅. ■

5.3 Use the universal property of free groups to prove that the map j : A → F (A) is

injective, for all sets A. (Hint: it suffices to show that for every two elements a, b of A there

is a group G and a set-function f : A→ G such that f(a) = f(b). Why? and how do you

construct f and G?) [§III.6.3]

Let G = SA be the symmetric group over A. Define functions ga : A → A, x 7→ a sending

every element of A to a. Since ga ∈ SA, we can define an injection

f : A −→ SA

a 7−→ ga

In light of the commutative diagram

F (A)
φ // SA

A
f

<<

j

OO
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we have ∀a, b ∈ A,

j(a) = j(b) =⇒ φ(j(a)) = φ(j(b)) =⇒ f(a) = f(b) =⇒ a = b.

■

5.4 In the ‘concrete’ construction of free groups, one can try to reduce words by performing

cancellations in any order; the ‘elementary reductions’ used in the text(that is, from left to

right) is only one possibility. Prove that the result of iterating cancellations on a word is

independent of the order in which the cancellations are performed. Deduce the associativity

of the product in F (A) from this. [§5.3]

We use induction on the length of w. If w is reduced, there is nothing to show. If not, there

must be some pair of symbols that can be cancelled, say the underlined pair

w = · · ·xx−1 · · · .

(Let’s allow x to denote any element of A′, with the understanding that if x = a−1 then

x−1 = a.) If we show that we can obtain every reduced form of w by cancelling the pair xx−1

first, the proposition will follow by induction, because the word w∗ = · · ·�x�x−1 · · · is shorter.
Let w0 be a reduced form of w. It is obtained from w by some sequence of cancellations.

The first case is that our pair xx−1 is cancelled at some step in this sequence. If so, we may

as well cancel xx−1 first. So this case is settled. On the other hand, since w0 is reduced, the

pair xx−1 can not remain in w0. At least one of the two symbols must be cancelled at some

time. If the pair itself is not cancelled, the first cancellation involving the pair must look like

· · ·�x−1
�xx

−1 · · · or · · ·x�x−1
�x · · ·

Notice that the word obtained by this cancellation is the same as the one obtained by

cancelling the pair xx−1. So at this stage we may cancel the original pair instead. Then we

are back in the first case, so the proposition is proved.

■

5.5 Verify explicitly that H⊕A is a group.

Assume the A is a set and H is an abelian group. H⊕A are defined as follows

H⊕A := {α : A→ H|α(a) ̸= eH for only finitely many elements a ∈ A}.

Now that H⊕A ⊂ HA := HomSet(A,H), we can first show (HA,+) is a group, where for all

ϕ, ψ ∈ HA, ϕ+ ψ is defined by

(∀a ∈ A) : (ϕ+ ψ)(a) := ϕ(a) + ψ(a).

Here is the verification:
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• Identity: Define a function ε : A→ H, a 7→ eH sending all elements in A to eH . Then

for any α ∈ HA we have

(∀a ∈ A) : (α + ε)(a) = α(a) + ε(a) = α(a),

which is α + ε = α. Because of the commutativity of the operation + defined on HA,

ε is the identity indeed.

• Associativity: This follows by the associativity in H:

(∀a ∈ A) : ((α+β)+γ)(a) = (α+β)(a)+γ(a) = α(a)+ (β+γ)(a) = (α+(β+γ))(a).

• Inverse: Every function ϕ ∈ HA has inverse −ϕ defined by

(∀a ∈ A) : (−ϕ)(a) = −ϕ(a).

Thus HA makes a group.

Then it is time to show H⊕A is a subgroup of HA. For all α, β ∈ H⊕A, let Nα = {a ∈
A|α(a) ̸= eH}, Nβ = {a ∈ A|β(a) ̸= eH}, Nα−β = {a ∈ A|(α− β)(a) ̸= eH}. Since

(∀a ∈ A) : (α− β)(a) = α(a)− β(a),

we have

(α− β)(a) ̸= eH =⇒ α(a) ̸= eH or β(a) ̸= eH ,

which implies Nα−β ⊂ Nα ∪ Nβ. Note that Nα, Nβ are both finite sets, which forces Nα−β
to be finite. So there must be α− β ∈ H⊕A. Now we see H⊕A is closed under additions and

inverses. And eHA = ε ∈ H⊕A means that H⊕A is nonempty. Finally we can conclude H⊕A

is a subgroup of HA. ■

5.6 Prove that the group F ({x, y}) (visualized in Example 5.3) is a coproduct Z ∗ Z of

Z by itself in the category Grp. (Hint: with due care, the universal property for one turns

into the universal property for the other.) [§3.4, 3.7, 5.7]

Define two homomorphisms

i1 : Z −→ F ({x, y}), n 7−→ xn,

i2 : Z −→ F ({x, y}), n 7−→ yn.

We need to show that for any group G with two homomorphisms f1, f2 : Z→ G, there exists
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a unique homomorphism φ such that the following diagram commutes.

Z
f1

$$
i1
��

F ({x, y}) φ // G

Z
f2

::

i2

OO

Given the notation of indicator function

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A,

we can define a function

φ : F ({x, y}) −→ G,

zn1
1 · · · z

nk
k 7−→ f1(n1)

1{x}(z1)f2(n1)
1{y}(z1) · · · f1(nk)1{x}(zn)f2(nk)

1{y}(zn), zi ∈ {x, y}

and check that it is a homomorphism indeed. For all n ∈ Z, we have

(φ ◦ i1)(n) = φ(xn) = f1(n),

(φ ◦ i2)(n) = φ(yn) = f2(n),

that is, the diagram commutes. Now we see φ exists. For the uniqueness of φ, let φ∗ be

another homomorphism that makes diagram commute. For all zn1
1 · · · z

nk
k ∈ F ({x, y}), zi ∈

{x, y}, we have

φ∗(zn1
1 · · · z

nk
k ) = φ∗(zn1) · · ·φ∗(znk)

= φ∗(i1(n1))
1{x}(z1)φ∗(i2(n1))

1{y}(z1) · · ·φ∗(i1(nk))
1{x}(z1)φ∗(i2(nk))

1{y}(z1)

= f1(n1)
1{x}(z1)f2(n1)

1{y}(z1) · · · f1(nk)1{x}(zn)f2(nk)
1{y}(zn)

= φ(zn1
1 · · · z

nk
k ).

To sum up, we have shown that the group F ({x, y}) is a coproduct Z ∗ Z of Z by itself in

the category Grp. ■

5.7 Extend the result of Exercise 5.6 to free groups F ({x1, . . . , xn}) and to free abelian

groups F ab({x1, . . . , xn}). [§3.4, §5.4]

Let ∗ be coproduct. Then we have Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
n times

∼= F ({x1, . . . , xn}), as the following dia-
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gram demonstrates:

Z
f1

++

i1
((

.........

... F ({x1, . . . , xn})
φ // G

Z

fn

33

in

66

Dually, let × be product. Then we have Z× Z× · · · × Z︸ ︷︷ ︸
n times

∼= F ab({x1, · · · , xn}), as the fol-

lowing diagram demonstrates:

Z

G

f1

44

fn

++

φ // F ab({x1, . . . , xn})

π1

88

πn

&&

...

.........

Z

■

5.8 Still more generally, prove that F (A ⨿ B) = F (A) ∗ F (B) and that F ab(A ⨿ B) =

F ab(A)⊕F ab(B) for all sets A,B. (That is, the constructions F , F ab ’preserve coproducts’.)

In order to show F (A) ∗ F (B) is a free group generated by A ⨿ B, we should first set an

appropriate function ψ : A ⨿ B → F (A) ∗ F (B) and then prove that given any (θ,G) there

exists a unique group homomorphism g such that the following diagram commutes.

A⨿B ψ //

θ

66F (A) ∗ F (B)
∃!g // G

The complete proof can be divided into three steps, by decomposing the following diagram
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into parts.

A
j1 //

i1
��

F (A)
φ1

%%

f1
��

A⨿B ψ //

θ

::F (A) ∗ F (B)
g // G

B
j1 //

i2

OO

F (B)

φ2

99

f2

OO

Step 1. Construct ψ : A⨿B −→ F (A) ∗ F (B).

Define injective functions

i1 : A −→ A⨿B, a 7−→ (a, 1),

i2 : B −→ A⨿B, b 7−→ (b, 2),

j1 : A −→ F (A), a 7−→ a,

j2 : B −→ F (B), b 7−→ b.

Let f1, f2 be the homomorphisms specified by the coproduct in Grp. Since A ⨿ B is a

coproduct in Set, the universal property guarantees a unique mapping ψ : A⨿B → F (A) ∗
F (B) such that the following diagram commutes

A
j1 //

i1
��

F (A)

f1
��

A⨿B ∃!ψ // F (A) ∗ F (B)

B
j1 //

i2

OO

F (B)

f2

OO

That is,

∃! ψ : A⨿B −→ F (A) ∗ F (B) (ψ ◦ i1 = f1 ◦ j1) ∧ (ψ ◦ i2 = f2 ◦ j2).

Step 2. Prove the existence of g.

A
j1 //

i1
��

F (A)
∃!φ1

""
A⨿B θ // G

B
j1 //

i2

OO

F (B)
∃!φ2

<<
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Given some (θ,G), according to the universal property of free groups F (A), F (B), we have

∃! φ1 : F (A) −→ G (φ1 ◦ j1 = θ ◦ i1),
∃! φ2 : F (B) −→ G (φ2 ◦ j2 = θ ◦ i2).

F (A)

f1
��

φ1

%%
F (A) ∗ F (B)

∃!g // G

F (B)

f2

OO

φ2

99

Then according to the universal property of coproduct F (A) ∗ F (B) in Grp, we have

∃! g : F (A) ∗ F (B) −→ G (g ◦ f1 = φ1) ∧ (g ◦ f2 = φ2).

The commutative diagram tells us

g ◦ ψ ◦ i1 = g ◦ f1 ◦ j1 = φ1 ◦ j1 = θ ◦ i1,
g ◦ ψ ◦ i2 = g ◦ f2 ◦ j2 = φ2 ◦ j2 = θ ◦ i2.

Note that A ⨿ B = i1(A) ∪ i2(B). For all x ∈ A ⨿ B, x must be either i1(a) or i2(b). If

x = i1(a), then

g ◦ ψ(x) = g ◦ ψ ◦ i1(a) = θ ◦ i1(a) = θ(x).

If x = i2(b), then

g ◦ ψ(x) = g ◦ ψ ◦ i2(b) = θ ◦ i2(b) = θ(x).

Hence we show that given some (θ,G) there exists g : F (A)∗F (B) −→ G such that g◦ψ = θ.

Step 3. Prove the uniqueness of g.

Assume there exists another homomorphism h such that h ◦ ψ = θ. We have

h ◦ f1 ◦ j1 = h ◦ ψ ◦ i1 = θ ◦ i1,
h ◦ f2 ◦ j2 = h ◦ ψ ◦ i2 = θ ◦ i2.

Since

∃! φ1 : F (A) −→ G (φ1 ◦ j1 = θ ◦ i1),
∃! φ2 : F (B) −→ G (φ2 ◦ j2 = θ ◦ i2),
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there must be

h ◦ f1 = φ1,

h ◦ f2 = φ2.

Again by universal property

∃! g : F (A) ∗ F (B) −→ G (g ◦ f1 = φ1) ∧ (g ◦ f2 = φ2)

we get h = g, which implies g is unique.

Conclusion.

To sum up, we prove that there exists a unique group homomorphism g such that the first

diagram in this proof commutes. As a result, we have F (A⨿B) = F (A) ∗ F (B). Note that

if Grp turns into Ab, the method of diagram chasing applied here also works. In the light of

the following diagram, we can get F ab(A⨿B) = F ab(A)⊕ F ab(B) step by step.

A
j1 //

i1

��

F ab(A)
φ1

&&

f1
��

A⨿B ψ //

θ

99F ab(A)⊕ F ab(B)
g // G

B
j1 //

i2

OO

F ab(B)

φ2

88

f2

OO

■

5.9 Let G = Z⊕N. Prove that G×G ∼= G.

Define a function

φ : G×G −→ G

((a1, a2, · · · ), (b1, b2, · · · )) 7−→ (a1, b1, a2, b2, · · · )

It is plain to check that φ is a homomorphism

φ[((a1, a2, · · · ), (b1, b2, · · · )) + ((a′1, a
′
2, · · · ), (b′1, b′2, · · · ))]

=φ[((a1 + a′1, a2 + a′2, · · · ), (b1 + b′1, b2 + b′2, · · · ))]
=(a1 + a′1, b1 + b′1, a2 + a′2, b2 + b′2, · · · )
=(a1, b1, a2, b2, · · · ) + (a′1, b

′
1, a

′
2, b

′
2, · · · )

=φ[((a1, a2, · · · ), (b1, b2, · · · ))] + φ[((a′1, a
′
2, · · · ), (b′1, b′2, · · · ))].

Since kerφ = {(0, 0, · · · )} and φ(G × G) = G, we can conclude that φ is an isomorphism

and accordingly G×G ∼= G. ■
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5.10 ¬ Let F = F ab(A).

• Define an equivalence relation ∼ on F by setting f ∼ f ′ if and only if f − f ′ = 2g for

some g ∈ F . Prove that F/ ∼ is a finite set if and only if A is finite, and in that case

|F/ ∼ | = 2|A|.

• Assume F ab(B) ∼= F ab(A). If A is finite, prove that so is B, and A ∼= B as sets.

(This result holds for free groups as well, and without any finiteness hypothesis. See

Exercises 7.13 and VI.1.20.)

[7.4, 7.13]

• If |A| = ∞, let F = F ab(A) = Z⊕A and accordingly every element of Z⊕A can be

written uniquely as a finite sum∑
a∈A

maj(a), ma ̸= 0 for only finitely many a.

Apparently, the elements in j(A) = {j(a) | a ∈ A} are not equivalent pairwise. Note

that j is an injection. Hence we see

|F/ ∼ | ≥ |j(A)| = A >∞.

In other words, F/ ∼ is a finite set only if A is finite.

If |A| = n < ∞, we can set F = F ab(A) = Z⊕n. Assume f = (a1, a2, · · · , an),
f ′ = (a′1, a

′
2, · · · , a′n). Then f ∼ f ′ if and only if ai − a′i ∈ 2Z (i = 1, 2, · · · , n). Let [f ]

denote the equivalence class including f . Thus we get

F/ ∼= {[(k1, k2, · · · , kn)] | ki = 0 or 1, i = 1, 2, · · · , n}

and accordingly |F/ ∼ | = 2|A|.

• Assume φ : F ab(A)→ F ab(B) is a group isomorphism. Since for all f, f ′ ∈ F ab(A),

f ∼ f ′ ⇐⇒ ∃ g ∈ F ab(A), f − f ′ = 2g

⇐⇒ ∃φ(g) ∈ F ab(B), φ(f)− φ(f ′) = 2φ(g)

⇐⇒ φ(f) ∼ φ(f ′)

in Set we have

F ab(A)/ ∼ ≃ F ab(B)/ ∼ .

If A is finite, then F ab(A)/ ∼ is finite. Furthermore it follows that

|F ab(A)/ ∼ | = |F ab(B)/ ∼ | =⇒ 2|A| = 2|B| =⇒ |A| = |B|.

Hence we see B is finite and A ∼= B in Set .

■
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§6. Subgroups

6.1 ¬ (If you know about matrices.) The group of invertible n× n matrices with entries

in R is denoted GLn(R) (Example 1.5). Similarly, GLn(C) denotes the group of n × n

invertible matrices with complex entries. Consider the following sets of matrices:

• SLn(R) = {M ∈ GLn(R)| det(M) = 1};

• SLn(C) = {M ∈ GLn(C)| det(M) = 1};

• On(R) = {M ∈ GLn(R)|MM t =M tM = In};

• SOn(R) = {M ∈ On(R)| det(M) = 1};

• U(n) = {M ∈ GLn(C)|MM † =M †M = In};

• SU(n) = {M ∈ U(n)| det(M) = 1}.

Here In stands for the n×n identity matrix, M t is the transpose ofM , M † is the conjugate

transpose of M , and det(M) denotes the determinant of M . Find all possible inclusions

among these sets, and prove that in every case the smaller set is a subgroup of the larger

one.

These sets of matrices have compelling geometric interpretations: for example, SO3(R) is
the group of ‘rotations’ in R3. [8.8, 9.1, III.1.4, VI.6.16]

The following diagram commutes, where all arrows are inclusions.

GLn(R) // GLn(C)

SLn(R) //

OO

SLn(C)

OO

On(R) //

OO

U(n)

OO

SOn(R) //

OO

SU(n)

OO

■

6.2 ¬ Prove that the set of 2× 2 matrices(
a b

0 d

)
with a, b, d in C and ad ̸= 0 is a subgroup of GL2(C). More generally, prove that the set of

n×n complex matrices (aij)1≤i,j≤n with aij = 0 for i > j, and a11 · · · ann ̸= 0, is a subgroup

of GLn(C). (These matrices are called ’upper triangular’, for evident reasons.) [IV.1.20]
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Let A,B are n× n upper triangular matrices. If i > j,

(AB)ij =
n∑
k=1

aikbkj =
i−1∑
k=1

aikbkj +
n∑
k=i

aikbkj =
i−1∑
k=1

0bkj +
n∑
k=i

aik0 = 0,

which means the set of upper triangular matrices is closed with respect to the matrix mul-

tiplication. Thus it is a subgroup of GLn(C). ■

6.3 ¬ Prove that every matrix in SU(2) may be written in the form(
a+ bi c+ di

−c+ di a− bi

)
where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. (Thus, SU(2) may be realized as a three-

dimensional sphere embedded in R4; in particular, it is simply connected.)[8.9, III.2.5]

Let

A =

(
a11 a12
a21 a22

)
∈ SU(2)

and we have

AA† =

(
a11 a12
a21 a22

)(
a11 a21
a12 a22

)
=

(
|a11|2 + |a12|2 a11a21 + a12a22
a21a11 + a22a12 |a21|2 + |a22|2

)
=

(
1 0

0 1

)
and

det(A) =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 = 1

Note

a11a12 = a11a12

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = ∣∣∣∣ |a11|2 |a12|2
a21a11 a22a12

∣∣∣∣ = ∣∣∣∣ |a11|2 |a11|2 + |a12|2
a21a11 a21a11 + a22a12

∣∣∣∣ = ∣∣∣∣ |a11|2 1

a21a11 0

∣∣∣∣ = −a21a11
=⇒ a11(a12 + a21) = 0,

and

a21a22 = a21a22

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = ∣∣∣∣a11a21 a12a22
|a21|2 |a22|2

∣∣∣∣ = ∣∣∣∣a11a21 a11a21 + a12a22
|a21|2 |a21|2 + |a22|2

∣∣∣∣ = ∣∣∣∣a11a21 0

|a21|2 1

∣∣∣∣ = a11a21

=⇒ a21(a11 − a22) = 0.

If a11 ̸= 0, it must be a12 + a21 = 0. If a11 = 0, then |a12|2 = 1, a12a22 = 0 and accordingly

a22 = 0. Since −a12a21 = 1 = a12a12, we also have a12 + a21 = 0, that is a12 = c + di, a21 =

−c+ di. Likewise, we can show a11 − a22 = 0 and a11 = a+ bi, a22 = a− bi. And we have

|a11|2 + |a12|2 = a2 + b2 + c2 + d2 = 1.
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■

6.4 Let G be a group, and g ∈ G. Verify that the image of the exponential map ϵg : Z→ G

is a cyclic group (in the sense of Definition 4.7).

If |g| =∞, then gi ̸= gj(i ̸= j). Define

φ : Z −→ ϵg(Z), n 7−→ gn

and we can check it is an isomorphism.

If |g| = k, then eG, g, g
2, · · · , gk−1 are distinct. Define

φ : Z/kZ −→ ϵg(Z), [n]k 7−→ gn

and we can check it is an isomorphism.

Since ϵg(Z) is isomorphic to Z or Z/kZ, we show ϵg(Z) is a cyclic group. ■

6.6 Prove that the union of a family of subgroups of a group G is not necessarily a

subgroup of G. In fact:

• Let H, H ′ be subgroups of a group G. Prove that H ∪H ′ is a subgroup of G only if

H ⊆ H ′ or H ′ ⊆ H.

• On the other hand, let H0 ⊆ H1 ⊆ H2 ⊆ · · · be subgroups of a group G. Prove that

∪i≥0Hi is a subgroup of G.

• Let H ∪ H ′ be a subgroup of G. Suppose neither H ⊆ H ′ nor H ′ ⊆ H hold. Let

a ∈ H − H ′, b ∈ H ′ − H, h = ab−1 ∈ H ∪ H ′. In the case of h ∈ H, we have

b = h−1a ∈ H, contradiction! In the case of h ∈ H ′, we have a = hb ∈ H ′, contradiction

again! Therefore, there must be H ⊆ H ′ or H ′ ⊆ H.

• For all a, b ∈ ∪i≥0Hi, we can suppose a ∈ Hj, b ∈ Hk and we have a, b ∈ Hmax{j,k}.

Then ab ∈ Hmax{j,k} ⊆ ∪i≥0Hi, implies that ∪i≥0Hi is closed and that ∪i≥0Hi is a

subgroup of G.

■

6.7 ¬ Show that inner automorphisms (cf. Exercise II.4.8) form a subgroup of Aut(G);

this subgroup is denoted Inn(G). Prove that Inn(G) is cyclic if and only if Inn(G) is trivial

if and only if G is abelian. (Hint: Assume that Inn(G) is cyclic; with notation as in Exercise

4.8, this means that there exists an element a ∈ G such that ∀g ∈ G ∃n ∈ Z γg = γna .

In particular, gag−1 = anaa−n = a. Thus a commutes with every g in G. Therefore...)

Deduce that if Aut(G) is cyclic then G is abelian. [7.10, IV.1.5]
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With notation as in Exercise 4.8, we assume γg ∈ Inn(G) is defined by

∀h ∈ G (γg(h) = ghg−1).

We have

Inn(G) is cyclic

⇐⇒ ∃γa ∈ Inn(G), Inn(G) = ⟨γa⟩
⇐⇒ ∃a ∈ G ∀g ∈ G ∃n ∈ Z (γg = γna )

=⇒ ∃a ∈ G ∀g ∈ G ∃n ∈ Z (γg(a) = gag−1 = γna (a) = anaa−n = a)

=⇒ ∃a ∈ G ∀g ∈ G (ga = ag)

=⇒ ∀h ∈ G, γa(h) = aha−1 = haa−1 = h

=⇒ Inn(G) = ⟨id⟩
=⇒ Inn(G) is trivial

Inn(G) is trivial

=⇒ ∀g ∈ G ∀h ∈ G (γg(h) = ghg−1 = h)

=⇒ ∀g ∈ G ∀h ∈ G (gh = hg)

⇐⇒ G is abelian

G is abelian

=⇒ ∀g ∈ G ∀h ∈ G (γg(h) = ghg−1 = h)

=⇒ Inn(G) = {id}
=⇒ Inn(G) is cyclic

If Aut(G) is cyclic, its subgroup Inn(G) is also cyclic. As we have shown, that means G is

abelian. ■

6.8 Prove that an abelian group G is finitely generated if and only if there is a surjective

homomorphism

Z⊕ · · · ⊕ Z︸ ︷︷ ︸
n times

↠ G

for some n.

Given any set H ⊆ G, there exists a unique homomorphism φH such that the following

diagram commutes.

F ab(H)
∃!φ // G

H
- 


i

;;

_
j

OO
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The homomorphism image φH(F
ab(H)) ≤ G is called the subgroup generated by H in G,

denoted by ⟨H⟩.
If G is finitely generated, there is a finite subset Gn ⊆ G with n elements such that

φH(F
ab(Gn)) = φH(Z⊕n) = G. And φH is exactly the surjective homomorphism that we

need.

If there is a surjective homomorphism ψ : Z⊕n ↠ G for some n. Suppose

ψ : 1i = (0, · · · , 0, 1 , 0, · · · , 0) 7−→ gi
i-th place

and Gn = {g1, g2, · · · , gn}. Then define

j : Gn −→ Z⊕n, gi 7−→ 1i.

We can check the following diagram commutes

Z⊕n ψ // // G

Gn

. � i

==

_
j

OO

which means ⟨Gn⟩ = ψ(Z⊕n). Since ψ is surjective, we have ⟨Gn⟩ = G. Hence we show G is

finitely generated. ■

6.9 Prove that every finitely generated subgroup of Q is cyclic. Prove that Q is not finitely

generated.

Given any two rationals

a1 =
p1
q1
∈ Q, (p1, q1) = 1,

a2 =
p2
q2
∈ Q, (p2, q2) = 1,

there exists r = 1
q1q2
∈ Q such that ⟨a1, a2⟩ ≤ ⟨r1⟩. Then for some a3 we have ⟨a1, a2, a3⟩ ≤

⟨r1, a3⟩ ≤ ⟨r2⟩. In general, let’s set Bn = {a1, a2, · · · , an}. If ⟨Bn⟩ ≤ ⟨rn−1⟩. we have

⟨Bn+1⟩ = ⟨Bn, an+1⟩ ≤ ⟨rn−1, an+1⟩ ≤ ⟨rn⟩. By induction we can prove ⟨a1, a2, · · · , an⟩ ≤
⟨rn−1⟩ for n ∈ N+. Since the subgroups of a cyclic group are also cyclic, we see finitely

generated subgroup ⟨a1, a2, · · · , an⟩ ≤ Q is cyclic.

Supposing Q is finitely generated, Q must be a cyclic group, which contradicts the fact.

Thus we show Q is not finitely generated. ■
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6.10 ¬ The set of 2×2 matrices with integer entries and determinant 1 is denoted SL2(Z):

SL2(Z) =
{(

a b

c d

)
such that a, b, c, d ∈ Z, ad− bc = 1

}
.

Prove that SL2(Z) is generated by the matrices:

s =

(
0 −1
1 0

)
and t =

(
1 1

0 1

)
.

Let H be the subgroup generated by s and t. We can check that both

P =

(
1 −p
0 1

)
= t−p and Q =

(
1 0

−q 1

)
= s−1tqs

are in H. Given an arbitrary matrix

m =

(
a b

c d

)
∈ SL2(Z),

it suffices to show that we can obtain the identity I2 by multiplying m by matrices in H.

Note that(
a b

c d

)(
1 −p
0 1

)
=

(
a b− pa
c d− pc

)
,

(
a b

c d

)(
1 0

−q 1

)
=

(
a− qb b

c− qd d

)
,

and c, d cannot be nonzero simultaneously. Without loss of generality, we can assume that

0 < c < d and perform Euclidean algorithm. Let p1 =
⌊
d
c

⌋
, d1 = d− p1c < c. Multiplying m

by P1 =

(
1 −p1
0 1

)
on the right yields

m1 = mP1

(
a b− p1a
c d1

)
.

Then let q1 = ⌊ cd1 ⌋, c1 = c− q1d1 < d1 and right multiplying m by Q1 =

(
1 0

−q1 1

)
yields

m2 = mP1Q1

(
a− q1(b− p1a) b− p1a

c1 d1

)
.

We can repeat this procedure until some di or ci reduce to 0. The Euclidean algorithm

generates a sequence

d > c > d1 > c1 > d2 > c2 > · · · .

If ci, di never reduce to 0, we will get an infinite decreasing positive sequence, which is
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impossible. Suppose dN is the first number reducing to 0. Then

m2N−1 = mP1Q1 · · ·PN =

(
aN bN
cN−1 0

)
∈ SL2(Z),

which implies

m2N−1 =

(
0 −1
1 0

)
and m2N−1s

−1 = I2. Suppose cN is the first number reducing to 0. Then

m2N = mP1Q1 · · ·PNQN =

(
aN bN
0 dN

)
∈ SL2(Z),

which implies

m2N =

(
1 0

0 1

)
= I2.

We have shown that we can obtain the identity I2 by multiplying m by matrices in H, that

is, m can be represented as a product of matrices in H. Thus we can conclude SL2(Z) is

generated by s and t. ■

6.13 ¬ Draw and compare the lattices of subgroups of C2 × C2 and C4. Drawthe lattice

of subgroups of S3, and compare it with the one for C6. [7.1]

Lattices of subgroups C2 × C2 and C4 are drawn as follows:

{(0̄, 0̄), (0̄, 1̄)} {(0̄, 0̄), (1̄, 0̄)}

{(0̄, 0̄)}

{(0̄, 0̄), (0̄, 1̄), (1̄, 0̄), (1̄, 1̄)}

C2 × C2

{0̄}

{0̄, 2̄}

{0̄, 1̄, 2̄, 3̄}

C4

Lattices of subgroups S3 and C6 are drawn as follows:
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{(1), (12)} {(1), (13)} {(1), (23)} {(1), (123), (132)}

{(1), (12), (13), (23), (123), (132)}

{(1)}

{0̄, 2̄, 4̄)} {0̄, 3̄}

{0̄}

{0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄}

■

§7. Quotient groups

7.1 ▷ List all subgroups of S3 (cf. Exercise II.6.13) and determine which subgroups are

normal and which are not normal. [§7.1]

The subgroups of S3 are {(1)}, {(1), (12)}, {(1), (13)}, {(1), (23)}, {(1), (123), (132)} and S3.

We can check that {(1)}, {(1), (123), (132)}, S3 are normal subgroups while others are not. ■

7.2 Is the image of a group homomorphism necessarily a normal subgroup of the target?

No. According to exercise 7.1 we have seen not all subgroups are normal. Suppose H is a

subgroup of G but not normal. Then H itself is the image of the inclusion homomorphism

i : H ↪→ G, which makes a counterexample. ■

7.3 ▷ Verify that the equivalent conditions for normality given in §7.1 are indeed equiva-

lent. [§7.1]
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That a subgroup N of G is normal has four equivalent conditions:

(i) ∀g ∈ G, gNg−1 = N ;

(ii) ∀g ∈ G, gNg−1 ⊆ N ;

(iii) ∀g ∈ G, gN ⊆ Ng;

(iv) ∀g ∈ G, gN = Ng.

(i) =⇒ (ii) is straightforward.

(ii) =⇒ (iii). For any g ∈ G, the element a ∈ gN can be written as a = gn1(n1 ∈ N).

Since gn1g
−1 ∈ gNg−1 ⊆ N , there exists an n2 ∈ N such that gn1g

−1 = n2, which implies

gn1 = n2g ∈ Ng. Thus we have gN ⊆ Ng.

(iii) =⇒ (iv). Given any g ∈ G, for all n1 ∈ N , the element g−1n1 ∈ g−1N1 also belongs to

Ng−1, which implies that there exists n2 ∈ N such that g−1n1 = n2g
−1, namely n1g = gn2.

Thus we get Ng ⊆ gN and accordingly gN = Ng.

(iv) =⇒ (i). For any g ∈ G, the element b ∈ gNg−1 can be written as a = gn1g
−1(n1 ∈ N).

Since gn1 ∈ gN = Ng, there exists an n2 ∈ N such that gn1 = n2g, which implies gn1g
−1 =

n2 ∈ N . Thus we have

∀g ∈ G, gNg−1 ⊆ N

=⇒ ∀g−1 ∈ G, g−1(gNg−1)g ⊆ gNg−1

=⇒ ∀g ∈ G, N ⊆ gNg−1.

Hence we have ∀g ∈ G, gNg−1 = N . ■

7.4 Prove that the relation defined in Exercise II.5.10 on a free abelian group F = F ab(A)

is compatible with the group structure. Determine the quotient F/ ∼ as a better known

group.

For all f, f ′, h ∈ F ,

f ∼ f ′ ⇐⇒ f−f ′ = 2g, (g ∈ F ) =⇒ (h+f)−(h+f ′) = 2g, (g ∈ F ) ⇐⇒ h+f ∼ h+f ′.

Since F is abelian, wee see the relation ∼ defined on a free abelian group F = F ab(A) is

compatible with the group structure. By the notation of quotient group, we have

F/∼ = F/2F,

where 2F = {2g ∈ F | g ∈ F}. ■
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7.5 ¬ Define an equivalence relation ∼ on SL2(Z) by letting A ∼ A′ ⇐⇒ A′ = ±A.
Prove that ∼ is compatible with the group structure. The quotient SL2(Z)/ ∼ is denoted

PSL2(Z), and is called the modular group; it would be a serious contender in a context

for ‘the most important group in mathematics’, due to its role in algebraic geometry and

number theory. Prove that PSL2(Z) is generated by the (cosets of the) matrices(
0 −1
1 0

)
and

(
1 −1
1 0

)
.

(You will not need to work very hard, if you use the result of Exercise 6.10.) Note that the

first has order 2 in PSL2(Z), the second has order 3, and their product has infinite order.

[9.14]

For all A1, A2, B ∈ SL2(Z),

A1 ∼ A2 ⇐⇒ A2 = ±A1 ⇐⇒ BA2 = ±BA1 ⇐⇒ BA1 ∼ BA2.

Hence ∼ is compatible with the group structure and PSL2(Z) = SL2(Z)/{I2,−I2}. In

Exercise 6.10 we have shown SL2(Z) is generated by the matrices

s =

(
0 −1
1 0

)
and t =

(
1 1

0 1

)
.

It is clear that SL2(Z) can also be generated by the matrices

s =

(
0 −1
1 0

)
and ts =

(
1 −1
1 0

)
,

which implies PSL2(Z) is generated by the cosets of the matrices s and ts. ■

7.6 Let G be a group, and let n be a positive integer. Consider the relation

a ∼ b ⇐⇒ (∃g ∈ G)ab−1 = gn.

• Show that in general ∼ is not an equivalence relation.

• Prove that ∼ is an equivalence relation if G is commutative, and determine the

corresponding subgroup of G.

• Let G be the symmetric group S4 and let n = 2. We can check that

(3 4)(2 3)−1 = (2 4 3) = (2 3 4)2 =⇒ (3 4) ∼ (2 3)

(2 3)(1 2)−1 = (1 3 2) = (1 2 3)2 =⇒ (2 3) ∼ (1 2)

but (3 4)(1 2)−1 = (1 2)(3 4) is not the square of any element in S4.
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• Suppose that G is commutative. aa−1 = en implies ∼ is reflexive. Since

a ∼ b =⇒ ab−1 = gn (g ∈ G) =⇒ b−1a = g−n (g−1 ∈ G) =⇒ b ∼ a,

∼ is symmetric. Since G is commutative, we have

a ∼ b, b ∼ c =⇒ ab−1 = gn1 , bc
−1 = gn2 (g1, g2 ∈ G)

=⇒ ac−1 = ab−1bc−1 = gn1 g
n
2 = (g1g2)

n (g1g2 ∈ G) =⇒ a ∼ c,

which means ∼ is transitive. Thus we show that ∼ is an equivalence relation. Since

a ∼ b =⇒ ab−1 = gn =⇒ ga(gb)−1 = (ag)(bg)−1 = gn =⇒ ga ∼ gb, ag ∼ bg,

we see ∼ is compatible with the group G and the equivalence class of the identity

H = {gn|g ∈ G} is a subgroup of G.

■

7.7 Let G be a group, n a positive integer, and let H ⊆ G be the subgroup generated by

all elements of order n in G. Prove that H is normal.

For all h ∈ H, g ∈ G, we have

(ghg−1)n = ghng−1 = gg−1 = eG =⇒ ghg−1 ∈ H,

which means gHg−1 ⊆ H for all g ∈ G. Thus we show that H is normal. ■

7.10 ¬ Let G be a group, and H ⊆ G a subgroup. With notation as in Exercise II.6.7,

show that H is normal in G if and only if ∀γ ∈ Inn(G), γ(H) ⊆ H. Conclude that if H is

normal in G then there is an interesting homomorphism Inn(G)→ Aut(H). [8.25]

Consistent with the notation as in Exercise II.6.7, suppose

γg : G −→ G, h 7−→ ghg−1.

Then we have

∀γg ∈ Inn(G), γg(H) ⊆ H ⇐⇒ ∀g ∈ G, gHg−1 ⊆ H ⇐⇒ H is normal in G.

Thus we see that if H is normal in G, γ can be restricted to H so that γ|H : H → H is an

automorphism on H. Let

i : Inn(G) −→ Aut(H), γ 7−→ γ|h

and with the property of γ we have shown in Exercise II.4.8, it is straightforward to check

that

i(γg1γg2) = i(γg1g2) = γg1g2|h = (γg1γg2)|h = γg1|hγg2 |h = i(γg1)i(γg2).
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That is, i is the interest homomorphism Inn(G)→ Aut(H) that we expect. ■

7.11 ▷ Let G be a group, and let [G,G] be the subgroup of G generated by all elements

of the form aba−1b−1. (This is the commutator subgroup of G; we will return to it in

§IV.3.3.) Prove that [G,G] is normal in G. (Hint: with notations in Exercise II.4.8,

gaba−1b−1g−1 = γg(aba
−1b−1).) Prove that [G,G] is normal in G. [7.12, §IV.3.3]

Since for all g ∈ G, aba−1b−1 ∈ [G,G], we have

gaba−1b−1g−1 = gag−1gbg−1ga−1g−1gb−1g−1 = (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1 ∈ [G,G],

it follows that that [G,G] is normal in G. Then we can show [G,G] is normal in G by

[g1][g2] = [g1g2] = [g1g2(g
−1
2 g−1

1 g2g1)] = [g2g1] = [g2][g1], ∀[g1], [g2] ∈ [G,G].

■

7.12 ▷ Let F = F (A) be a free group, and let f : A→ G be a set-function from the set A

to a commutative group G. Prove that f induces a unique homomorphism F/[F, F ]→ G,

where [F, F ] is the commutator subgroup of F defined in Exercise II.7.11. (Use Theorem

7.12.) Conclude that F/[F, F ] ≃ F ab(A). (Use Proposition I.5.4.) [§6.4, 7.13, VI.1.20]

By the universal property of free group, there exists a unique homomorphism φ : F → G

such that ∀a ∈ A, φ(j(a)) = f(a) where j : A → F (A) is a inclusion. Note that G is

commutative, we have

φ(aba−1b−1) = φ(a)φ(b)φ(a)−1φ(b)−1 = eG,

which implies [F, F ] ⊆ kerφ. Theorem 7.12 indicates that there exists a unique group

homomorphism φ̃ : F/[F, F ]→ G so that φ̃ ◦ π = φ. Now we deduce that the diagram

A

j
��

f

$$
F

∃!φ //

π
��

G

F/[F, F ]
∃!φ̃

::

commutes. For the diagram we see φ̃◦π◦j = f . Suppose there exists ψ such that ψ◦π◦j = f ,

which amounts to (ψ ◦ π) ◦ j = φ ◦ j. By the uniqueness of φ we have ψ ◦ π = φ. Then

by the uniqueness of φ̃ we have ψ = φ̃. Thus we show that there exists unique φ̃ such

that φ̃ ◦ π ◦ j = f . According to the property of free abelian group, we can conclude that

F/[F, F ] ≃ F ab(A). ■
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7.13 ¬ Let A,B be sets, and F (A), F (B) the corresponding free groups. Assume F (A) ≃
F (B). If A is finite, prove that so is B, and A ≃ B. (Use Exercise II.7.12 to upgrade

Exercise II.5.10.) [5.10, VI.1.20]

Exercise II.7.12 tells us that the free abelian group generated by a set is merely determined

by its free group, which means

F (A) ≃ F (B) =⇒ F (A)/[F (A), F (A)] ≃ F (B)/[F (B), F (B)] =⇒ F ab(B) ∼= F ab(A).

Then under the auspices of the conclusion in Exercise II.5.10 we complete the proof. ■

§8. Canonical decomposition and Lagrange’s theorem

8.1 If a group H may be realized as a subgroup of two groups G1 and G2, and

G1

H
∼=
G2

H
,

does it follows that G1
∼= G2. Give a proof or a counterexample.

A counterexample is given as follows. Take H = C3, the cyclic group of order 3. Take

G1 = D6 and G2 = C6, then one sees both G1/H and G2/H are C2. But obviously G1 and

G2 are not isomorphic, one being abelian while the other is not. ■

8.2 ¬ Extend Example 8.6 as follows. Suppose G is a group, and H ⊆ G is a subgroup of

index 2: that is, such that there are precisely two (say, left) cosets of H in G. Prove that

H is normal in G. [9.11, IV.1.16]

Since [G/H] = 2, there must be G/H = {H,G−H}. For any g ∈ G:

• if g ∈ H, then gH = Hg = H;

• if g ∈ G−H, then gH ̸= H and Hg ̸= H. Thus we have gH = Hg = G−H.

In either case gH = Hg holds for all g ∈ G, which implies H is normal in G. ■

8.7 Let (A|R), resp. (A′|R ′) be presentations for two groups G, resp. G′(cf. §8.2); we
may assume that A,A′ are disjoint. Prove that the group G ∗G′ presented by

(A ∪ A′|R ∪R ′)

satisfies the universal property for the coproduct of G and G′ in Grp. (Use the universal

properties of both free groups and quotients to construct natural homomorphisms G →
G ∗G′, G′ → G ∗G′.) [§3.4, §8.2, 9.14].
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Assume that F (A)/R = (A|R), F (A′)/R′ = (A|R ′), and F (A⨿A′)/R′′ = (A ∪A′|R ∪R ′).

G

F (A)/R

f

66

ψ // F (A⨿ A′)/R′′

δ

OO

F (A′)/R′

f ′
hh

ψ′
oo

A

i ((

k

OO

F (A⨿ A′)

π

OO

A′

i′vv

k′

OO

A⨿ A′

j

OO

According to Lemma II.1, there exist unique ψ and ψ′ such that

ψ ◦ k = π ◦ j ◦ i, ψ′ ◦ k′ = π ◦ j ◦ i′.

Define

δ :F (A⨿ A′)/R′′ −→ G

[{a1} ∗ {a′1} ∗ · · · ∗ {an} ∗ {a′n}] 7−→ f([{a1}])f ′([{a′1}]) · · · f([{an}])f ′([{a′n}]).

where ∗ means the junction of words and {ai} = ai1 ∗ ai2 ∗ · · · ∗ aimi
, aij ∈ A (1 ≤ i ≤ n, 1 ≤

j ≤ mi) and {a′i} = a′i1 ∗ a′i2 ∗ · · · ∗ aim′
i
, aij′ ∈ A (1 ≤ i ≤ n, 1 ≤ j′ ≤ m′

i). It is routine to

check that δ is a well-defined homomorphism such that

δ ◦ ψ = f, δ ◦ ψ′ = f ′.

Then verify that if δ̂ is a homomorphism such that

δ ◦ ψ = f, δ ◦ ψ′ = f ′,

there must be δ̂ = δ. After these tasks are done, we can conclude that F (A⨿A′)/R′′ satisfies

the universal property of coproduct.

■

8.17 ▷ Assume G is a finite abelian group, and let p be a prime divisor of |G|. Prove that
there exists an element in G of order p. (Hint: let g be any element of G, and consider

the subgroup ⟨g⟩; use the fact that this subgroup is cyclic to show that there is an element

h ∈ ⟨g⟩ in G of prime order q. If q = p you are done; else, use the quotient G/⟨h⟩ and
induction.) [§8.5, 8.18, 8.20, §IV.2.1]

Suppose the proposition to be poven holds for k = |G| ≤ N−1. Now assume that k = |G| =
N . Let g be any element of G such that g ̸= eG and consider the cyclic group ⟨g⟩. We are to

show that there is an element h ∈ ⟨g⟩ of prime order q. If |⟨g⟩| is prime, simply take h = g.

- 64 -



CHAPTER II. GROUPS, FIRST ENCOUNTER

If |⟨g⟩| is not prime, we can assume that |⟨g⟩| = rs, where r, s ∈ Z and r is prime. Note

|gs| = |g|
gcd(s, |g|)

=
rs

gcd(s, rs)
=
rs

s
= r.

We can take h = gs. Therefore, there is an element h ∈ ⟨g⟩ such that q = |h| is prime. If

q = p, the proof is completed. Otherwise, let G1 = G/⟨h⟩. It still follows that G1 is a finite

abelian group and p is a prime divisor of |G1|. Since k = |G1| = N/q ≤ N − 1, by induction

it follows that there exists an element x⟨h⟩ ∈ G1 of order p. Thus we have

xp⟨h⟩ = ⟨h⟩ =⇒ xp = hm =⇒ xpq = hmq =⇒ (xq)p = eG =⇒ |xq| | p =⇒ |xq| = 1 or p.

If xq = eG, then

xq⟨h⟩ = ⟨h⟩ =⇒ |x⟨h⟩| | q =⇒ p | q,

which leads to a contradiction. Thus there must be |xq| = p, which means the proposition

holds when k = |G| = N . By induction we prove that there exists an element in G of order

p.

■

8.18 Let G be an abelian group of order 2n, where n is odd. Prove that G has exactly

one element of order 2. (It has at least one, for example by Exercise 8.17. Use Lagrange’s

theorem to establish that it cannot have more than one.) Does the same conclusion hold if

G is not necessarily commutative?

By Exercise 8.17, G has exactly one element of order 2. Suppose a, b are two distinct elements

of order 2. Consider the generated subgroup

⟨a, b⟩ = {e, a, b, ab}.

According to Lagrange’s theorem, since |⟨a, b⟩| = 4, there must be 4|2n or 2|n, where n is

odd. That is a contradiction. Thus we see G cannot have two distinct elements of order 2,

which implies that G has exactly one element of order 2.

■

§9. Group actions

§10. Group objects in categories
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Chapter III Rings and modules

§1. Definition of ring

1.1 ▷ Prove that if 0 = 1 in a ring R, then R is a zero-ring. [§1.2]

For any x in the ring R, we have

1 · x = x, 0 · x = 0.

Since 0 = 1 we see that x = 0, which implies R is a ring with only one element 0. ■

1.2 ¬ Let S be a set, and define operations on the power set P(S) of S by setting

∀A,B ∈P(S)

A+B := (A ∪B)\(A ∩B) , A ·B = A ∩B

Prove that (P(S),+, ·) is a commutative ring. [2.3, 3.15]

First, we need to check that (P(S),+) is an abelian group:

• associativity:

(A+B) + C

= ((A ∪B)\(A ∩B)) + C

= ((A ∪B) ∩ (AC ∪BC)) + C

= (A ∩ (AC ∪BC)) ∪ (B ∩ (AC ∪BC)) + C

= (A ∩BC) ∪ (AC ∩B) + C

= (((A ∩BC) ∪ (AC ∩B)) ∩ CC) ∪ (((A ∩BC) ∪ (AC ∩B))C ∩ C)
= ((A ∩BC ∩ CC) ∪ (AC ∩B ∩ CC)) ∪ ((AC ∪B) ∩ (A ∪BC) ∩ C)
= ((A ∩BC ∩ CC) ∪ (AC ∩B ∩ CC)) ∪ ((AC ∩BC) ∪ (A ∩B) ∩ C)
= (A ∩BC ∩ CC) ∪ (AC ∩B ∩ CC) ∪ (AC ∩BC ∩ C) ∪ (A ∩B ∩ C)
= (A ∩ (B ∩ C) ∪ (BC ∩ CC)) ∪ ((AC ∩B ∩ CC) ∪ (AC ∩BC ∩ C))
= (A ∩ (BC ∪ C) ∩ (B ∪ CC)) ∪ ((AC ∩B ∩ CC) ∪ (AC ∩BC ∩ C))
= (A ∩ ((B ∩ CC) ∪ (BC ∩ C))C) ∪ (AC ∩ ((B ∩ CC) ∪ (BC ∩ C)))
= A+ ((B ∩ CC) ∪ (BC ∩ C))
= A+ (B + C);

• commutativity:

A+B = (A ∪B)\(A ∩B) = (B ∪ A)\(B ∩ A) = B + A;
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• additive identity: the additive identity is ∅ since

A+∅ = (A ∪∅)\(A ∩∅) = A; \∅ = A

• inverse: the inverse of some set A is just itself since

A+ A = (A ∪ A)\(A ∩ A) = A\A = ∅.

Then we have to show that (P(S), ·) is a commutative monoid, which clearly holds with the

multiplicative identity S. What is left to show is the distributive properties and the check

is straightforward.

(A+B) · C
= ((A ∩BC) ∪ (AC ∩B)) ∩ C
= (A ∩BC ∩ C) ∪ (AC ∩B ∩ C)
= (A ∩ C ∩ (BC ∪ CC)) ∪ ((AC ∪ CC) ∩ (B ∩ C))
= (A ∩ C ∩ (B ∩ C)C) ∪ ((A ∩ C)C ∩ (B ∩ C))
= A · C +B · C.

■

1.3 ¬ Let R be a ring, and let S be any set. Explain how to endow the set RS of set-

functions S → R of two operations +, · so as to make RS into a ring, such that RS is just

a copy of R if S is a singleton. [2.3]

To make (RS,+, ·) a ring , for all f, g ∈ RS we define addition and multiplication as

f + g : S −→ R, x 7−→ f(x) + g(x)

f · g : S −→ R, x 7−→ f(x) · g(x).

■
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1.4 ▷ The set of n × n matrices with entries in a ring R isdenoted Mn(R). Prove that

componentwise addition and matrix multiplication makesMn(R) into a ring, for any ring

R. The notation gln(R) is also commonly used, especially R = R or C (although this

indicates one is considering them as Lie algebras) in parallel with the analogous notation

for the corresponding groups of units, cf. Exercise II.6.1. In fact, the parallel continues

with the definition of the following sets of matrices:

• sln(R) = {M ∈ gln(R)|tr(M) = 0};

• sln(C) = {M ∈ gln(C)|tr(M) = 0};

• son(R) = {M ∈ sln(R)|M +M t = 0};

• su(n) = {M ∈ sln(C)|M +M † = 0}.

Here tr(M) is the trace of M , that is, the sum of its diagonal entries. The other notation

matches the notation used in Exercise II.6.1. Can we make rings of these sets, by endowing

them of ordinary addition and multiplication of matrices? (These sets are all Lie algebras,

cf. Exercise VI.1.4.) [§1.2, 2.4, 5.9, VI.1.2, VI.1.4]

It is plain to showMn(R) is a ring according to the definition. For multiplicative associa-

tivity, it follows that for all A,B,C ∈Mn(R),

((AB)C)α,δ

=
n∑
i=1

(AB)α,ici,δ

=
n∑
i=1

(
n∑
j=1

aα,jbj,i

)
ci,δ

=
n∑
i=1

n∑
j=1

(aα,jbj,i) ci,δ

=
n∑
j=1

n∑
n=1

aα,j (bj,ici,δ)

=
n∑
j=1

aα,j

(
n∑
i=1

bj,ici,δ

)

=
n∑
j=1

aα,j(BC)j,δ

= (A(BC))α,δ.

Under the ordinary addition and multiplication of matrices, sln(R), sln(C), son(R), sun(C)
are not rings. In fact, they are not closed under the multiplication. ■

- 68 -



CHAPTER III RINGS AND MODULES

1.5 Let R be a ring. If a, b are zero-divisors in R, is a+ b necessarily a zero-divisor?

That is not true. Let’s take Z/6Z as an counterexample. Though both [2]6 and [3]6 are

zero-divisors, their sum [5]6 is not a zero-divisor. ■

1.6 ¬ An element a of a ring R is nilpotent if an = 0 for some n.

1. Prove that if a and b are nilpotent in R and ab = ba, then a+ b is also nilpotent.

2. Is the hypothesis ab = ba in the previous statement necessary for its conclusion to

hold?

[3.12]

1. Assume that an = bm = 0 and let k = 2max{n,m}. If ab = ba, we can get

(a+ b)k =

k
2∑
p=0

(
k

p

)
akbk−p+

k∑
p=

k
2
+1

(
k

p

)
akbk−p =

k
2∑
p=0

(
k

p

)
ak · 0+

k∑
p=

k
2
+1

(
k

p

)
0 · bk−p = 0,

which means a+ b is also nilpotent.

2. The hypothesis ab = ba is necessary. A counterexample can be found in the ring gl2(R).
Let

a =

(
0 1

0 0

)
, b =

(
0 0

1 0

)
and then we have a2 = b2 = 0. In other words, a and b are nilpotent. However, by

diagonalization we see that

(a+ b)n =

(
0 1

1 0

)n
=

(
−1 1

1 1

)(
−1 0

0 1

)n(−1 1

1 1

)−1

̸=
(
0 0

0 0

)
.

Thus in such case, a+ b is no longer nilpotent.

■

1.8 Prove that x = ±1 are the only solutions to the equation x2 = 1 in an integral domain.

Find a ring in which the equation x2 = 1 has more than 2 solutions.

It clearly holds that 1 · 1 = 1 and (−1) · (−1) = ((−1) × (−1))1 · 1 = 1. That is to say,

x = ±1 are the solutions to the equation x2 = 1. Note that if there exists x in an integral

domain such that x2 = 1, then we have

(x− 1) · (x+ 1) = x2 − 1 = 0,

which implies x− 1 = 0 or x+ 1 = 0. Therefore, we can assert x = ±1 are the solutions. In

the ring Z/8Z, [3]8 and [5]8 are also the solutions to the equation x2 = 1. ■
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1.10 Let R be a ring. Prove that if a ∈ R is a right unit, and has two or more left-inverses,

then a is not a left-zero-divisor, and is a right-zero-divisor.

Since a ∈ R is a right unit, it cannot be a left-zero-divisor. Assume there exist two distinct

elements x, y ∈ R such that xa = ya = 1 and it deduces (y − x)a = 0. Thus we show that a

a right-zero-divisor. ■

1.11 Construct a field with 4 elements: as mentioned in the text, the underlying abelian

group will have to be Z/2Z× Z/2Z; (0, 0) will be the zero element, and (1, 1) will be the

multiplicative identity. The question is what (0, 1) · (0, 1), (0, 1) · (1, 0), (1, 0) · (1, 0) must

be, in order to get a field. [§1.2, §V.5.1]

Define

(0, 1) · (0, 1) = (0, 1), (0, 1) · (1, 0) = (0, 0), (1, 0) · (1, 0) = (1, 0),

and the the rest definition of multiplication will be determined uniquely according to field

properties. For example, we have no alternatives but to define

(0, 1) · (1, 1) = (0, 1) · ((0, 1) + (1, 0)) = (0, 1) · (0, 1) + (0, 1) · (1, 0) = (0, 1) + (0, 0) = (0, 1).

Then we can check Z/2Z× Z/2Z forms a field by definition. ■
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1.12 Just as complex numbers may be viewed as combinations a + bi, where a, b ∈ R,
and i satisfies the relation i2 = −1 (and commutes with R), we may construct a ring H by

considering linear combinations a + bi + cj + dk where a, b, c, d ∈ R, and i, j, k commute

with R and satisfy the following relations:

i2 = j2 = k2 = −1 , ij = −ji = k , jk = −kj = i , ki = −ik = j.

Addition in H is defined componentwise, while multiplication is defined by imposing dis-

tributivity and applying the relations. For example,

(1+ i+j) ·(2+k) = 1 ·2+ i ·2+j ·2+1 ·k+ i ·k+j ·k = 2+2i+2j+k−j+ i = 2+3i+j+k.

(i) Verify that this prescription does indeed define a ring.

(ii) Compute (a+ bi+ cj + dk)(a− bi− cj − dk), where a, b, c, d ∈ R.

(iii) Prove that H is a division ring. Elements of H are called quaternions. Note that Q8 :=

{±1,±i,±j,±k} forms a subgroup of the group of units of H; it is a noncommutative

group of order 8, called the quaternionic group.

(iv) List all subgroups of Q8, and prove that they are all normal.

(v) Prove that Q8, D8 are not isomorphic.

(vi) Prove that Q8 admits the presentation (x, y|x2y−2, y4, xyx−1y).

[§II.7.1, 2.4, IV.1.12, IV.5.16, IV.5.17, V.6.19]

(i) Verifying the (H,+) is a abelian group is immediate and we just omitted it. It is easy

to see the multiplicative identity is 1 and the distributive properties are guaranteed by

definition. The check of the associativity of multiplication looks straightforward but

tedious.

((a1 + b1i+ c1j + d1k) · (a2 + b2i+ c2j + d2k)) · (a3 + b3i+ c3j + d3k)

= [−c3 (a2c1 + a1c2 + b2d1 − b1d2)− b3 (a2b1 + a1b2 − c2d1 + c1d2)

+ a3 (a1a2 − b1b2 − c1c2 − d1d2)− d3 (−b2c1 + b1c2 + a2d1 + a1d2)]

+ [−c3 (−b2c1 + b1c2 + a2d1 + a1d2) + a3 (a2b1 + a1b2 − c2d1 + c1d2)

+ b3 (a1a2 − b1b2 − c1c2 − d1d2) + d3 (a2c1 + a1c2 + b2d1 − b1d2)]i
+ [b3 (−b2c1 + b1c2 + a2d1 + a1d2) + a3 (a2c1 + a1c2 + b2d1 − b1d2)
+ c3 (a1a2 − b1b2 − c1c2 − d1d2)− d3 (a2b1 + a1b2 − c2d1 + c1d2)]j

+ [a3 (−b2c1 + b1c2 + a2d1 + a1d2)− b3 (a2c1 + a1c2 + b2d1 − b1d2)
+ c3 (a2b1 + a1b2 − c2d1 + c1d2) + d3 (a1a2 − b1b2 − c1c2 − d1d2)]k
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(a1 + b1i+ c1j + d1k) · ((a2 + b2i+ c2j + d2k) · (a3 + b3i+ c3j + d3k))

= [−d1 (a3d2 + a2d3 − b3c2 + b2c3)− c1 (a3c2 + a2c3 + b3d2 − b2d3)
− b1 (a3b2 + a2b3 − c3d2 + c2d3) + a1 (a2a3 − b2b3 − c2c3 − d2d3)]
+ [c1 (a3d2 + a2d3 − b3c2 + b2c3)− d1 (a3c2 + a2c3 + b3d2 − b2d3)
+ a1 (a3b2 + a2b3 − c3d2 + c2d3) + b1 (a2a3 − b2b3 − c2c3 − d2d3)]i
+ [−b1 (a3d2 + a2d3 − b3c2 + b2c3) + a1 (a3c2 + a2c3 + b3d2 − b2d3)
+ d1 (a3b2 + a2b3 − c3d2 + c2d3) + c1 (a2a3 − b2b3 − c2c3 − d2d3)]j
+ [a1 (a3d2 + a2d3 − b3c2 + b2c3) + b1 (a3c2 + a2c3 + b3d2 − b2d3)
− c1 (a3b2 + a2b3 − c3d2 + c2d3) + d1 (a2a3 − b2b3 − c2c3 − d2d3)]k

(ii) Expand it by distributive properties and we get

(a+ bi+ cj + dk)(a− bi− cj − dk)
= a2 − abi− acj − adk + abi+ b2 − bck + bdj + acj + bck + c2 − cdi+ adk − bdj + cdi+ d2

= a2 + b2 + c2 + d2.

(iii) Applying the results in (ii) we see that for any non-zero element a+ bi+ cj + dk ∈ H,

(a+ bi+ cj + dk) · a− bi− cj − dk
a2 + b2 + c2 + d2

=
a− bi− cj − dk
a2 + b2 + c2 + d2

· (a+ bi+ cj + dk) = 1,

which implies a + bi + cj + dk is a two-sided unit. Thus we show that H is a division

ring.

(iv) Q8 has 6 subgroups: {1}, {1,−1}, {1,−1, i,−i}, {1,−1, j,−j}, {1,−1, k,−k}, Q8. We

can just prove that they are all normal by the definition of normal subgroups.

(v) Note that D8 = {e, r, r2, r3, s1, s2, s3, s4} has 7 subgroups: {e}, {e, r, r2, r3}, {e, s1},
{e, s2}, {e, s3}, {e, s4}, D8, while Q8 has 6 subgroups. Thus Q8, D8 are not isomorphic.

(vi) Let P = (x, y|x2y−2, y4, xyx−1y). The relation x2y−2 = e implies x2 = y2 and the

relation xyx−1y = e implies yx = yx−1x2 = x−1y−1x2 = x3y3x2 = x3y5 = x3y. First,

we can always replace yx by x3y until we obtain a word of the form xiyj. Then applying

x4 = y4 = e and replace y2 by x2, we can transform it into the form xiyj with 0 ≤ i ≤ 3

and 0 ≤ j ≤ 1. Thus we see P has at most 8 elements.

Next we will complete our proof by means of the Lemma II.1 in the appendix. Define

a mapping

f : {x, y} −→ Q8, x 7−→ i,

y 7−→ j.
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Let φ : F ({x, y}) → Q8 be the unique homomorphism induced by the universal prop-

erty of free group. Since

φ(x2y−2) = i2j−2 = 1,

φ(y4) = j4 = 1,

φ(xyx−1y) = iji−1j = 1,

we see R = {x2y−2, y4, xyx−1y} ⊂ kerφ. And it is immediate to show that Q8 can be

generated by {i, j}. Thus according to the lemma, there exists a unique homomorphism

ψ : P → Q8 such that f = ψ ◦ π ◦ i and actually ψ is surjective.

P
∃!ψ

%%
F ({x, y}) φ //

π

OO

Q8

{x, y}
f

::

i

OO

Hence we get the inequality of cardinality |P | ≥ |Q8|. Since we have shown |P | ≤ 8 =

|Q8|, there must be |P | = |Q8| = 8, which implies ψ is indeed an isomorphism. Finally

we conclude that Q8
∼= (x, y|x2y−2, y4, xyx−1y) and complete our proof.

■

1.14 ▷ Let R be a ring, and let f(x), g(x) ∈ R[x] be nonzero polynomials. Prove that

deg(f(x) + g(x)) ≤ max(deg(f(x)), deg(g(x))).

Assuming that R is an integral domain, prove that

deg(f(x) · g(x)) = deg(f(x)) + deg(g(x)).

[§1.3]

Assume

f(x) =
∑
i≥0

aix
i, g(x) =

∑
i≥0

bix
i, ai, bi ∈ R

and n,m are respectively the largest integers p, q for which ap, bq are non-zero. In others

words, we have an ̸= 0, ai = 0 for i > n and bm ̸= 0, bi = 0 for i > m. Since

f(x) + g(x) =
∑
i≥0

(ai + bi)x
i =

max{n,m}∑
i=0

(ai + bi)x
i,

- 73 -



CHAPTER III RINGS AND MODULES

we see that

deg(f(x) + g(x)) ≤ max{n,m} = max(deg(f(x)), deg(g(x))).

Now Suppose that R is an integral domain. Noticing an ̸= 0 and bm ̸= 0 implies anbm ̸= 0,

we can see

f(x) · g(x) =
∑
k≥0

∑
i+j=k

aibjx
i+j =

n+m∑
k=0

∑
i+j=k

aibjx
i+j

has a degree of n+m. That is,

deg(f(x) · g(x)) = deg(f(x)) + deg(g(x)).

■

1.15 ▷ Prove that R[x] is an integral domain if and only if R is an integral domain. [§1.3]

Assume R is an integral domain. Exercise III.1.14 tells us if f(x), g(x) ∈ R[x] are nonzero

polynomials, we have

deg(f(x) · g(x)) = deg(f(x)) + deg(g(x)),

which implies f(x) ·g(x) is also nonzero polynomial. Thus we show R[x] is a integral domain.

Conversely, assume R[x] is an integral domain. Note that given any a, b ∈ R, they also

belong to R[x]. Hence we obtain

a ̸= 0, b ̸= 0 =⇒ ab ̸= 0,

which means R is an integral domain. ■

1.16 Let R be a ring, and consider the ring of power series R[[x]] (cf. §1.3).

1. Prove that a power series a0 + a1x+ a2x
2 + · · · is a unit in R[[x]] if and only if a0 is

a unit in R. What is the inverse of 1− x in R[[x]]?

2. Prove that R[[x]] is an integral domain if and only if R is.

1. If a0 is a unit in R then we can assume there exists b0 ∈ R such that a0b0 = 1. Let

f(x) =
∑
n≥0

anx
n, g(x) =

∑
n≥0

bnx
n,

where

bn = −b0
n∑
i=1

aibn−i, n ≥ 1.
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Noticing that

a0bn = −a0b0
n∑
i=1

aibn−i = −
n∑
i=1

aibn−i, n ≥ 1,

we have

f(x)g(x) =
∑
n≥0

n∑
i=0

an−ibix
n

= 1 +
∑
n≥1

n∑
i=0

aibn−ix
n

= 1 +
∑
n≥1

(
a0bn +

n∑
i=1

aibn−i

)
xn

= 1 +
∑
n≥1

(a0bn − a0bn)xn

= 1.

Hence we show f(x) = a0 + a1x+ a2x
2 + · · · is a unit.

For the other direction, supposing f(x) = a0 + a1x + a2x
2 + · · · is a unit, then there

exists g(x) = b0 + b1x+ b2x
2 + · · · such that

f(x)g(x) = a0b0 +
∑
n≥1

n∑
i=0

aibn−ix
n = 1.

By comparing the both sides of the equality we can find a0b0 = 1, which implies a0 is

a unit in R.

We can check that the inverse of 1− x in R[[x]] is 1 + x+ x2 + · · · since

(1− x)
∑
i≥0

xi =
∑
i≥0

xi −
∑
i≥0

xi+1 = 1.

2. Suppose R is an integral domain. If f(x), g(x) ∈ R[x] are nonzero polynomials, we

can assume that

f(x) =
∑
i≥0

aix
i, g(x) =

∑
i≥0

bix
i, ai, bi ∈ R

and that n,m are respectively the smallest integers p, q for which ap, bq are non-zero.

In others words, we have an ̸= 0, ai = 0 for i < n and bm ̸= 0, bi = 0 for i < m.

Noticing an ̸= 0 and bm ̸= 0 implies anbm ̸= 0, we can see

f(x) · g(x) =
∑
k≥0

∑
i+j=k

aibjx
i+j = anbmx

n+m +
∑

k≥n+m+1

∑
i+j=k

aibjx
i+j ̸= 0.
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Thus we show R[[x]] is an integral domain.

Conversely, assume that R[[x]] is an integral domain. Note that given any a, b ∈ R,
they also belong to R[[x]]. Hence we obtain

a ̸= 0, b ̸= 0 =⇒ ab ̸= 0,

which means that R is also an integral domain.

■

§2. The category Ring

2.1 Prove that if there is a homomorphism from a zero-ring to a ring R, then R is a

zero-ring [§2.1]

Suppose that φ is a homomorphism from a zero-ring O to a ring R. Since φ(0O) = 0R,

φ(1O) = 1R, 0O = 1O, we have 0R = 1R, which implies that R is a zero-ring. ■

2.4 Define functions H→ gl4(R) and H→ gl2(C) (cf. Exercise III.1.4 and 1.12) by

a+ bi+ cj + dk 7−→


a b c d

−b a −d c

−c d a −b
−d −c b a


a+ bi+ cj + dk 7−→

(
a+ bi c+ di

−c+ di a− bi

)
for all a, b, c, d ∈ R. Prove that both functions are injective ring homomorphisms. Thus,

quaternions may be viewed as real or complex matrices.

Let f be the function H→ gl4(R) described above. For simplicity, we omit trivial check and

only verify f preserves multiplication

f((a1 + b1i+ c1j + d1k) · (a2 + b2i+ c2j + d2k))

= f((a1a2 − b1b2 − c1c2 − d1d2) + (a2b1 + a1b2 − c2d1 + c1d2)i

+ (a2c1 + a1c2 + b2d1 − b1d2)j + (a2d1 + a1d2 − b2c1 + b1c2)k)

=


a1 b1 c1 d1
−b1 a1 −d1 c1
−c1 d1 a1 −b1
−d1 −c1 b1 a1




a2 b2 c2 d2
−b2 a2 −d2 c2
−c2 d2 a2 −b2
−d2 −c2 b2 a2


= f(a1 + b1i+ c1j + d1k)f(a2 + b2i+ c2j + d2k)

■
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2.5 The norm of a quaternion w = a+ bi+ cj + dk, with a, b, c, d ∈ R, is the real number

N(w) = a2 + b2 + c2 + d2. Prove that the function from the multiplicative group H∗ of

nonzero quaternions to the multiplicative group R+ of positive real numbers, defined by

assigning to each nonzero quaternion its norm, is a homomorphism. Prove that the kernel

of this homomorphism is isomorphic to SU2(C) (cf. Exercise II.6.3). [4.10, IV.5.17 V.6.19]

According to Exercise III.2.4, w ∈ H∗ can be viewed as a matrix i(w) ∈ gl2(C) where

i : H → gl2(C) is a monomorphism in Ring. Then the function N : H∗ → R+ can be just

viewed as the determinant mapping det : i(H∗) ⊂ gl2(C) → R+. More precisely, it means

N = det ◦ i. We can check that

N(w1w2) = det(i(w1w2)) = det(i(w1)i(w2)) = det(i(w1)) det(i(w2)) = N(w1)N(w2)

and

w ∈ kerN ⇐⇒ N(w) = det(i(w)) = 1 ⇐⇒ i(w) ∈ SU2(C).

Therefore, N is a homomorphism and kerN isomorphic to SU2(C). ■

2.6 Verify the ‘extension property’ of polynomial rings, stated in Example 2.3. [§2.2]

Define the following ring homomorphisms

α : R −→ S, r 7−→ α(r)

ϵ : R −→ R[x], r 7−→ r,

and functions

j : {s} −→ R[x], s 7−→ x,

i : {s} −→ S, s 7−→ s.

Assume that s ∈ S is an element commuting with α(r) for all r ∈ R, we are to show that

there exists a unique ring homomorphism α : R[x] → S such that the following diagram

commutes.

R

ϵ
��

α

!!
R[x] ∃!α // S

{s}
. � i

>>

_
j

OO

Uniqueness. If α exists, then the postulated commutativity of the diagram means that for

all f(x) =
∑

n≥0 an ∈ R[x], there must be

α (f(x)) = α

(∑
n≥0

anx
n

)
=
∑
n≥0

α (an)α (x)n =
∑
n≥0

α (an) s
n.
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That is, α is unique.

Existence. The only choice is to define

α : R[x] −→ S,
∑
n≥0

anx
n 7−→

∑
n≥0

α (an) s
n

and to check whether it is a ring homomorphism.

1. Preserving addition:

α

(∑
n≥0

anx
n +

∑
n≥0

bnx
n

)
= α

(∑
n≥0

(an + bn)x
n

)
=
∑
n≥0

α (an + bn) s
n

=
∑
n≥0

α (an) s
n +

∑
n≥0

α (bn) s
n

= α

(∑
n≥0

anx
n

)
+ α

(∑
n≥0

bnx
n

)
.

2. Preserving multiplication:

α

(∑
n≥0

anx
n
∑
n≥0

bnx
n

)
= α

(∑
n≥0

∑
i+j=n

aibjx
n

)

=
∑
n≥0

α

(∑
i+j=n

aibj

)
sn

=
∑
n≥0

∑
i+j=n

α (ai) s
iα (bj) s

j

=

(∑
n≥0

α (an) s
n

)(∑
n≥0

α (bn) s
n

)

= α

(∑
n≥0

anx
n

)
α

(∑
n≥0

bnx
n

)
.

3. Preserving identity element:

α(1R) = α(1R) = 1S.

Integrating the two parts we finally conclude there exists a unique ring homomorphism α

such that the diagram commutes.

■
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2.7 Let R = Z/2Z, and let f(x) = x2−x; note f(x) ̸= 0. What is the polynomial function

R→ R determined by f(x)? [§2.2, §V.4.2, §V.5.1]

It determines a function f : Z/2Z → Z/2Z sends all elements to identity, that is, f([0]2) =

[0]2, f([1]2) = [0]2. ■

2.8 Prove that every subring of a field is an integral domain.

Suppose φ : R ↪→ K is a inclusion homomorphism. If a ̸= 0, we have

ab = ac =⇒ φ(a)φ(b) = φ(a)φ(c) =⇒ φ(b) = φ(c) =⇒ b = c.

Due to the community of field it also holds that ba = ca. Thus we show R is an integral

domain. ■

2.9 ¬ The center of a ring R consists of the elements a such that ar = ra for all r ∈ R.
Prove that the center is a subring of R. Prove that the center of a division ring is a field.

[2.11, IV.2.17, VII.5.14,VII.5.16]

Denote the center of R by Z(R). We can check that

1. for all x, y ∈ Z(R), for all r ∈ R,

(x− y)r = xr − yr = rx− ry = r(x− y) =⇒ x− y ∈ Z(R);

2. for all r ∈ R,
1r = r1 =⇒ 1 ∈ Z(R);

3. for all x, y ∈ Z(R), for all r ∈ R,

(xy)r = xry = r(xy) =⇒ xy ∈ Z(R).

Thus we show that Z(R) is a subring of R. If R is a division ring, then Z(R) is a also a

division ring. Note that for all x, y ∈ Z(R), xy = yx, we see that Z(R) is a commutative

division ring, namely field. ■

2.10 ¬ The centralizer of an element a of a ring R consists of the elements r ∈ R such

that ar = ra. Prove that the centralizer of a is a subring of R, for every a ∈ R. Prove that
the center of R is the intersection of all its centralizers. Prove that every centralizer in a

division ring is a division ring. [2.11, IV.2.17, VII.5.16]

Denote the centralizer of an element a of R by Za(R). That is,

Za(R) = {r ∈ R | ar = ra}.

We can check that
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1. for all x, y ∈ Za(R),

(x− y)a = xa− ya = ax− ay = a(x− y) =⇒ x− y ∈ Za(R);

2.

1a = a1 =⇒ 1 ∈ Za(R);

3. for all x, y ∈ Za(R),

(xy)a = xay = a(xy) =⇒ xy ∈ Za(R).

Thus we show that Za(R) is a subring of R.

By definition we have Z(R) ⊆ Za(R) for all a ∈ R, which implies Z(R) ⊆
⋂
a∈R Za(R).

Assume s ∈
⋂
a∈R Za(R), then we see sa = as for all a ∈ R, which means s ∈ Z(R) and

accordingly
⋂
a∈R Za(R) ⊆ Z(R). Thus we deduce that Z(R) =

⋂
a∈R Za(R).

If R is a division ring and r ∈ Za(R), we can assume that there exists a ∈ R such as

ar = ra, which means that

r−1(ar)r−1 = r−1(ra)r−1 =⇒ r−1a = ar−1.

According to the definition of Za(R), we see r−1 ∈ Za(R). Thus we show that Za(R) is a

division ring. ■

2.11 ¬ Let R be a division ring consisting of p2 elements, where p is a prime. Prove that

R is commutative, as follows:

• If R is not commutative, then its center C (Exercise III.2.9) is a proper subring of R.

Prove that C would then consist of p elements.

• Let r ∈ R, r /∈ C. Prove that the centralizer of r (Exercise III.2.10) contains both r

and C.

• Deduce that the centralizer of r is the whole of R.

• Derive a contradiction, and conclude that R had to be commutative (hence, a field).

This is a particular case of Wedderburn’s theorem: every finite division ring is a field.

[IV.2.17, VII.5.16]

If R is not commutative, then its center Z(R) is a proper subring of R, which means |Z(R)| <
p2. By considering Z(R) as a subgroup of the underlying abelian group R, we can deduce

that |Z(R)| divides p2 according to the Lagrange theorem. Thus we see that Z(R) consist

of p elements. Given any r ∈ R − Z(R), in Exercise III.2.10 we have shown that Zr(R) is

a subring of R and Z(R) ∈ Zr(R). By the definition of Zr(R), it is clear that r ∈ Zr(R).
Hence we have Z(R) ∪ {r} ⊆ Zr(R) and |Zr(R)| > p. Again by Lagrange theorem we have
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|Zr(R)| divides p2, which forces |Zr(R)| = p2. Thus we show that Zr(R) = R. Note that

Za(R) = R for all a ∈ Z(R). We have Za(R) = R for all a ∈ R. In Exercise III.2.10, we have

derived that
⋂
a∈R Za(R) ⊆ Z(R), which implies R ⊆ Z(R). Thus we have Z(R) = R, which

contradicts with the previous deduction that Z(R) is a proper subring of R. Therefore, we

can conclude that R is commutative. ■

2.15 For m > 1, the abelian groups (Z,+) and (mZ,+) are manifestly isomorphic: the

function φ : Z → mZ, n 7→ mn is a group isomorphism. Use this isomorphism to transfer

the structure of ‘ring without identity’ (mZ,+, ·) back onto Z : give an explicit formula for

the ‘multiplication’ • this defines on Z (that is, such that φ(a • b) = φ(a) · φ(b)). Explain
why structures induced by different positive integersm are non-isomorphic as ‘rings without

1’.

(This shows that there are many different ways to give a structure of ring without identity

to the group (Z,+). Compare this observation with Exercise 2.16.) [§2.1]

■

§3. Ideals and quotient rings

3.1 Prove that the image of a ring homomorphism φ : R → S is a subring of S. What

can you say about φ, if its image is an ideal of S? What can you say about φ, if its kernel

is a subring of R?

We can see that imφ is a subring of S from the canonical decomposition

R

φ

&&// // R/ kerφ ∼
φ̃
// imφ �

� // S

If imφ is an ideal, then s ∈ S, 1 ∈ imφ =⇒ s ∈ imφ. So imφ = S and φ is an epimorphism.

Since kerφ is a ideal, if it is also a subring, we have kerφ = R. ■

3.2 Let φ : R → S be a ring homomorphism, and let J be an ideal of S. Prove that

I = φ−1(J) is an ideal of R. [§3.1]

In Ab we see φ−1(J) is a subgroup of R. For all r ∈ R, a ∈ φ−1(J), we have

φ(ra) = φ(r)φ(a) ∈ J =⇒ ra ∈ φ−1(J).

Similarly we can obtain ar ∈ φ−1(J). Therefore, we conclude that I = φ−1(J) is an ideal of

R. ■
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3.3 ¬ Let φ : R→ S be a ring homomorphism, and let J be an ideal of R.

• Show that φ(J) need not be an ideal of S.

• Assume that φ is surjective; then prove that φ(J) is an ideal of S.

• Assume that φ is surjective, and let I = kerφ; thus we may identify S with R/I. Let

J = φ(J), an ideal of R/I by the previous point. Prove that

R/I

J
∼=

R

I + J

(Of course this is just a rehash of Proposition 3.11.) [4.11]

• Let φ : Z ↪→ Q and J = Z. It is clear that φ(J) = Z is not an ideal of Q.

• Assume that φ is surjective. In Ab we see φ(J) is a subgroup of S. For all a′ = φ(a) ∈
φ(J), r′ = φ(r) ∈ S,

ra ∈ J =⇒ r′a′ = φ(r)φ(a) = φ(ra) ∈ φ(J).

Similarly we can obtain a′r′ ∈ φ(J). Therefore, we conclude that φ(J) is an ideal of

S.

• Assume that φ is surjective. The universal property yields a unique homomorphism

ψ : R/I −→ R/(I + J),

r + I 7−→ r + I + J.

Since

kerψ = {r + I ∈ R/I | r ∈ I + J}
= {a+ b+ I ∈ R/I | a ∈ I, b ∈ J}
= {b+ I ∈ R/I | b ∈ J}
= {φ(b) ∈ S | b ∈ J}
= φ(J) = J

and ψ is surjective,
R/I

J
=

R/I

kerψ
∼=

R

I + J
.

■

3.7 Let R be a ring, and let a ∈ R. Prove that Ra is a left-ideal of R, and aR is a

right-ideal of R. Prove that a is a left-, resp. right-unit if and only if R = aR, resp.

R = Ra.
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For all r ∈ R, r(Ra) ⊆ Ra, (aR)r ⊆ aR. Therefore, Ra is a left-ideal of R, and aR is a

right-ideal of R. Since aR ⊆ R, R ⊆ aR actually amounts to R = aR.

a is a left-unit ⇐⇒ ∃b ∈ R, ab = 1 =⇒ ∀r ∈ R, r = abr ∈ aR =⇒ R ⊆ aR

R ⊆ aR =⇒ ∀r ∈ R, ∃r′ ∈ R, r = ar′ =⇒ ∃r′ ∈ R, ar′ = 1 ⇐⇒ a is a left-unit

Therefore, a is a left-unit if and only if R = aR. Similarly we can prove a is a right-unit if

and only if R = Ra. ■

3.8 Prove that a ring R is a division ring if and only if its only left-ideals and right-ideals

are {0} and R.
In particular, a commutative ring R is a field if and only if the only ideals of R are {0} and
R. [3.9, §4.3]

Assume the only left-ideals and right-ideals that ring R have are {0} and R. If a ̸= 0, we

have Ra = aR = R. As a result of Exercise III.3.7, it implies that a is two-side unit and

that accordingly R is a division ring.

Now assume that R is a division ring. Suppose I is a nonzero left-ideal of R and that

a ∈ I is not 0. Note that the condition of division ring guarantees there exists b ∈ R such

that ba = 1. Since for all r ∈ R, r = (rb)a ∈ I, there must be I = R. Supposing that I ′ is

a nonzero right-ideal of R and that a′ ∈ I ′ is not 0, in a similar way we can deduce I ′ = R.

Therefore, we conclude that the only left-ideals of R and right-ideals of R are {0} and R. ■

3.11 Let R be a ring containing C as a subring. Prove that there are no ring homomor-

phisms R→ R.

Suppose f : R→ R is a homomorphism. On the one hand, we have

f(1) = f(1 ∗ 1) = f(1)2 ≥ 0.

On the other hand, we can calculate f(1) by

f(1) = f(−i ∗ i) = −f(i)2 ≤ 0,

which forces f(1) to be 0. Thus we see f sends some nonzero element in R to 0 in R, which
is a contradiction. ■

3.12 Let R be a commutative ring. Prove that the set of nilpotent elements of R is an

ideal of R. (Cf. Exercise III.1.6. This ideal is called the nilradical of R.)

Find a non-commutative ring in which the set of nilpotent elements is not an ideal. [3.13,

4.18, V.3.13, §VII.2.3]
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Suppose N is the set of nilpotent elements of R. In Exercise III.1.6 we have shown that if

R is commutative, then a+ b ∈ N for all a, b ∈ N . Since for all r ∈ R, a ∈ N ,

an = 0 =⇒ rnan = anrn = 0 =⇒ ra, ar ∈ N,

we prove that N is an ideal of R. A counterexample for non-commutative ring can be found

in the ring gl2(R), as is shown in Exercise III.1.6. ■

3.13 ¬ Let R be a commutative ring, and let N be its nilradical (cf. Exercise III.3.12).

Prove that R/N contains no nonzero nilpotent elements. (Such a ring is said to be reduced.)

[4.6, VII.2.8]

Suppose there exists a nilpotent element r +N ∈ R/N and n > 0 such that

rn +N = N ⇐⇒ rn ∈ N.

Then we have rnm = 0 for some m > 0, which implies r ∈ N . Therefore, the only nilpotent

element in R/N is N . ■

3.14 ¬ Prove that the characteristic of an integral domain is either 0 or a prime integer.

Do you know any ring of characteristic 1?

Suppose the characteristic of the integral domain R is pq where p, q are positive prime

integers. Then we have p1R ̸= 0 and q1R ̸= 0, since the order of 1R is pq. However, we can

deduce

(p1R)(q1R) = pq1R = 0R,

which contradicts the assumption that R is an integral domain.

If the characteristic of the integral domain R is 1, then the inclusion homomorphism

i : Z → R will send all integers to 0R, which means 0R = 1R and R is actually a zero ring

instead of an integral domain. Thus the characteristic of an integral domain is either be 0

or a prime integer. ■

3.15 ¬ A ring R is boolean if a2 = a for all a ∈ R. Prove that P(S) is boolean, for

every set S (cf. Exercise III.1.2). Prove that every boolean ring is commutative, and

has characteristic 2. Prove that if an integral domain R is boolean, then R ∼= Z/2Z.
[4.23, V.6.3]

Since A ∩ A = A for all A ∈P(S), P(S) is boolean.

Assume that R is a boolean ring. For any x ∈ R,

x+ x = (x+ x)2 = x2 + x2 + x2 + x2 = x+ x+ x+ x =⇒ x+ x = 0R =⇒ x = −x.
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For any a, b ∈ R,

a+ b = (a+ b)2 = a2 + ab+ ba+ b2 = a+ ab+ ba+ b =⇒ ab = −ba = ba.

Thus we show every boolean ring is commutative. Since 1R + 1R = 0R, boolean ring has

characteristic 2.

If an integral domain R is boolean, we can define

ψ : Z/2Z −→ R,

[n]2 7−→ n · 1R.

ψ is well-defined since for all n, k ∈ Z, n · 1R = (n + 2k) · 1R. Since ψ([0]2) ̸= ψ([1]2), ψ

is injective. For any a ∈ R, we have a(a − 1R) = 0R. Since R is an integral domain, there

must be a = 0R or a − 1R = 0, which implies ψ is surjective. Therefore, we show ψ is an

isomorphism and R ∼= Z/2Z. ■

3.17 Let I, J be ideals of a ring R. State and prove a precise result relating the ideals

(I + J)/I of R/I and J/(I ∩ J) of R/(I ∩ J). [§3.3]

As abelian groups, the second isomorphism theorem ensures (I + J)/I ∼= J/(I ∩ J). ■

§4. Ideals and quotients: remarks and examples. Prime and maxi-

mal ideals

4.2 Prove that the homomorphic image of a Noetherian ring is Noetherian. That is, prove

that if φ : R → S is a surjective ring homomorphism, and R is Noetherian, then S is

Noetherian. [§6.4]

According to Exercise III.3.2, given any ideal J of S, we see φ−1(J) is an ideal of R. Since

R is a Noetherian ring, we have φ−1(J) = (a1, a2, · · · , an). Since φ is surjective, there must

be

J = φ(φ−1(J)) = (φ(a1), φ(a2), · · · , φ(an)),

which means J is finitely generated. Thus we conclude S is Noetherian. ■

4.3 Prove that the ideal (2, x) of Z[x] is not principal.

Suppose (f) = (2, x). Since it is easy to see f ̸= 0 and f ̸= 1, there must be

2 = gf =⇒ f = 2.

However, it is impossible to find some h ∈ Z[x] such that

2 + x = hf = 2h,

which leads to a contradiction. Thus we show that the ideal (2, x) of Z[x] is not principal. ■
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4.5 Let I, J be ideals in a commutative ring R, such that I + J = (1). Prove that

IJ = I ∩ J .[§4.1]

For any k ∈ IJ , we can assume that k = ab, (a ∈ I, b ∈ J). Note that k ∈ aJ = J and

k ∈ Ib = I. It deduces that k ∈ I ∩ J . Thus we show IJ ⊆ I ∩ J .
Suppose l ∈ I∩J . If 1 = a+b (a ∈ I, b ∈ J), Then we have l = 1∗ l = (a+b)l = al+ lb ∈ IJ ,
which implies that I ∩ J ⊆ IJ . Therefore, we show IJ = I ∩ J . ■

4.6 Let I, J be ideals in a commutative ring R. Assume that R/(IJ) is reduced (that is,

it has no nonzero nilpotent elements; cf. Exercise III.3.13). Prove that IJ = I ∩ J .

The notation (IJ) suggests R is commutative. As is shown in Exercise III.4.5, it holds that

IJ ⊆ I ∩ J . Thus we are left to show I ∩ J ⊆ IJ . Suppose l ∈ I ∩ J . The condition that

R/(IJ) is reduced tells that ∀r ∈ R,

rn ∈ IJ =⇒ r ∈ IJ.

Noticing l ∈ I and l ∈ J , it is clear that l2 ∈ IJ which implies l ∈ IJ . There we show

I ∩ J ⊆ IJ and complete the proof. ■

4.7 ▷ Let R = k be a field. Prove that every nonzero (principal) ideal in k[x] is generated

by a unique monic polynomial. [§4.2, §VI.7.2]

Suppose I is an nonzero ideal in k[x] and the least degree of nonzero polynomials in I is

d. Since k is a field, we can find a monic polynomial f(x) = k0x
d + k1x

d+1 + · · · + xd+n in

I. Given any g(x) ∈ I, there exist unique polynomials q(x), r(x) ∈ k[x] such that g(x) =

f(x)q(x) + r(x) and deg r(x) < deg f(x) = d. Since r(x) = g(x) − f(x)q(x) ∈ I and the

least degree of nonzero polynomials in I is d, there must be r(x) = 0. Thus we show that

I is generated by a monic polynomial f(x). Suppose I = (f(x)) can be also generated by a

monic polynomial f̄(x). Then we have f̄(x) = cf(x) for some c ̸= 0. Since the two monic

polynomials f̄(x), f(x) have the same degree, they are forced to be equal. Therefore, we

conclude that every nonzero ideal in k[x] is generated by a unique monic polynomial. ■

4.8 ▷ Let R be a ring, and f(x) ∈ R[x] a monic polynomial. Prove that f(x) is not a

(left-, or right-) zero-divisor. [§4.2, 4.9]

Suppose f(x) = xd+ad−1x
d−1+· · ·+a1x+a0 is a monic polynomial in R[x] and f(x)g(x) = 0

for some g(x) = bsx
s + bs−1x

s−1 + · · · + b1x + b0 ∈ R[x]. Since the term of the degree of

d + s of f(x)g(x) is bsx
d+s, there must be bs = 0. Then the term of the degree of d + s− 1

of f(x)g(x) is bs−1x
d+s−z, which implies bs−1 = 0. Repeating this process we can show that

bs = bs−1 = · · · = b0 = 0, that is, g(x) = 0. Thus we see f(x) is not a left-zero-divisor. In a

similar way we can show that f(x) is not a right-zero-divisor. ■
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4.10 ¬ Let d be an integer that is not the square of an integer, and consider the subset

of C defined by

Q(
√
d) := {a+ b

√
d|a, b ∈ Q}

• Prove that Q(
√
d) is a subring of C.

• Define a function N : Q(
√
d)→ Q by N(a+ b

√
d) := a2 − b2d. Prove that

N(zw) = N(z)N(w), and that N(z) ̸= 0 if z ∈ Q(
√
d), z ̸= 0

The function N is a ‘norm’; it is very useful in the study of Q(
√
d) and of its subrings.

(Cf. also Exercise III.2.5.)

• Prove that Q(
√
d) is a field, and in fact the smallest subfield of C containing both

Q and
√
d. (Use N.)

• Prove that Q(
√
d) ∼= Q[t]/ (t2 − d) . (Cf. Example 4.8.)

[V.1.17,V.2.18,V.6.13,VII.1.12]

• We only show the check on multiplication

(a1 + b1
√
d)(a2 + b2

√
d) = (a1a2 + b1b2d) + (a1b2 + a2b1)

√
d ∈ Q(

√
d).

• It is immediate to check N(zw) = N(z)N(w). Let z ∈ Q(
√
d) and z = a + b

√
d ̸= 0.

Suppose N(z) = a2 − b2d = 0. If b = 0, we have a = 0, which contradicts with

a + b
√
d ̸= 0. Otherwise we have b ̸= 0 and d = (a/b)2. Thus we get a contradiction

again.

• We have known Q(
√
d) is a commutative ring. For any z = a + b

√
d ∈ Q(

√
d) such

that z ̸= 0,

N(z) = (a+ b
√
d)(a− b

√
d) = a2 − b2d ̸= 0.

Therefore (
a+ b

√
d
)( a

N(z)
− b

N(z)

√
d

)
= 1

and Q(
√
d) is a field.

• The mapping

φ : Q[t]/
(
t2 − d

)
−→ Q(

√
d),

a+ bt+ (t2 − d) 7−→ a+ b
√
d.
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is well-defined since if (a1 + b1t)− (a2 + b2t) = g(t)(t2 − d), then

φ(a1 + b1t+ (t2 − d))− φ(a2 + b2t+ (t2 − d)) =
(
a1 + b1

√
d
)
−
(
a2 + b2

√
d
)

= g
(√

d
)((√

d
)2
− d
)

= 0.

It is clear that φ preserves addition. Then we can check φ preserve multiplication:

φ
(
(a1 + b1t+ (t2 − d))(a2 + b2t+ (t2 − d))

)
= φ

(
(a1a2 + (a1b2 + a2b1)t+ b1b2t

2 + (t2 − d)
)

= φ
(
((a1a2 + b1b2d) + (a1b2 + a2b1)t+ b1b2(t

2 − d) + (t2 − d)
)

= (a1a2 + b1b2d) + (a1b2 + a2b1)
√
d

= (a1 + b1
√
d)(a2 + b2

√
d)

= φ
(
a1 + b1t+ (t2 − d)

)
φ
(
a2 + b2t+ (t2 − d)

)
.

Thus we see φ is a ring homomorphism. Note

a+ bt+ (t2 − d) ∈ kerφ ⇐⇒ a+ b
√
d = 0 ⇐⇒ a = b = 0.

It implies that kerφ = {0+ (t2− d)} and φ is injective. It is clear that φ is surjective.

Therefore, φ is an isomorphism and Q(
√
d) ∼= Q[t]/ (t2 − d).

■

4.11 Let R be a commutative ring, a ∈ R, and f1(x), . . . , fr(x) ∈ R[x].

• Prove the equality of ideals

(f1(x), . . . , fr(x), x− a) = (f1(a), . . . , fr(a), x− a)

• Prove the useful substitution trick

R[x]

(f1(x), . . . , fr(x), x− a)
∼=

R

(f1(a), . . . , fr(a))

(Hint: Exercise III.3.3.)

• According to the polynomial remainder theorem, we have

fi(x) = (x− a)q(x) + fi(a),

which suffices to show that (f1(x), . . . , fr(x), x− a) = (f1(a), . . . , fr(a), x− a).
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• Define

φ : R[x] −→ R,

f(x) 7−→ f(a).

We can check that φ is a surjective ring homomorphism and kerφ = (x−a). According
to Exercise III.3.3, we have

R[x]

(f1(x), · · · , fr(x), x− a)
∼=

R[x]

(f1(a), · · · , fr(a), x− a)
∼=

R[x]/(x− a)
(f1(a), · · · , fr(a))

,

where

(f1(a), · · · , fr(a)) = (f1(a) + (x− a), · · · , fr(a) + (x− a)) .

The ring isomorphism

ψ : R[x]/(x− a) −→ R,

f(x) + (x− a) 7−→ f(a)

gives the following isomorphism

R[x]/(x− a)
(f1(a), · · · , fr(a))

∼=
R

(f1(a), . . . , fr(a))
,

which completes the proof.

■

4.12 ▷ Let R be a commutative ring, and a1, · · · , an elements of R. Prove that

R [x1, . . . , xn]

(x1 − a1, . . . , xn − an)
∼= R

[VII.2.2]

R ∼=
R [x1]

(x1 − a1)
∼=

R [x1, x2]

(x1 − a1, x2 − a2)
The mapping

φ :
R [x1, . . . , xn]

(x1 − a1, . . . , xn − an)
−→ R [x1, . . . , xn−1]

(x1 − a1, . . . , xn−1 − an−1)
,

f(x1, · · · , xn) + (x1 − a1, . . . , xn − an) 7−→ f(x1, · · · , xn−1, an) + (x1 − a1, . . . , xn−1 − an−1)
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is well-defined since if f1 (x1, · · · , xn)− f2 (x1, · · · , xn) =
n∑
i=1

gi(x1, · · · , xn)(xi − ai), then

φ
(
f1(x1, · · · , xn)

)
− φ

(
f2(x1, · · · , xn)

)
= f1(x1, · · · , xn−1, an)− f2(x1, · · · , xn−1, an)

=
n−1∑
i=1

gi(x1, · · · , xn−1, an)(xi − ai) + gn(t)(an − an)

=
n−1∑
i=1

gi(x1, · · · , xn−1, an)(xi − ai).

It is clear that φ preserves addition and multiplication. Thus we see φ is a ring homomor-

phism. Note

f(x1, · · · , xn) ∈ kerφ

⇐⇒ f(x1, · · · , xn−1, an) =
n−1∑
i=1

gi(x1, · · · , xn−1, an)(xi − ai)

⇐⇒ f(x1, · · · , xn−1, xn) =
n−1∑
i=1

gi(x1, · · · , xn−1, an)(xi − ai) + gn(x1, · · · , xn−1, an)(xn − an)

⇐⇒ f(x1, · · · , xn) ∈ (x1 − a1, . . . , xn − an) ,

where the last but one line can be deduced by the polynomial remainder theorem if we fix

x1, · · · , xn−1 and regard xn as a variable. It implies that kerφ = {0+(x1 − a1, . . . , xn − an)}
and φ is injective. It is clear that φ is surjective. Therefore, φ is an isomorphism and

R ∼=
R [x1]

(x1 − a1)
∼=

R [x1, x2]

(x1 − a1, x2 − a2)
∼= · · · ∼=

R [x1, . . . , xn]

(x1 − a1, . . . , xn − an)
.

■

4.13 ▷ Let R be an integral domain. For all k = 1, . . . , n prove that (x1, . . . , xk) is prime

in R [x1, . . . , xn] .[§4.3]

Note
R [x1, · · · , xn]
(x1, · · · , xk)

∼=
R [xk+1, · · · , xn] [x1, · · · , xk]

(x1, · · · , xk)
∼= R [xk+1, · · · , xn] .

Since R is an integral domain, we can deduece R [xk+1, · · · , xn] is an integral domain. There-

fore, (x1, · · · , xk) is prime in R [x1, · · · , xn]. ■
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4.17 ¬ (If you know a little topology...) Let K be a compact topological space, and let

R be the ring of continuous real-valued functions on K, with addition and multiplication

defined pointwise.

(i) For p ∈ K, let Mp = {f ∈ R|f(p) = 0}. Prove that Mp is a maximal ideal in R

(ii) Prove that if f1, . . . , fr ∈ R have no common zeros, then (f1, . . . , fr) = (1) (Hint:

consider f 2
1 + · · ·+ f 2

r )

(iii) Prove that every maximal ideal M in R is of the form Mp for some p ∈ K. (Hint: you
will use the compactness of K and (ii).)

If further K is Hausdorff (and, as Bourbaki would have it, compact spaces are Hausdorff),

then Urysohn’s lemma shows that for any two points p ̸= q in K there exists a function

f ∈ R such that f(p) = 0 and f(q) = 1. If this is the case, conclude that p 7→ Mp defines

a bijection from K to the set of maximal ideals of R. (The set of maximal ideals of a

commutative ring R is called the maximal spectrum of R; it is contained in the (prime)

spectrum Spec R defined in $4.3. Relating commutative rings and ’geometric’ entities such

as topological spaces is the business of algebraic geometry.)

The compactness hypothesis is necessary: cf. Exercise V.3.10. [V.3.10]

(i) Suppose all functions in R that have same value in a neighborhood of p are identified. It

is easy to check that Mp is an ideal and R/Mp is commutative. Given any f ∈ R−Mp,

we have f(p) ̸= 0 and

(f +Mp)

(
1

f
+Mp

)
= 1 +Mp

Therefore, R/Mp is a field and Mp is a maximal ideal in R.

(ii) If f1, . . . , fr ∈ R have no common zeros, (f1, . . . , fr) = (1) follows from

r∑
i=1

fi
f 2
1 + · · ·+ f 2

r

fi = 1.

(iii) Suppose M is a maximal ideal in R but there is no such p ∈ K that M = Mp. Thus

for any a ∈ K, there exists fa ∈ M such that fa(a) ̸= 0. Since fa is continous, there

exists a open neighborhood of a denoted by Ua such that

∀x ∈ Ua, f(x) ̸= 0.

Note that {Ua}a∈K is a open cover of K. According to the compactness of K, we

can suppose {Up1 , Up2 , · · · , Upn} covers K. Since given any x ∈ K, there exists i ∈
{1, 2, · · · , n} such that x ∈ Upi and fpi(x) ̸= 0, we can deduce that fp1 , fp2 , · · · , fpn ∈ R
have no common zeros. The conclusion of (ii) tells us (fp1 , fp2 , · · · , fpn) = (1), which

implies M = (1). However, this contradicts with the assumption that M is a maximal
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ideal. Therefore, we prove that every maximal idealM in R is of the formMp for some

p ∈ K.

If further K is Hausdorff, for any two points p ̸= q in K, there exists a function f ∈ R
such that f(p) = 0 and f(q) = 1, which implies

f ∈Mp, f /∈Mq =⇒ Mp ̸=Mq.

Thus we see the mapping

φ : K −→ maximal spectrum of R,

p 7−→Mp

is injective. In (iii) we have shown that φ is surjective. Therefore, φ is a bijection. ■

4.23 A ring R has Krull dimension 0 if every prime ideal in R is maximal. Prove that

fields and boolean rings (Exercise III.3.15) have Krull dimension 0.

Assume that R is a field. If I be a prime ideal in R, then R/I is an integral domain. Given

any r + I ∈ R/I, we have

(r + I)(r−1 + I) = (r−1 + I)(r + I) = 1R + I,

which means R/I is a field. Thus I is maximal and R has Krull dimension 0.

Assume that R is a boolean ring. If I be a prime ideal in R, then R/I is an integral

domain. Given any r + I ∈ R/I, we have

(r + I)(r + I) = r2 + I = r + I =⇒ (r + I) ((r + I)− (1R + I)) = 0R + I,

which implies

r + I = 0R + I or r + I = 1R + I.

Thus we see R/I ∼= Z/2Z and R/I is a field. ■

§5. Modules over a ring

5.1 ▷ Let R be a ring. The opposite ring R◦ is obtained from R by reversing the multi-

plication: that is, the product a • b in R◦ is defined to be ba ∈ R. Prove that the identity

map R→ R◦ is an isomorphism if and only if R is commutative. Prove thatMn(R) is iso-
morphic to its opposite (not via the identity map!). Explain how to turn right-R-modules

into left-R-modules and conversely, if R ∼= R◦. [§5.1,VIII.5.19 ]

Let i denote the identity map R→ R◦. If R is commutative, we have

i(ab) = ab = b • a = i(b) • i(a) = i(a) • i(b).
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Given that i(a+ b) = a+ b and identity map is a bijection, we see that i is an isomorphism.

If i is an isomorphism, we have

ab = b • a = i−1(b • a) = i−1(b)i−1(a) = ba,

which implies that R is commutative.

Suppose A,B ∈ Mn(R). We can show that the transpose of matrix ·T : A 7→ AT is an

isomorphism by checking

(AB)T = BTAT = AT •BT .

Let M be a right-R-module with right multiplication ⊙. If R ∼= R◦ and f : R → R◦ is an

isomorphism, then

f(ab) = f(a) • f(b) = f(b)f(a)

Define left multiplication ⊙L as

r ⊙L m := m⊙ f(r), ∀r ∈ R,m ∈M.

We can check that

1⊙L m = m⊙ f(1) = 1,

(rs)⊙L m = m⊙ f(rs) = m⊙ (f(s)f(r)) = (m⊙ f(s))⊙ f(r)
= (s⊙L m)⊙ f(r) = r ⊙L (s⊙L m),

r ⊙L (m1 +m2) = (m1 +m2)⊙ f(r) = m1 ⊙ f(r) +m2 ⊙ f(r) = r ⊙L m1 + r ⊙L m2.

Therefore, we show that M is a left-R-module with right multiplication ⊙L.
If M is a left-R-module with left multiplication ∗ and f : R → R◦ is an isomorphism,

then we can show that M is a right-R-module with right multiplication ∗R defined as

m ∗R r := f−1(r), ∀r ∈ R,m ∈M.

■

5.3 ▷ Let M be a module over a ring R. Prove that 0 ·m = 0 and that (−1) ·m = −m,
for all m ∈M . [§5.2]

0 ·m = (0 + 0) ·m = 0 ·m+ 0 ·m =⇒ 0 ·m = 0,

0 = (1− 1) ·m = 1 ·m+ (−1) ·m =⇒ (−1) ·m = −m.

■
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5.4 ¬ Let R be a ring. A nonzero R-module M is simple (or irreducible) if its only

submodules are {0} and M . Let M , N be simple modules, and let φ : M → N be a

homomorphism of R-modules. Prove that either φ = 0, or φ is an isomorphism. (This

rather innocent statement is known as Schur’s lemma.) [5.10, 6.16, VI.1.16]

For convenience, we talk about the identity of modules up to isomorphism. Since the nonzero

R-module M is simple, kerφ is either {0} or M . Thus imφ = M/ kerφ is either {0} or M .

Note that imφ ⊂ N is either {0} or N . If imφ = {0}, then we have φ = 0. If imφ = M ,

then we have imφ =M = N . Therefore we show that either φ = 0, or φ is an isomorphism.

■

5.5 Let R be a commutative ring, viewed as an R-module over itself, and let M be an

R-module. Prove that HomR−Mod(R,M) ∼= M as R-modules.

Define

φ : HomR−Mod(R,M) −→M,

f 7−→ f(1)

Since

φ(f + g) = (f + g)(1) = f(1) + g(1) = φ(f) + φ(g),

φ(rf) = (rf)(1) = rf(1) = rφ(f),

we see φ is a homomorphism. If φ(f1) = φ(f2), we have f1(1) = f2(1). Multiply both sides

by any r ∈ R and we get

rf1(1) = rf2(1) =⇒ f1(r) = f2(r),

which means f1 = f2. Thus we show φ is injective. Given any m ∈M , let

hm : R −→M,

r 7−→ rm

Since φ(hm) = hm(1) = m, we show that φ is surjective. Therefore, we conclude that φ is

an isomorphism and HomR−Mod(R,M) ∼= M as R-modules. ■

5.6 Let G be an abelian group. Prove that if G has a structure of Q-vector space, then

it has only one such structure. (Hint: First prove that every nonidentity element of G has

necessarily infinite order. Alternative hint: The unique ring homomorphism Z → Q is an

epimorphism.)

Assume that G has two structures of Q-vector space with scalar multiplication operations ·
and ∗ respectively. Note that 1 · g = 1 ∗ g = g for all g ∈ G. With the conventional notation
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∑n
i=1 g = ng, we have for all g ∈ G,

n∑
i=1

1 · g =
n∑
i=1

1 ∗ g = ng =⇒

(
n∑
i=1

1

)
· g =

(
n∑
i=1

1

)
∗ g = ng =⇒ n · g = n ∗ g = ng.

Since

m∑
i=1

1

m
· h =

(
m∑
i=1

1

m

)
· h = h, ∀h ∈ G,

m∑
i=1

1

m
∗ h =

(
m∑
i=1

1

m

)
∗ h = h, ∀h ∈ G,

it holds that for all h ∈ G,

m∑
i=1

1

m
· h =

m∑
i=1

1

m
∗ h =⇒

m∑
i=1

(
1

m
· h− 1

m
∗ h
)

= 0 =⇒ m ·
(

1

m
· h− 1

m
∗ h
)

= 0.

According to the property of vector space, we have m = 0 or 1
m
· h − 1

m
∗ h = 0. However,

m is a positive integer, which forces 1
m
· h = 1

m
∗ h. Thus we can deduce that for all h ∈ G,

n,m ∈ Z+,

n ·
(

1

m
· h
)

= n ∗
(

1

m
∗ h
)

=⇒ n

m
· h =

n

m
∗ h.

In other words, for all h ∈ G, q ∈ Q+, we have q · h = q ∗ h. Note that (−q) · h = (−q) ∗ h
and 0 · h = 0 ∗ h, finally we obtain that for all h ∈ G, q ∈ Q,

q · h = q ∗ h.

Therefore, the two scalar multiplication operations · and ∗ coincide, which completes the

proof. ■

5.7 Let K be a field, and let k ⊆ K be a subfield of K. Show that K is a vector space

over k (and in fact a k-algebra) in a natural way. In this situation, we say that K is an

extension of k.

Define the scalar multiplication · as

a · x := ax, ∀a ∈ k, x ∈ K.
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Then we can check that for all a, b ∈ k, x, y ∈ K,

1 · x = x,

(ab) · x = (ab)x = a(bx) = a · (b · x),
(a+ b) · x = (a+ b)x = ax+ bx = a · x+ b · x,
a · (x+ y) = a(x+ y) = ax+ ay = a · x+ a · y,
(a · x)(b · y) = (ax)(by) = (ab)(xy) = (ab) · (xy).

Therefore, K is a k-vector space and a k-algebra as well. ■

5.8 What is the initial object of the category R-Alg?

The ring R can be seen as a R-algebra if it is endowed with a scalar multiplication · in a

natural way, that is

r · x := rx, ∀r ∈ R, x ∈ R.

Given any R-algebra A, define the following map

f : R −→ A,

r 7−→ r · 1A.

We can check that

f(r1 + r2) = (r1 + r2) · 1A = r1 · 1A + r2 · 1A = f(r1) + f(r2),

f(r1r2) = (r1r2) · 1A = r1 · (r2 · 1A) = r1 · (1A(r2 · 1A)) = (r1 · 1A)(r2 · 1A) = f(r1)f(r2),

f(r1 · r2) = f(r1r2) = r1 · (r2 · 1A) = r1 · f(r2).

Hence f is a morphism in the category R-Alg.

Suppose g : R→ A is a morphism in R-Alg. Then for all r1, r2 ∈ R,

g(r1r2) = g(r1 · r2) =⇒ g(r1)g(r2) = r1 · g(r2) = r1 · (1Ag(r2)) = (r1 · 1A)g(r2).

Take r2 = 1R and then for all r1 ∈ R,

g(r1)g(1R) = (r1 · 1A)g(1R) =⇒ g(r1) = r1 · 1A.

Thus we have g = f . Therefore, we show that for any R-algebra A, there exists a unique

morphism f : R→ A in R-Alg. In other words, R is the initial object of the category R-Alg.

■

5.9 ¬ Let R be a commutative ring, and letM be an R-module. Prove that the operation

of composition on the R-module EndR−Mod(M) makes the latter an R-algebra in a natural

way.

Prove thatMn(R) (cf. Exercise III.1.4 ) is an R-algebra, in a natural way. [VI.1.12, VI.2.3]
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In textbook we have show that EndR−Mod(M) is an R-module with natural addition and

scalar multiplication. We can check that for all f, g, h ∈ EndR−Mod(M), r, s ∈ R, x ∈M ,

(idM ◦ f)(x) = idM(f(x)) = f(x),

((f + g) ◦ h)(x) = (f + g)(h(x)) = f(h(x)) + g(h(x)) = (f ◦ h)(x) + (g ◦ h)(x)
= (f ◦ h+ g ◦ h)(x),

((r · f) ◦ (sg))(x) = (r · f)((s · g)(x)) = r · f(s · g(x)) = r · (s · f(g(x)))
= (rs) · (f(g(x)) = (rs) · ((f ◦ g)(x)) = ((rs) · (f ◦ g))(x).

Thus we prove that the operation of composition ◦ on the R-module EndR−Mod(M) makes

EndR−Mod(M) an R-algebra.

In Exercise III.1.4 we have shown thatMn(R) is a ring. Let the scalar multiplication ·
be componentwise multiplication, namely

r · (aij)n×n := (raij)n×n, ∀r ∈ R, (aij)n×n ∈Mn(R).

We can check that

1R · (aij)n×n = (1Raij)n×n = (aij)n×n,

(r + s) · (aij)n×n = ((r + s)aij)n×n = (raij)n×n + (saij)n×n

= r · (aij)n×n + s · (aij)n×n,
r ·
(
(aij)n×n + (bij)n×n

)
= r · (aij + bij)n×n = (r (aij + rbij))n×n

= (raij)n×n + (rbij)n×n = r · (aij)n×n + r · (bij)n×n ,
(rs) · (aij)n×n = ((rs)aij)n×n = r · (saij)n×n = r ·

(
s · (aij)n×n

)
,(

r · (aij)n×n
) (
s · (bij)n×n

)
= (raij)n×n(sbij)n×n =

(
n∑
k=1

(raik) (sbkj)

)
n×n

=

(
(rs)

n∑
k=1

aikbkj

)
n×n

= (rs) ·

(
n∑
k=1

aikbkj

)
n×n

= (rs) ·
(
(aij)n×n (bij)n×n

)
.

Therefore,Mn(R) is an R-algebra. ■

5.11 ▷ Let R be a commutative ring, and let M be an R-module. Prove that there is a

bijection between the set of R[x]-module structures on M (extending the given R-module

structure) and EndR−Mod(M). [$VI.7.1]

According to Exercise III.5.9, EndR−Mod(M) has an R-algebra structure, which can induce

an R[x]-module structure on EndR−Mod(M). That is, for all f(x) = r0 + r1x+ · · ·+ rnx
n ∈

R[x], φ ∈ EndR−Mod(M),

f(x) · φ := f(φ) = r0 + r1φ+ · · ·+ rnφ
n.
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Given any φ ∈ EndR−Mod(M), define the following R[x]-module structures on M with scalar

multiplication ·φ,

f(x) ·φ m := (f(φ))(m), ∀f(x) ∈ R[x],m ∈M.

What we need is to show that the map φ 7→ ·φ is a bijection.

If ·φ = ·η, we have (f(φ))(m) = (f(η))(m). Take f(x) = x and then we have φ(m) = η(m)

for all m ∈M , which implies φ = η. Hence the map φ 7→ ·φ is injective.

Suppose • is a scalar multiplication which makes M an R[x]-module.

• f(x) • (m+ n) = f(x) •m+ f(x) • n

• (f(x) + g(x)) •m = f(x) •m+ g(x) •m

• (f(x)g(x)) •m = f(x) • (g(x) •m)

• 1 •m = m

■

§6. Products, coproducts, etc. in R-Mod

6.3 Let R be a ring, M an R-module, and p :M →M an R-module homomorphism such

that p2 = p. (Such a map is called a projection.) Prove that M ∼= ker p⊕ imp.

For any x ∈ ker p ∩ imp, we can assume x = py and deduce that 0 = px = p2y = py = x.

Thus we have ker p ∩ imp = {0}. Furthermore, for any m ∈M ,

p(m− p(m)) = p(m)− p2(m) = p(m)− p(m) = 0 =⇒ m− p(m) ∈ ker p.

This implies m = (m− p(m)) + p(m) ∈ ker p ⊕ imp, thereby establishing the isomorphism

M ∼= ker p⊕ imp. ■

6.16 ▷ Let R be a ring. A (left-) R-module M is cyclic if M = ⟨m⟩ for some m ∈ M.

Prove that simple modules (cf. Exercise III.5.4) are cyclic. Prove that an R-module M is

cyclic if and only if M ∼= R/I for some (left-)ideal I. Prove that every quotient of a cyclic

module is cyclic. [6.17, §VI.4.1]

Let M be a simple module and m ∈ M . We see ⟨m⟩ is a submodule of M . Since the

submodule of simple modules can only be {0} or itself, there must be ⟨m⟩ = M , which

implies M is cyclic.

If M ∼= R/I for some (left-)ideal I, we can suppose f : R/I → M is an isomorphism.

Since for any m ∈M , there exists r + I ∈ R/I such that

m = f(r + I) = rf(1R + I),
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we have M = ⟨f(1R + I)⟩. Thus we show M is cyclic.

If M is cyclic, we can suppose M = ⟨m⟩ where m ∈M . Define

φ : R1 −→M,

r 7−→ rm.

Since any element in M is in the form of rm where r ∈ R and m ∈ M , φ must be sur-

jective. Note that φ preseves addition and scalar mutiplication, which implies φ is a ring

homomorphism. Thus we have R/ kerφ ∼= M , where kerφ is an ideal of R.

Suppose M = ⟨m0⟩ is a cyclic module and M/N is a quotient of M . Given any element

m+N ∈M/N , we have

m+N = rm0 +N = r(m0 +N), r ∈ R,

which implies M/N = ⟨m0 +N⟩. Therefore, we show that every quotient of a cyclic module

is cyclic.

■

6.17 ¬ Let M be a cyclic R-module, so that M ∼= R/I for a (left-)ideal I (Exercise

III.6.16), and let N be another R-module.

• Prove that HomR−Mod(M,N) ∼= {n ∈ N | (∀a ∈ I), an = 0}

• For a, b ∈ Z, prove that HomR−Mod(Z/aZ,Z/bZ) ∼= Z/ gcd(a, b)Z.

[7.7]

• First of all it is easy to check

{n ∈ N | (∀a ∈ I), an = 0}

is a module. Let M = ⟨m0⟩ and let ψ : R/I → M, r + I 7→ rm0 be an isomorphism.

Define

φ : HomR−Mod(M,N) −→ {n ∈ N | (∀a ∈ I), an = 0},
f 7−→ f(m0) = f(ψ(1R + I)),

where f(ψ(1R + I)) ∈ {n ∈ N | (∀a ∈ I), an = 0} holds because

∀a ∈ I, af(ψ(1R + I)) = f(aψ(1R + I)) = f(ψ(a(1R + I))) = f(ψ(0R + I)) = 0N .

It is straightforward to check φ is a homomorphism. Note

f(rm0) = rf(m0) = rf(ψ(1R + I)), ∀r ∈ R.
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We have

φ(f) = φ(g) =⇒ f(ψ(1R + I)) = g(ψ(1R + I)) =⇒ f = g,

which implies φ is a monomorphism.

For any n0 ∈ {n ∈ N | (∀a ∈ I), an = 0}, let

f0 :M −→ N,

rm0 7−→ rn0.

It is clear to see f0 ∈ HomR−Mod(M,N) and

φ(f0) = f0(m0) = n0.

Thus φ is an epimorphism. Therefore, we show that φ is an isomorphism and

HomR−Mod(M,N) ∼= {n ∈ N | (∀a ∈ I), an = 0}.

• What is left to show is

{[n]b ∈ Z/bZ : (∀k ∈ aZ), k[n]b = 0} ∼= Z/ gcd(a, b)Z.

Note

∀k ∈ aZ, k[n]b = 0 ⇐⇒ ∀r ∈ Z, b | ran ⇐⇒ b | an ⇐⇒ b/ gcd(a, b) | n.

We have

{[n]b ∈ Z/bZ : (∀k ∈ aZ), k[n]b = 0} = {[n]b ∈ Z/bZ : b/ gcd(a, b) | n}.

Define

h : {[n]b ∈ Z/bZ : b/ gcd(a, b) | n} −→ Z/ gcd(a, b)Z,
[kb/ gcd(a, b)]b 7−→ [k]gcd(a,b).

Since h is the restriction of the projection π : Z/bZ→ Z/ gcd(a, b)Z, h is a homomor-

phism. Noticing h is surjective and

|{[n]b ∈ Z/bZ : b/ gcd(a, b) | n}| = |Z/ gcd(a, b)Z| = gcd(a, b),

we can conclude

HomR−Mod(Z/aZ,Z/bZ) ∼= {[n]b ∈ Z/bZ : b/ gcd(a, b) | n} ∼= Z/ gcd(a, b)Z.

■
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§7. Complexes and homology

7.1 Assume that the complex

· · · −→ 0 −→M −→ 0 −→ · · ·

is exact. Prove that M ∼= 0. [§7.3]

Assume that f : 0→M and g :M → 0. Since the the complex is exact, we have

{0} = imf = ker g =M.

■

7.2 Assume that the complex

· · · −→ 0 −→M −→M ′ −→ 0 −→ · · ·

is exact. Prove that M ∼= M ′.

Suppose that that f : M → M ′. According to the exactness of the complex, we have f is

injective and surjective. Thus we show that M ∼= M ′. ■

7.3 Assume that the complex

· · · −→ 0 −→ L −→M
φ−→M ′ −→ N −→ 0 −→ · · ·

is exact. Show that, up to natural identifications, L = kerφ and N = cokerφ.

Suppose that f : L → M and g : M ′ → N . According to the exactness of the complex, we

have f is injective, g is surjective. Thus we have

kerφ = imf ∼= L

and

cokerφ =M ′/imφ =M ′/ ker g ∼= N.

■

7.4 Construct short exact sequences of Z-modules

0 −→ Z⊕N −→ Z⊕N −→ Z −→ 0

and

0 −→ Z⊕N −→ Z⊕N −→ Z⊕N −→ 0

(Hint: David Hilbert’s Grand Hotel.)
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Assume

0 −→ Z⊕N f1−→Z⊕N g1−→Z −→ 0

Define a monomorphism

f1((x1, x2, x3, · · · )) = (0, x1, x2, · · · )

and an epimorphism

g1((x1, x2, x3, · · · )) = x1.

It is clear to see g1 ◦ f1 = 0, which implies the exactness of the complex.

Given the complex

0 −→ Z⊕N f2−→Z⊕N g2−→Z⊕N −→ 0,

where

f2((x1, x2, x3, x4, · · · )) = (x1, 0, x2, 0, · · · )

and

g2((x1, x2, x3, x4, · · · )) = (x2, x4, x6, x8, · · · ),

we can check that f2 is a monomorphism, g2 is an epimorphism and g2 ◦ f2 = 0. Therefore,

we have constructed a short exact sequence. ■

7.5 ▷ Assume that the complex

· · · −→ L −→M −→ N → · · ·

is exact, and that L and N are Noetherian. Prove that M is Noetherian. [§7.1]

Suppose that f : L → M and g : M → N . According to the exactness of the complex, we

have ker g = imf . Since N is Noetherian and img is a submodule of N , img is Noetherian.

Note that img ∼= M/ ker g = M/imf , we see M/imf is Noetherian. Since L is Noetherian

and imf ∼= L/ ker f , we have imf is Noetherian. SinceM/imf and imf are both Noetherian,

we can conclude M is Noetherian. ■
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7.7 ▷ Let

0 −→M −→ N −→ P −→ 0

be a short exact sequence of R-modules, and let L be an R-module.

(i) Prove that there is an exact sequence

0 −→ HomR-Mod(P,L) −→ HomR-Mod(N,L) −→ HomR-Mod(M,L)

(ii) Redo Exercise III.6.17. (Use the exact sequence 0→ I → R→ R/I → 0.)

(iii) Construct an example showing that the rightmost homomorphism in (i) need not be

onto.

(iv) Show that if if the original sequence splits, then the rightmost homomorphism in (i)

is onto.

[7.9,VIII.3.14, $VIII.5.1]

(i) Suppose that

0 −→M
f−→N

g−→P −→ 0.

Define

g∗ : HomR-Mod(P,L) −→ HomR-Mod(N,L)

φ 7−→ φ ◦ g

and

f ∗ : HomR-Mod(N,L) −→ HomR-Mod(M,L)

ψ 7−→ ψ ◦ f

Since g is surjective,

g∗(φ1) = g∗(φ2) =⇒ φ1 ◦ g = φ2 ◦ g =⇒ φ1 = φ2,

which means g∗ is injective. Since imf = ker g, for all ψ ∈ HomR-Mod(N,L), we have

ψ ∈ ker f ∗ ⇐⇒ ψ ◦ f = 0 ⇐⇒ ker g = imf ⊂ kerψ

⇐⇒ ∃φ ∈ HomR-Mod(P,L), ψ = φ ◦ g ⇐⇒ ψ ∈ img∗.

The deduction

ker g ⊂ kerψ =⇒ ∃φ ∈ HomR-Mod(P,L), ψ = φ ◦ g

holds because N/ ker g ∼= img = P and the following diagram commute
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N
g // //

ψ

""

π

����

P

∃φ:=ψ̄◦j

��
N/ ker g

ψ̄
// L

where j is an isomorphism from P to N/ ker g. Thus we show ker f ∗ = img∗ and

0 −→ HomR-Mod(P,L)
g∗−→HomR-Mod(N,L)

f∗−→HomR-Mod(M,L)

is an exact sequence.

(ii)

0 −→ HomR-Mod(I,N) −→ HomR-Mod(R,N) −→ HomR-Mod(R/I,N)

■
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Chapter IV. Groups, second encounter

§1. The conjugation action

1.1 ▷ Let p be a prime integer, let G be a p-group, and let S be a set such that |S| ̸≡
0 mod p. If G acts on S, prove that the action must have fixed points. [§1.1 §2.3]

let Z be the fixed-point set of the action. We have

|Z| ≡ |S| mod p.

Since |S| ̸≡ 0 mod p, there must be |Z| ≠ 0, which implies the action must have fixed points.

■

1.2 Find the center of D2n. (The answer depends on the parity of n. You have actually

done this already: Exercise II.2.7. This time, use a presentation.)

D2n =
〈
r, s | rn = s2 = (sr)2 = e

〉
It is clear that risj ∈ Z(D2n) if and only if risj commutes with r and s. That is,

(risj)r = r(risj) ⇐⇒ sjr = rsj ⇐⇒ j = 0

and

(risj)s = s(risj) ⇐⇒ ris = sri ⇐⇒ i = 0 or n.

Therefore,

Z(D2n) = {e, rn}.

■

1.4 ▷ Let G be a group, and let N be a subgroup of Z(G). Prove that N is normal in

G.[§2.2]

Since for all g ∈ G, a ∈ N ,

gag−1 = agg−1 = a ∈ N,

we see N is normal in G.

■

1.5 ▷ Let G be a group. Prove that G/Z(G) is isomorphic to the group Inn(G) of inner

automorphisms of G. (Cf. Exercise II.4.8.) Then prove Lemma 1.5 again by using the

result of Exercise II.6.7. [§1.2]
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Define

f : G/Z(G) −→ Inn(G)

gZ(G) 7−→ (γg : a 7−→ gag−1).

We can check that f is a homomorphism

f(g1g2Z(G)) = γg1g2 = γg1γg2 = f(g1Z(G))f(g2Z(G)).

Since

gZ(G) ∈ ker f ⇐⇒ γg = idG ⇐⇒ ∀a ∈ G, gag−1 = a ⇐⇒ g ∈ Z(G),

we have

ker f = Z(G),

which means f is injective. It is clear that f is surjective. Thus we show f is an isomorphism

and G/Z(G) ∼= Inn(G).

■

1.6 ▷ Let p, q be prime integers, and let G be a group of order pq. Prove that either G is

commutative, or the center of G is trivial. Conclude (using Corollary 1.9) that every group

of order p2, for a prime p, is commutative. [§1.3]

Since Z(G) ◁G, it follows that |Z(G)| ∈ {1, p, q, pq}. Suppose |Z(G)| = p or q, we have

|G/Z(G)| = p or q. Since groups of prime orders are cyclic, G/Z(G) is cyclic. According to

Lemma 1.5, it impliesG/Z(G) = {eG}, which yields a contradiction. Hence |Z(G)| = 1 or pq,

that is,

Z(G) = {eG} or G.

Therefore, we prove that either G is commutative, or the center of G is trivial.

Let G be a group of order p2. According to Corollary 1.9, the center of the nontrivial

p-group G is nontrivial. Therefore, G must be commutative.

■
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Chapter V. Irreducibility and factorization in integral

domains

§1. Chain conditions and existence of factorizations

Remember that in this section all rings are taken to be commutative.

1.1 ▷ Let R be a Noetherian ring, and let I be an ideal of R. Prove that R/I is a

Noetherian ring. [§1.1]

Let π : R → R/I be the projection. According to Exercise III.4.2, the homomorphic image

of the Noetherian ring R is Noetherian. That is, π(R) = R/I is Noetherian. ■

1.2 Prove that if R[x] is Noetherian, so is R. (This is a ‘converse’ to Hilbert’s basis

theorem.)

According to Exercise V.1.1, R[x] is Noetherian implies R [x] / (x) is Noetherian. Since in

Exercise III.4.12 we have shown that

R ∼= R [x] / (x) ,

we see R is Noetherian. ■

- 107 -



CHAPTER V. IRREDUCIBILITY AND FACTORIZATION IN INTEGRAL DOMAINS

§4. Unique factorization in polynomial rings

4.7 ▷ A subset S of a commutative ring R is a multiplicative subset (or multiplicatively

closed) if (i) 1 ∈ S and (ii) s, t ∈ S =⇒ st ∈ S. Define a relation on the set of pairs (a, s)

with a ∈ R, s ∈ S as follows:

(a, s) ∼ (a′, s′)⇐⇒ (∃t ∈ S), t (s′a− sa′) = 0.

Note that if R is an integral domain and S = R\{0}, then S is a multiplicative subset, and

the relation agrees with the relation introduced in §4.2.

• Prove that the relation ∼ is an equivalence relation.

• Denote by a
s
the equivalence class of (a, s), and define the same operations +, · on

such ‘fractions’ as the ones introduced in the special case of §4.2. Prove that these

operations are well-defined.

• The set S−1R of fractions, endowed with the operations +, · is the localization of R

at the multiplicative subset S. Prove that S−1R is a commutative ring and that the

function a 7→ a
1
defines a ring homomorphism ℓ : R→ S−1R.

• Prove that ℓ(s) is invertible for every s ∈ S.

• Prove that R → S−1R is initial among ring homomorphisms f : R → R′ such that

f(s) is invertible in R′ for every s ∈ S.

• Prove that S−1R is an integral domain if R is an integral domain.

• Prove that S−1R is the zero-ring if and only if 0 ∈ S.

[4.8, 4.9, 4.11, 4.15, VII.2.16, VIII.1.4, VIII.2.5, VIII.2.6, VIII.2.12, §IX.9.1]

• Reflexivity.

1(sa− sa) = 0 =⇒ (a, s) ∼ (a, s).

Symmetry.

(a, s) ∼ (a′, s′)⇐⇒ (∃t ∈ S) , t (s′a− sa′) = 0

⇐⇒ (∃t ∈ S), t (sa′ − s′a) = 0 ⇐⇒ (a′, s′) ∼ (a, s).
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Transitivity.

(a, s) ∼ (a′, s′) , (a′, s′) ∼ (a′′, s′′)

=⇒ (∃t1, t2 ∈ S) , t1 (s′a− sa′) = t2 (s
′′a′ − s′a′′) = 0

=⇒ (∃t1t2s′ ∈ S), t1t2s′ (s′′a− sa′′) = (t2s
′′)(t1s

′a)− (t1s)(t2s
′a′′)

= (t2s
′′)(t1sa

′)− (t1s
′)(t2s

′′a′)

= 0

=⇒ (a, s) ∼ (a′′, s′′) .

• Define

a1
s1

+
a2
s2

=
a1s2 + a2s1

s1s2
,

a1
s1
· a2
s2

=
a1a2
s1s2

.

If a1
s1

=
a′1
s′1
, then there exists t ∈ S such that ts′1a1 = ts1a

′
1. Hence

t(s′1s2)(a1s2 + a2s1)− t(s1s2)(a′1s2 + a2s
′
1)

= t (s′1s2a1s2 + s′1s2a2s1 − s1s2a′1s2 − s1s2a2s′1)
= t (s′1s2a1s2 + s′1s2a2s1 − s′1s2a1s2 − s′1s2a2s1) a
= 0,

which implies

a1
s1

+
a2
s2

=
a1s2 + a2s1

s1s2
=
a′1s2 + a2s

′
1

s′1s2
=
a′1
s′1

+
a2
s2
.

If a2
s2

=
a′2
s′2
, in a similar way, we can prove

a1
s1

+
a2
s2

=
a1s2 + a2s1

s1s2
=
a1s

′
2 + a′2s1
s1s′2

=
a1
s1

+
a′2
s′2
.

Therefore, + is well-defined.

If a1
s1

=
a′1
s′1

and a2
s2

=
a′2
s′2
, then there exists t1, t2 ∈ S such that t1s

′
1a1 = t1s1a

′
1 and

t2s
′
2a2 = t2s2a

′
2. Hence we have

(t1t2)(s
′
1s

′
2a1a2 − s1s2a′1a′2) = (t1s

′
1a1)(t2s

′
2a2)− (t1s1a

′
1)(t2s2a

′
2)

= (t1s1a
′
1)(t2s2a

′
2)− (t1s1a

′
1)(t2s2a

′
2)

= 0,
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which implies

a1
s1
· a2
s2

=
a1a2
s1s2

=
a′1a

′
2

s′1s
′
2

=
a′1
s′1
· a

′
2

s′2
.

Therefore, · is well-defined.

• It is straightforward to check that S−1R is a commutative ring. Define

ℓ : R −→ S−1R

a 7−→ a

1
.

Then

ℓ(a+ b) =
a+ b

1
=
a

1
+
b

1
= ℓ(a) + ℓ(b),

ℓ(ab) =
ab

1
=
a

1
· b
1
= ℓ(a)ℓ(b).

Hence ℓ is a ring homomorphism.

• Since

ℓ(s)

1

1

s
=
ℓ(s)

s
=
s

s
=

1

1
,

ℓ(s) is invertible in S−1R for every s ∈ S.

•
S−1R

g // R′

R
f

;;

ℓ

OO

Suppose f : R → R′ is a ring homomorphism such that f(s) is invertible in R′ for

every s ∈ S. Define

g : S−1R −→ R′

a

s
7−→ f(s)−1f(a).
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We can check that g is a ring homomorphism as follows:

g

(
a1
s1

+
a2
s2

)
= g

(
s1a2 + s2a1

s1s2

)
= f(s1s2)

−1f(s1a2 + s2a1)

= f(s1)
−1f(s2)

−1f(s1)f(a2) + f(s1)
−1f(s2)

−1f(s2)f(a1)

= f(s1)
−1f(a1) + f(s2)

−1f(a2)

= g

(
a1
s1

)
+ g

(
a2
s2

)
,

g

(
a1
s1
· a2
s2

)
= g

(
a1a2
s1s2

)
= f(s1s2)

−1f(a1a2)

= f(s1)
−1f(a1)f(s2)

−1f(a2)

= g

(
a1
s1

)
g

(
a2
s2

)
,

g

(
1

1

)
= f(1)−1f(1) = 1.

Since

g(ℓ(a)) = g
(a
1

)
= f(1)−1f(a) = f(a),

we see g gives a commutative diagram.

Suppose g′ is another ring homomorphism such that g′ ◦ ℓ = f . Then we have

g′
(a
s

)
= g′

(
1

s

a

1

)
= g′

(
1

s

)
g′
(a
1

)
=
(
g′
(s
1

))−1

g′
(a
1

)
= f(s)−1f(a)

= g
(a
s

)
,

which implies g = g′. Therefore, ℓ : R → S−1R is initial among ring homomorphisms

f : R→ R′ such that f(s) is invertible in R′ for every s ∈ S.
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• If R is an integral domain, then for any a1
s1
, a2
s2
∈ S−1R, we have

a1
s1
· a2
s2

=
a1a2
s1s2

=
0

1
=⇒ a1a2 = 0 =⇒ a1 = 0 or a2 = 0.

That means S−1R is an integral domain.

• If 0 ∈ S, then for any a, a′ ∈ R, s, s′ ∈ S, there exists 0 ∈ S such that 0(s′a− sa′) = 0.

Therefore, S−1R only contains 1 element, which implies S−1R is a zero-ring.

■

4.8 ¬ Let S be a multiplicative subset of a commutative ring R, as in Exercise V.4.7. For

every R-module M , define a relation ∼ on the set of pairs (m, s), where m ∈M and s ∈ S:

(m, s) ∼ (m′, s′)⇐⇒ (∃t ∈ S), t (s′m− sm′) = 0.

Prove that this is an equivalence relation, and define an S−1R-module structure on the set

S−1M of equivalence classes, compatible with the R-module structure on M . The module

S−1M is the localization of M at S. [4.9, 4.11, 4.14, VIII.1.4, VIII.2.5, VIII.2.6]

We can check that ∼ is an equivalence relation as follows:

Reflexivity.

(∃1 ∈ S), 1 · (sm− sm) = 0 =⇒ (m, s) ∼ (m, s) .

Symmetry.

(m, s) ∼ (m′, s′)⇐⇒ (∃t ∈ S) , t (s′m− sa′) = 0

⇐⇒ (∃t ∈ S), t (sm′ − s′m) = 0 ⇐⇒ (m′, s′) ∼ (m, s).

Transitivity.

(m, s) ∼ (m′, s′) , (m′, s′) ∼ (m′′, s′′)

=⇒ (∃t1, t2 ∈ S) , t1 (s′m− sm′) = t2 (s
′′m′ − s′m′′) = 0

=⇒ (∃t1t2s′ ∈ S), t1t2s′ (s′′m− sm′′) = (t2s
′′)(t1s

′m)− (t1s)(t2s
′m′′)

= (t2s
′′)(t1sm

′)− (t1s
′)(t2s

′′m′)

= 0

=⇒ (m, s) ∼ (m′′, s′′) .

Denote by m
s
the equivalence class of (m, s). The addtion of S−1M is defined as follows:

m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2
.
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We can show that the addition is well-defined and makes S−1M an abelian group.

Define the scalar multiplication of S−1R on S−1M as follows:

a

s1
· m
s2

=
am

s1s2
.

We can show that the scalar multiplication is well-defined as follows:

a

s1
=
a′

s′1
,
m

s2
=
m′

s′2
=⇒ (∃t1, t2 ∈ S), t1 (s1a′ − s′1a) = 0, t2 (s2m

′ − s′2m) = 0

=⇒ (∃t1t2 ∈ S), t1t2 (s′1s′2am− s1s2a′m′) = 0

=⇒ am

s1s2
=
a′m′

s′1s
′
2

.

We can check that the scalar multiplication is compatible with the addition as follows:

a

s1

(
m1

s2
+
m2

s3

)
=

a

s1

s3m2 + s2m1

s2s3
=
as3m2 + as2m1

s1s2s3
=
am1

s1s2
+
am2

s1s3
=

a

s1

m1

s2
+
a

s1

m2

s3
,(

a1
s1

+
a2
s2

)
m

s3
=
s2a1 + s1a2

s1s2

m

s3
=
s2a1m+ s1a2m

s1s2s3
=
a1m

s1s3
+
a2m

s2s3
=
a1
s1

m

s3
+
a2
s2

m

s3
,(

a1
s1

a2
s2

)
m

s3
=
a1a2
s1s2

m

s3
=

(a1a2)m

(s1s2)s3
=
a1(a2m)

s1(s2s3)
=
a1
s1

a2m

s2s3
=
a1
s1

(
a2
s2

m

s3

)
,

1

1

m

s
=

1m

1s
=
m

s
.

■
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Chapter VI. Linear algebra

§1. Free modules revisited

1.1 ¬ Prove that R and C are isomorphic as Q-vector spaces. (In particular, (R,+ ) and

(C,+) are isomorphic as groups.) [II.4.4]

The Q-vector space R is a free Q-module, it adimits a basis B. We can show that B is a

infinite set by showing that for any positive integer n, there exists a linearly independent

subset Bn such that |Bn| = n. An example is Bn = {1, π, · · · , πn}, given the fact that π is

trascendent over Q. Let

B′ = B
⋃
{bi | b ∈ B} .

Then we see B′ is a basis of C and |B′| = |B|. Therefore, R and C are isomorphic as Q-vector

spaces. ■

1.4 Let V be a vector space over a field k. A Lie bracket on V is an operation [·, ·] :
V × V → V such that

• (∀u, v, w ∈ V ), (∀a, b ∈ k),

[au+ bv, w] = a[u,w] + b[v, w], [w, au+ bv] = a[w, u] + b[w, v],

• (∀v ∈ V ), [v, v] = 0,

• and (∀u, v, w ∈ V ), [[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

(This axiom is called the Jacobi identity.) A vector space endowed with a Lie bracket is

called a Lie algebra. Define a category of Lie algebras over a given field. Prove the following:

• In a Lie algebra V, [u, v] = −[v, u] for all u, v ∈ V .

• If V is a k-algebra (Definition III.5.7), then [v, w] := vw − wv defines a Lie bracket

on V , so that V is a Lie algebra in a natural way.

• This makes gln(R), gln(C) into Lie algebras. The sets listed in Exercise III.1.4 are all

Lie algebras, with respect to a Lie bracket induced from gl.

• su2(C) and so3(R) are isomorphic as Lie algebras over R.

■
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1.5 ▷ Let R be an integral domain. Prove or disprove the following:

• Every linearly independent subset of a free R-module may be completed to a basis.

• Every generating subset of a free R-module contains a basis.

[§1.3]

• False. Given the Z-module Z, {2} is a linearly independent subset of Z, but it cannot
be completed to a basis because the dimension of Z is 1.

• False. Given the Z-module Z, {2, 3} is a generating subset of Z, but it does not contain
a basis because neither {2} and {3} can generate Z.

■

§4. Presentations and resolutions

4.1 ▷ Prove that if R is an integral domain and M is an R-module, then Tor(M) is

a submodule of M . Give an example showing that the hypothesis that R is an integral

domain is necessary. [§4.1]

Given any m1,m2 ∈ Tor(M), we can suppose there exist r1, r2 ∈ R such that r1m1 = 0(r1 ̸=
0) and r2m2 = 0(r2 ̸= 0). Since R is an integral domain, we have r1r2 ̸= 0. Thus, there exist

nonzero element r1r2 ∈ R such that

r1r2(m1 +m2) = r2(r1m1) + r1(r2m2) = 0,

which implies m1 +m2 ∈ Tor(M).

Given any r ∈ R, m ∈ Tor(M), we can suppose

r0m = 0

where r0 ∈ R and r0 ̸= 0. Thus we have

r0(rm) = r(r0m) = 0,

which implies rm ∈ Tor(M). Therefore, we show that Tor(M) is a submodule of M .

Z/6Z is not an integral domain and Z/6Z is a Z/6Z-module. Since

Tor(Z/6Z) = {[0]6, [2]6, [3]6},

we have [2]6 + [3]6 = [5]6 /∈ Tor(Z/6Z), which implies Tor(Z/6Z) is not a submodule of

Z/6Z++. ■
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4.4 ▷ Let R be a commutative ring, and M an R-module.

• Prove that Ann(M) is an ideal of R.

• If R is an integral domain and M is finitely generated, prove that M is torsion if and

only if Ann(M) ̸= 0.

• Give an example of a torsion moduleM over an integral domain, such that Ann(M) =

0. (Of course this example cannot be finitely generated!)

[§4.2, §5.3]

• Ann(M) is defined as

Ann(M) = {r ∈ R | ∀m ∈M, rm = 0}.

Given any r1, r2 ∈ Ann(M), we have

∀m ∈M, (r1 + r2)m = r1m+ r2m = 0,

which implies r1 + r2 ∈ Ann(M).

Given any r ∈ R, s ∈ Ann(M), we have

∀m ∈M, (rs)m = r(sm) = 0,

which implies rs ∈ Ann(M).

• If Ann(M) ̸= 0, there exists nonzero r ∈ R such that and rm = 0 for any m ∈ M ,

which implies M is a torsion module.

Assume that M is torsion and is generated by {m1,m2, · · · ,mn}. There exist nonzero
elements r1, r2, · · · , rn ∈ R such that

r1m1 = r2m2 = · · · = rnmn = 0.

Let r0 = r1r2 · · · rn. Since R is an integral domain, r0 ̸= 0. Given any m ∈M , we have

m = k1m1 + k2m2 + · · ·+ knmn

and

r0m = k1r2 · · · rn(r1m1) + · · ·+ knr1 · · · rn−1(rnmn) = 0.

Thus we show r0 ∈ Ann(M) and Ann(M) ̸= 0.

• Q/Z is a module over the integral domain Z. Since

∀
[
p

q

]
∈ Q/Z, ∃q ∈ Z, q

[
p

q

]
= [0],
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we see Q/Z is a torsion module. If r ∈ Ann(M), then for all q ∈ Z,

r

[
1

q

]
= 0 ⇐⇒ q|r =⇒ r = 0 or r ≥ q.

Therefore, there must be r = 0, which means Ann(M) = 0.

■
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Chapter VII. Fields

§1. Field extensions, I

1.1 ▷ Prove that if k ⊆ K is a field extension, then char k = charK. Prove that the

category Fld has no initial object. [§1.1]

Since Z is initial in Ring, we have unique ring homomorphisms ik : Z→ k and iK : Z→ K.

Note that the inclusion j : k → K is a ring homomorphism, we have iK = j ◦ ik. Since

ker iK = ker(j ◦ ik) = i−1
k (ker j) = i−1

k ({0}) = ker ik,

we have char k = charK. If there exists one initial object A in Fld, all the objects in Fld will

have the same characteristic as A. This contradicts with the fact that charZ2 ̸= charZ3. ■

1.3 ▷ Let k ⊆ F be a field extension, and let α ∈ F. Prove that the field k(α) consists of

all the elements of F which may be written as rational functions in α, with coefficients in

k. Why does this not give (in general) an onto homomorphism k(t)→ k(α)?[§1.2, §1.3]

Since k(α) is smallest subfield of F containing both k and α, for any g(t) ∈ k(t) we have

g(α) ∈ k(α). Thus we can define the evaluation mapping

evα : k(t) −→ k(α)

g(t) 7−→ g(α).

It is clear to see evα(k(t)) ⊆ k(α) and k(α) ⊆ evα(k(t)), which means k(α) = evα(k(t)). If

evα : k(t)→ k(α) is an onto field homomorphism, then evα must be a field isomorphism. If

we consider the simple extension Q ⊆ Q(
√
2), we will find that

ev√2(0) = ev√2(t
2 − 1) = 0,

which contradicts the fact that ev√2 is an isomorphism. ■

1.4 Let k ⊆ k(α) be a simple extension, with α transcendental over k. Let E be a subfield

of k(α) properly containing k. Prove that k(α) is a finite extension of E.

The field extension E ⊆ k(α) is finitely generated because E(α) = k(α). Since E be a

subfield of k(α) properly containing k, we can suppose that there exist f, g ∈ k[t] such that

g ̸= 0, deg f > 0 and
f(α)

g(α)
∈ E.

Then let

h(t) = f(t)− f(α)

g(α)
g(t) ∈ E[t].
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It is immediate that h(α) = 0, which means α is algebraic over E. Thus we show that

E ⊆ E(α) is a finite extension, or equivalently k(α) is a finite extension of E. ■

1.5 ▷ (Cf. Example 1.4.)

• Prove that there is exactly one subfield of R isomorphic to Q[t]/ (t2 − 2).

• Prove that there are exactly three subfields of C isomorphic to Q[t]/ (t3 − 2).

From a ‘topological’ point of view, one of these copies of Q[t]/ (t3 − 2) looks very different

from the other two: it is not dense in C, but the others are. [§1.2]

• We will show that Q(
√
2) is the unique subfield of R isomorphic to Q[t]/ (t2 − 2).

First we assert that Q[t]/ (t2 − 2) ∼= Q(
√
2). To prove this, notice that Q[t] is a PID

and t2− 2 is irreducible over Q[t], which implies (t2 − 2) is a maximal ideal of Q[t] and

Q[t]/ (t2 − 2) is a field. Then we can check that

φ : Q[t]/
(
t2 − 2

)
−→ Q(

√
2)

p(t) + (t2 − 2) 7−→ p(
√
2)

is an isomorphism.

Suppose that F is a subfield of R and ψ : Q[t]/ (t2 − 2) → F is an isomorphism. Let

t̄ = t+ (t2 − 2) ∈ Q[t]/ (t2 − 2). Since ψ(t̄) ∈ F ⊆ R, we have

ψ (t̄)2 − 2 = ψ
(
t
2 − 2

)
= 0 =⇒ ψ(t̄) =

√
2 or −

√
2 =⇒ Q(

√
2) ⊆ F.

For any x ∈ F , there exists g = q1t+ q2 + (t2 − 2) ∈ Q[t]/ (t2 − 2) such that ψ(g) = x,

where q1, q2 ∈ Q. If q1 = 0, we have

x− q2 = ψ(g − q2) = 0 =⇒ x = q2 ∈ Q(
√
2).

If q1 ̸= 0, we have

(x− q2)2 − 2q21 = ψ((g − q2)2 − 2q21) = ψ(q21t
2 − 2q21 + (t2 − 2)) = 0,

which implies x = ±q1
√
2 + q2 ∈ Q(

√
2). Thus we have F ⊆ Q(

√
2). Therefore

F = Q(
√
2), which guarantees the uniqueness of Q(

√
2).

• We can show that

Q(
3
√
2),Q

(
−1 +

√
3i

2
3
√
2

)
,Q

(
−1−

√
3i

2
3
√
2

)

are all isomorphic to Q[t]/ (t3 − 2). Q( 3
√
2) is not dense in C.

■
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1.6 ▷ Let k ⊆ F be a field extension, and let f(x) ∈ k[x] be a polynomial. Prove that

Autk(F ) acts on the set of roots of f(x) contained in F . Provide examples showing that

this action need not be transitive or faithful. [§1.2, §1.3]

Let Sf be the set of roots of f(x) contained in F . Note that for any σ ∈ Autk(F ) and any

α ∈ Sf , σ can be extend to F [x] and σ(f) = f . Since

f(σ(α)) = σ(f)(σ(α)) = σ(f(α)) = σ(0) = 0 =⇒ σ(α) ∈ Sf ,

we can define the mapping

· : Autk(F )× Sf −→ Sf

(σ, α) 7−→ σ · α := σ(α).

Since for any σ1, σ2 ∈ Autk(F ) and any root α of f(x),

σ1 · (σ2 · α) = σ1 · σ2(α) = σ1(σ2(α)) = (σ1 ◦ σ2)(α) = (σ1 ◦ σ2) · α,

we see that Autk(F ) acts on the set of roots of f(x) contained in F . ■

1.7 Let k ⊆ F be a field extension, and let α ∈ F be algebraic over k.

• Suppose p(x) ∈ k[x] is an irreducible monic polynomial such that p(α) = 0; prove

that p(x) is the minimal polynomial of α over k, in the sense of Proposition 1.3.

• Let f(x) ∈ k[x]. Prove that f(α) = 0 if and only if p(x) | f(x).

• Show that the minimal polynomial of α is the minimal polynomial of a certain k-linear

transformation of F , in the sense of Definition VI.6.12.

• Suppose q(x) is the minimal polynomial of α over k. Since deg q(x) ≤ deg p(x), we

have Euclidean division in the Euclidean domain k[x] as follows

p(x) = m(x)q(x) + r(x), deg r(x) < deg q(x).

Taking x = α, there must be r(α) = 0. Since q(x) is the minimal polynomial, we

can assert r(x) = 0 and accordingly q(x) | p(x). The irreducibility of p(x) means

p(x) = q(x).

• It is clear that p(x) | f(x) =⇒ f(α) = p(α)h(α) = 0. To show f(α) = 0 =⇒ p(x) |
f(x), we can just follow the same procedure as the first problem.

• Suppose p(x) ∈ k[x] is the minimal polynomial of α. We can easily check that

Tα : F −→ F,

m 7−→ αm
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is a k-linear transformation. Since for any m ∈ F ,

p(Tα)(m) = c0 + c1Tαm+ c2T
2
αm+ · · ·+ cnT

n
αm

= c0 + c1αm+ c2α
2m+ · · ·+ cnα

nm

=
(
c0 + c1α + c2α

2 + · · ·+ cnα
n
)
m = 0,

we have p(Tα) = 0. Since p(x) is an irreducible monic polynomial, p(x) is exactly the

minimal polynomial of Tα.

■

1.8 ¬ Let f(x) ∈ k[x] be a polynomial over a field k of degree d, and let α1, . . . , αd be the

roots of f(x) in an extension of k where the polynomial factors completely. For a subset

I ⊆ {1, . . . , d}, denote by αI the sum
∑

i∈I αi. Assume that αI ∈ k only for I = ∅ and

I = {1, . . . , d}. Prove that f(x) is irreducible over k. [7.14]

Suppose f(x) = (x− α1) · · · (x− αd) is reducible over k and g(x) =
∏

i∈I(x− αi) ∈ k[x] is a
factor of f , where I ⊊ {1, . . . , d}. Note the coefficient of the n− 1-th degree term of g(x) is

−
∑
i∈I

αi /∈ k.

We derive a contradiction. Hence we can conclude that f(x) is irreducible over k. ■

1.10 ¬ Let k be a field. Prove that the ring of square n× n matricesMn(k) contains an

isomorphic copy of every extension of k of degree ≤ n. (Hint: If k ⊆ F is an extension of

degree n and α ∈ F , then ‘multiplication by α’ is a k-linear transformation of F .) [5.20]

Suppose k ⊆ F is an extension of degree n and α ∈ F , then

Tα : F −→ F,

m 7−→ αm

is a k-linear transformation of F , which is isomorphic to a matrix ATα ∈ Mn(k) in Vectk.

What is left to do is to show that ATα+β
= ATα+ATβ , ATαβ

= ATαATβ and AT1F = In×n, which

amounts to Tαβ = Tα + Tβ, Tαβ = TαTβ and T1F = idF . The verification is straightforward.

■

1.11 ¬ Let k ⊆ F be a finite field extension, and let p(x) be the characteristic polynomial

of the k-linear transformation of F given by multiplication by α. Prove that p(α) = 0.

This gives an effective way to find a polynomial satisfied by an element of an extension.

Use it to find a polynomial satisfied by
√
2 +
√
3 over Q, and compare this method with

the one used in Example 1.19. [1.12]
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In Exercise VII.1.7 we show that the minimal polynomial of α coincides with the minimal

polynomial of Tα. Denote the minimal polynomial as f(x). Then we have f(α) = 0 and

f(x) | p(x), which implies p(α) = 0.

Consider the field extension Q ⊆ Q(
√
2,
√
3) and the algebraic element α =

√
2 +
√
3.

Since 1,
√
2,
√
3,
√
6 is a basis of Q(

√
2,
√
3), we can represent the linear transformation by

a matrix A as follows (
Tα1, Tα

√
2, Tα
√
3, Tα
√
6
)

=
(√

2 +
√
3, 2 +

√
6, 3 +

√
6, 3
√
2 + 2

√
3
)

=
(
1,
√
2,
√
3,
√
6
)

0 2 3 0

1 0 0 3

1 0 0 2

0 1 1 0


=
(
1,
√
2,
√
3,
√
6
)
A.

The characteristic polynomial of A is

p(x) = det(xI − A) = x4 − 10x2 + 1.

■

1.12 ¬ Let k ⊆ F be a finite field extension, and let α ∈ F . The norm of α, Nk⊆F (α), is

the determinant of the linear transformation of F given by multiplication by α (cf. Exercise

VII.1.11, Definition VI.6.4). Prove that the norm is multiplicative: for α, β ∈ F ,

Nk⊆F (αβ) = Nk⊆F (α)Nk⊆F (β).

Compute the norm of a complex number viewed as an element of the extension R ⊆ C (and

marvel at the excellent choice of terminology). Do the same for elements of an extension

Q(
√
d) of Q, where d is an integer that is not a square, and compare the result with Exercise

III.4.10. [1.13, 1.14, 1.15, 4.19, 6.18, VIII.1.5]

consider the field extension R ⊆ C and a complex number w = a + bi ∈ C. Given a basis

1, i of C, denote the matrix representation of the linear transformation F : z 7→ wz as A.

Then we have

(F (1), F (i))

= (a+ bi,−b+ ai)

= (1, i)

(
a −b
b a

)
= (1, i)A.
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The norm NR⊆C(w) = det(A) = a2 + b2.

consider the field extension Q ⊆ Q
(√

d
)
and a number c = a + b

√
d ∈ Q

(√
d
)
. Given

a basis 1,
√
d of Q

(√
d
)
, denote the matrix representation of the linear transformation

F : x 7→ cx as B. Then we have (
F (1), F

(√
d
))

=
(
a+ b

√
d, bd+ a

√
d
)

=
(
1,
√
d
)(a bd

b a

)
=
(
1,
√
d
)
B.

The norm NQ⊆Q(
√
d)(c) = det(B) = a2 − db2.

■

1.13 ¬ Define the trace trk⊆F (α) of an element α of a finite extension F of a field k by

following the lead of Exercise VII.1.12. Prove that the trace is additive:

trk⊆F (α + β) = trk⊆F (α) + trk⊆F (β)

for α, β ∈ F . Compute the trace of an element of an extension Q ⊆ Q(
√
d), for d an integer

that is not a square. [1.14, 1.15, 4.19, VIII.1.5]

Given c = a+ b
√
d ∈ Q

(√
d
)
, the trace trQ⊆Q(

√
d)(c) = tr(B) = 2a. ■

1.14 ¬ Let k ⊆ k(α) be a simple algebraic extension, and let xd + ad−1x
d−1 + · · ·+ a0 be

the minimal polynomial of α over k. Prove that

trk⊆k(α)(α) = −ad−1 and Nk⊆k(α)(α) = (−1)da0.

(Cf. Exercise VII.1.12 and Exercise VII.1.13). [4.19]

Since p(x) = xd + ad−1x
d−1 + · · ·+ a0 is the minimal polynomial of α, we see 1, α, · · · , αd−1

is the basis of the k-vector space k(α) and

p(α) = αd + ad−1α
d−1 + · · ·+ a0 = 0
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The matrix representation of the linear map F : z 7→ αz is(
F (1), F (α) , · · · , F

(
αd−1

))

=
(
1, α, α2, · · · , αd−1

)


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

...
...

0 0 0 · · · 0 −ad−2

0 0 0 · · · 1 −ad−1


= (1, α)A.

Thus we have

trk⊆k(α)(α) = tr(A) = −ad−1

and

Nk⊆k(α)(α) = det(A) = (−1)d−1(−a0) = (−1)da0.

■

1.16 ▷ Let k ⊆ L ⊆ F be fields, and let α ∈ F . If k ⊆ k(α) is a finite extension, then

L ⊆ L(α) is finite and [L(α) : L] ≤ [k(α) : k]. [§1.3]

Since k ⊆ k(α) is a finite extension, it is a simple algebraic extension and there exists a

minimal polynomial p(t) of α over k. Since p(t) can be seen as a polynomial in L and

p(α) = 0, we have L ⊆ L(α) is finite. Since the degree of the minimal polynomial of α over

L is not greater than the degree of p(t), we have [L(α) : L] ≤ [k(α) : k]. ■

1.20 Let p be a prime integer, and let α = p
√
2 ∈ R. Let g(x) ∈ Q[x] be any nonconstant

polynomial of degree < p. Prove that α may be expressed as a polynomial in g(α) with

rational coefficients.

Prove that an analogous statement for 4
√
2 is false.

It is easy to see that Q ⊆ Q(g(α)) ⊆ Q(α). Since f(t) = xp − 2 is irredicible over Q and

f(α) = 0, Q ⊆ Q(α) is a p degree extension. If p is a prime integer, then the degree fo the

finite extension Q ⊆ Q(g(α)) is 1 or p. Note that g(α) /∈ Q. There must be Q(g(α)) = Q(α).

Thus we see there exists h ∈ Q[x] such that α = h(g(α)) with rational coefficients.

If p = 4, then we can take g(x) = x2. Now we have g(α) =
√
2. For the tower of

field extensions Q ⊆ Q(
√
2) ⊆ Q( 4

√
2), it is easy to check that both Q ⊆ Q(

√
2) and

Q(
√
2) ⊆ Q( 4

√
2) are quadratic extensions. Hence the intermediate field Q(

√
2) is not equal

toQ orQ( 4
√
2). Therefore, we can conclude that α = 4

√
2 cannot be expressed as a polynomial

in g(α) =
√
2 with rational coefficients. ■
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1.22 Let k ⊆ F be a field extension, and let α ∈ F, β ∈ F be algebraic, of degree d, e,

resp. Assume d, e are relatively prime, and let p(x) be the minimal polynomial of β over

k. Prove p(x) is irreducible over k(α).

By the tower properties of finite field extensions k ⊆ k(α) ⊆ k(α, β) and k ⊆ k(β) ⊆ k(α, β),

we have d divides [k(α, β) : k] and e divides [k(α, β) : k]. Since d and e are relatively prime,

we have [k(α, β) : k] ≥ de. Since p(β) = 0, the minimal polynomial of β over k(α) divides

p(x), which implies [k(α)(β) : k(α)] ≤ deg(p) = e. By the tower property of finite field

extensions k ⊆ k(α) ⊆ k(α, β), we have [k(α, β) : k] ≤ de, which forces [k(α, β) : k] = de

and [k(α)(β) : k(α)] = deg(p) = e. Thus we see p(x) is the minimal polynomial of β over

k(α), and hence p(x) is irreducible over k(α). ■

1.23 Express
√
2 explicitly as a polynomial function in

√
2+
√
3 with rational coefficients.

Suppose f(x) = a+ bx+ cx2 + dx3 is a polynomial in Q[x].

a+ b
(√

2 +
√
3
)
+ c
(√

2 +
√
3
)2

+ d
(√

2 +
√
3
)3

= a+ b
(√

2 +
√
3
)
+ c
(
5 + 2

√
6
)
+ d

(
11
√
2 + 9

√
3
)

= a+ 5c+ (b+ 11d)
√
2 + (b+ 9d)

√
3 + 2c

√
6

Solve

a+ 5c = 0

b+ 11d = 1

b+ 9d = 0

2c = 0

and we get a = 0, b = −9
2
, c = 0, d = 1

2
. Therefore,

√
2 can be expressed as

√
2 = f

(√
2 +
√
3
)
=

1

2

(√
2 +
√
3
)3
− 9

2

(√
2 +
√
3
)
.

■
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1.25 ¬ Let ξ :=
√

2 +
√
2.

• Find the minimal polynomial of ξ over Q, and show that Q(ξ) has degree 4 over Q.

• Prove that
√

2−
√
2 is another root of the minimal polynomial of ξ.

• Prove that
√

2−
√
2 ∈ Q(ξ). (Hint: (a+ b)(a− b) = a2 − b2.)

• By Proposition 1.5, sending ξ to
√

2−
√
2 defines an automorphism of Q(ξ) over Q.

Find the matrix of this automorphism w.r.t. the basis 1, ξ, ξ2, ξ3.

• Prove that AutQ(Q(ξ)) is cyclic of order 4.

[6.6]

• Let

p(x) =
(
x2 − 2

)2 − 2 = x4 − 4x2 + 2.

By Eisenstein’s criterion, p(x) is irreducible over Q. Since p(ξ) = 0, p(x) is the minimal

polynomial of ξ over Q. Therefore, Q(ξ) has degree 4 over Q.

• It is straightforward to check that p
(√

2−
√
2
)
= 0.

• √
2−
√
2 =

√(
2−
√
2
) (

2 +
√
2
)

2 +
√
2

=

√
2√

2 +
√
2
=
ξ2 − 2

ξ

• Suppose σ is an automorphism of Q(ξ) over Q sending ξ to
√
2−
√
2. We need express

σ(1), σ(ξ), σ(ξ2), σ(ξ3) as the linear combination of 1, ξ, ξ2, ξ3. Note

σ(ξ) =

√
2−
√
2 = ξ − 2

ξ
.

We may express 1
ξ
as a linear combination of ξ and ξ3. Suppose there exists a, b ∈ Q

such that
1

ξ
= aξ + bξ3.

Then we have

aξ2 + bξ4

= a(2 +
√
2) + b(6 + 4

√
2)

= 2a+ 6b+ (a+ 4b)
√
2

= 1,
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which implies a = 2, b = −1
2
and 1

ξ
= 2ξ − 1

2
ξ3. Therefore,

σ(ξ) = ξ − 2

ξ
= ξ − 2

(
2ξ − 1

2
ξ3
)

= −3ξ + ξ3

σ
(
ξ2
)
= σ(ξ)2 = 2−

√
2 = 4− ξ2

σ
(
ξ3
)
=

(
ξ − 2

ξ

)(
4− ξ2

)
= −ξ3 + 6ξ − 8

ξ
= −ξ3 + 6ξ − 8

(
2ξ − 1

2
ξ3
)

= −10ξ + 3ξ3.

and the matrix representation of σ w.r.t. the basis 1, ξ, ξ2, ξ3 is(
σ(1), σ(ξ), σ(ξ2), σ(ξ3)

)
=
(
1, ξ, ξ2, ξ3

)
1 0 4 0

0 −3 0 −10
0 0 −1 0

0 1 0 3


=
(
1, ξ, ξ2, ξ3

)
A.

• Since

x1 =

√
2 +
√
2, x2 =

√
2−
√
2, x3 = −

√
2 +
√
2, x4 = −

√
2−
√
2

are the all roots of p(x) over Q and Q(ξ) = Q(x1, x2, x3, x4), we see Q ⊆ Q(ξ) is a

Galois extension and the Galois group AutQ(Q(ξ)) is of order 4. By calculating the

characteristic polynomial of A

det (λI − A) = det


λ− 1 0 −4 0

0 λ+ 3 0 10

0 0 λ+ 1 0

0 −1 0 λ− 3


= (λ− 1) ((λ+ 3)(λ+ 1)(λ− 3) + 10(λ+ 1))

= (λ− 1)(λ+ 1)
(
λ2 + 1

)
= λ4 − 1,

we have A4 = I. Since A2 ̸= I, the order of σ ∈ AutQ(Q(ξ)) is 4. Therefore,

AutQ(Q(ξ)) is a cyclic group of order 4.

■

§3. Geometric impossibilities

3.14 Prove that the regular 9-gon is not constructible.—
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Suppose ξ = e2πi/9. We can check that the 9th cyclotomic polynomial

Φ9(x) = x6 + x3 + 1,

is the minimal polynomial ξ over Q. Therefore, Q(ξ) is a extension of degree 6 over Q. Since

6 is not a power of 2, the regular 9-gon is not constructible. ■

3.15 ▷ Prove that if 2k + 1 is prime, then k is a power of 2. [§3.3]

If k = 0, the proposition is trivial. If k ̸= 0, we can suppose k = n2m where n is an odd

number. Since

2k + 1 =
(
22

m)n
+ 1 =

(
22

m

+ 1
) (

2(n−1)2m − 2(n−2)2m + · · ·+ 22·2
m − 22

m

+ 1
)

is prime, there msut be n = 1, which implies k is a power of 2. ■

§4. Field extensions, II

4.2 Describe the splitting field of x6 + x3 + 1 over Q. Do the same for x4 + 4.

Suppose ξ = e
2πi
9 . Then x6 + x3 + 1 is the 9th cyclotomic polynomial

Φ9(x) = x6 + x3 + 1 = (x− ξ)
(
x− ξ2

) (
x− ξ4

) (
x− ξ5

) (
x− ξ7

) (
x− ξ8

)
.

The splitting field of Φ9(x) over Q is Q(ξ, ξ2, ξ4, ξ5, ξ7, ξ8).

x4 + 4 = (x2 + 2i)(x2 − 2i) = (x− (1 + i))(x− (−1− i))(x− (−1 + i))(x− (1− i)).

The splitting field of x4 + 4 over Q is Q(1 + i,−1− i,−1 + i, 1− i) = Q(i). ■

4.3 ▷ Find the order of the automorphism group of the splitting field of x4+2 over Q (cf.

Example 4.6). [$4.1]

x4 + 2 = (x2 +
√
2i)(x2 −

√
2i) =

(
x− 1 + i

4
√
2

)(
x− −1− i

4
√
2

)(
x− −1 + i

4
√
2

)(
x− 1− i

4
√
2

)
.

The splitting field of x4 + 2 over Q is Q
(

1+i
4√2
, −1−i

4√2
, −1+i

4√2
, 1−i4√2

)
= Q

(
4
√
2, i
)
.

For the field extension Q ⊆ Q( 4
√
2), since the minimal polynomial of 4

√
2 over Q is x4−2,

we have [Q( 4
√
2) : Q] = 4. For the field extension Q( 4

√
2) ⊆ Q( 4

√
2, i), since the minimal

polynomial of i over Q( 4
√
2) is x2 + 1, we have [Q( 4

√
2, i) : Q( 4

√
2)] = 2. By the tower

property, we have

[Q(
4
√
2, i) : Q] = [Q(

4
√
2, i) : Q(

4
√
2)][Q(

4
√
2) : Q] = 2× 4 = 8.
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Since Q ⊆ Q( 4
√
2, i) is a Galois extension, the order of the Galois group AutQ

(
Q( 4
√
2, i)

)
is

8. ■

4.4 Prove that the field Q( 4
√
2) is not the splitting field of any polynomial over Q.

The polynomial p(x) = x4 − 2 ∈ Q[x] has root over Q( 4
√
2) because p

(
4
√
2
)
= 0. However,

p(x) =
(
x− 4
√
2
)(

x+
4
√
2
)(

x− 4
√
2i
)(

x+
4
√
2i
)

does not split over Q( 4
√
2) because 4

√
2i /∈ Q( 4

√
2), which implies that Q ⊆ Q( 4

√
2) is not a

normal extension and is not the splitting field of any polynomial over Q. ■
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Chapter VIII. Linear Algebra, reprise

§1. Preliminaries, reprise

1.1 Let F : C→ D be a covariant functor, and assume that both C and D have products.

Prove that for all objects A,B of C, there is a unique morphism F (A×B)→ F (A)×F (B)

such that the relevant diagram involving natural projections commutes.

If D has coproducts (denoted II) and G : C → D is contravariant, prove that there is

a unique morphism G (A) ⨿ G (B) → G (A ⨿ B) (again, such that an appropriate diagram

commutes).

According to the universal property of F (A×B) in D, we have

F (A×B)

∃!
��

F (πC2 )

''

F (πC1 )

ww
F (A) F (A)×F (B)πD1

oo
πD2

//F (B)

Similarly, according to the universal property of G (A)⨿ G (B) in D, we have

G (A⨿B)

G (A)

G (iC2 )
88

iD1

// G (A)⨿ G (B)

∃!

OO

G (B)

G (iC1 )
ff

iD2

oo

■

1.2 ▷ Let F : C → D be a fully faithful functor. If A,B are objects in C, prove that

A ∼= B in C if and only if F (A) ∼= F (B) in D. [§1.3]

If A ∼= B in C , then there exists f : A → B and g : B → A such that f ◦ g = idB and

g ◦f = idA. Since F is a functor, we have F (f)◦F (g) = idF (B) and F (g)◦F (f) = idF (A).

Hence F (A) ∼= F (B) in D.

If F (A) ∼= F (B) in D, there exists f ′ : F (A) → F (B) and g′ : F (B) → F (A) such

that f ′ ◦ g′ = idF (B) and g
′ ◦ f ′ = idF (A). Since F is fully faithful, there exists f : A → B

and g : B → A such that F (f) = f ′ and F (g) = g′. Now we have

F (f ◦ g) = F (f) ◦F (g) = f ′ ◦ g′ = idF (B),

F (g ◦ f) = F (g) ◦F (f) = g′ ◦ f ′ = idF (A),

which implies f ◦ g = idB and g ◦ f = idA. Hence A ∼= B in C. ■

1.3 Recall (§II.1) that a group G may be thought of as a groupoid G with a single object.

Prove that defining the action of G on an object of a category C is equivalent to defining

a functor G→ C.
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Suppose a group G acts on an object B of a category C and G is the groupoid with a single

object A with EndG(A) = G . Then the functor G → C is defined by G(A) → B and

G(g)→ g for all g ∈ G.
Conversely, suppose G is a groupoid with a single object A and F : G → C is a functor

that maps A to B in C. Then the group action on B is defined by

AutG(A) −→ AutC(B),

g 7−→ F (g).

■

1.4 ¬ Let R be a commutative ring, and let S ⊆ R be a multiplicative subset in the

sense of Exercise V.4.7 . Prove that ‘localization is a functor’: associating with every R-

moduleM the localization S−1M (Exercise V.4.8) and with everyR-module homomorphism

φ : M → N the naturally induced homomorphism S−1M → S−1N defines a covariant

functor from the category of R-modules to the category of S−1R modules. [1.25]

The functor F : R-Mod→ S−1R-Mod is defined as follows:

• object mapping: M 7→ S−1M ;

• morphism mapping φ 7→ F (φ) is given by the following commutative diagram

S−1M
F (φ) // S−1N

M

ℓ

OO

φ
// N

ℓ

OO

We can check that F is a functor by checking the functoriality of F

F (φ ◦ φ′) = F (φ) ◦F (φ′),

which can be derived from the following commutative diagram.

S−1M
F (φ) // S−1N

F (φ′) // S−1L

M

ℓ

OO

φ
// N

ℓ

OO

φ′
// L

ℓ

OO

■
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Appendix

Lemma II.1 (von Dyck) Given a presentation (A|R) = F (A)/R, where A is the set of

generators, R ∈ F (A) is the set of relators and R is the smallest normal subgroup of F (A)

containing R. Define inclusion mapping i : A→ F (A) and projection π : F (A)→ F (A)/R.

If f is a mapping from A to a group G, and every relations in R holds in G via f , that is,

R ⊂ kerφ where φ is the unique homomorphism induced by the universal property of free

group, then there exists a unique homomorphism ψ : F (A)/R→ G such that f = ψ ◦ π ◦ i.
If G is generated by f(A), then ψ is surjective.

F (A)/R
∃!ψ

##
F (A)

φ //

π

OO

G

A
f

;;

i

OO

Proof of the lemma. Since R is the smallest normal subgroup of F (A) containing R and

the normal subgroup kerφ contains R, we must have R ⊂ kerφ. Then according to Theorem

7.12, there exists a unique homomorphism ψ : F (A)/R → G such that φ = ψ ◦ π, which
means the whole diagram commutes. If there exists a homomorphism ζ : F (A)/R→ G such

that f = ζ ◦ π ◦ i, then we have φ ◦ i = ζ ◦ π ◦ i, which implies φ(t) = ζ(π(t)) for all t ∈ A.
Note that a homomorphism defined on F (A) can be specified only by its valuation on the

set of generators A, we can assert that φ = ζ ◦π. Since there exists a unique homomorphism

ψ : F (A)/R → G such that φ = ψ ◦ π, we have ζ = ψ. Thus we show that there exists a

unique homomorphism ψ : F (A)/R→ G such that f = ψ ◦ π ◦ i.
Moreover, if G is generated by f(A), then imψ = G, since f(A) = ψ(π(i(A))) ⊂ imψ

implies G ⊂ imψ. ⌟
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