
IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023 1

ImMesh: An Immediate LiDAR Localization and Meshing Framework

Jiarong Lin˚, Chongjian Yuan˚, Yixi Cai, Haotian Li, Yunfan Ren, Yuying Zou, Xiaoping Hong, and Fu Zhang

Fig. 1: (a) shows the triangle mesh that is online reconstructed by our proposed work ImMesh, where the white path is our sampling trajectory,
and the yellow frustums are the estimated sensor pose. In (b), we use the estimated camera poses (the yellow frustums) of R3LIVE for
texturing the mesh with the collected images. Based on ImMesh, we developed a lossless texture reconstruction application, with one of our
results shown in (c). Our accompanying video that shows details of this work is available on YouTube: youtu.be/pzT2fMwz428.

Abstract—In this paper, we propose a novel LiDAR(-inertial)
odometry and mapping framework to achieve the goal of si-
multaneous localization and meshing in real-time. This pro-
posed framework termed ImMesh comprises four tightly-coupled
modules: receiver, localization, meshing, and broadcaster. The
localization module first utilizes the preprocessed sensor data
from the receiver, estimates the sensor pose online by register-
ing LiDAR scans to maps, and dynamically grows the map.
Then, our meshing module takes the registered LiDAR scan
for incrementally reconstructing the triangle mesh on the fly.
Finally, the real-time odometry, map, and mesh are published
via our broadcaster. The primary contribution of this work is
the meshing module, which represents a scene by an efficient
voxel structure, performs fast finding of voxels observed by new
scans, and incrementally reconstructs triangle facets in each
voxel. This voxel-wise meshing operation is delicately designed

Manuscript received February 5, 2023; revised July 23, 2023; accepted
September 18, 2023. This work is supported by the University Grants
Committee of Hong Kong General Research Fund (project number 17206421)
and DJI Donation. (Corresponding author: Fu Zhang.)

˚These two authors contribute equally to this work.
J. Lin, C. Yuan, Y. Cai and F. Zhang are with the Depart-

ment of Mechanical Engineering, The University of Hong Kong, Hong
Kong SAR, China. tjiarong.lin, ycj1, yixicai, haotianl,
renyf, zyycici, fuzhangu@connect.hku.hk

X. Hong are with the School of System Design and Intelligent Manufac-
turing, Southern University of Science and Technology, Shenzhen, People’s
Republic of China. thongxpu@sustech.edu.cn

for the purpose of efficiency; it first performs a dimension
reduction by projecting 3D points to a 2D local plane contained
in the voxel, and then executes the meshing operation with pull,
commit and push steps for incremental reconstruction of triangle
facets. To the best of our knowledge, this is the first work
in literature that can reconstruct online the triangle mesh of
large-scale scenes, just relying on a standard CPU without GPU
acceleration. To share our findings and make contributions to the
community, we make our code publicly available on our GitHub:
github.com/hku-mars/ImMesh.

Index Terms—Mapping, 3D reconstruction, SLAM

I. INTRODUCTION

RECENTLY, the wide emergence of 3D applications such
as metaverse [1, 2], VR/AR [3], video games, and

physical simulator [4, 5] has enriched human lifestyle and
boosted productive efficiency by providing a virtual envi-
ronment that resembles the real world. These applications
are built upon triangle meshes that represent the complex
geometry of real-world scenes. Triangle mesh is the collection
of vertices and triangle facets, which serves as a fundamental
tool for object modeling in most existing 3D applications.
It can not only significantly simplify the process and boost
the speed of rendering [6, 7] and ray-tracing [8], but also

https://youtu.be/pzT2fMwz428
https://github.com/hku-mars/ImMesh

2 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

play an irreplaceable role in collision detection [9, 10], rigid-
body dynamics [11, 12], dense mapping and surveying [13],
sensor simulation [14, 15], etc. However, most of the existing
mesh is manufactured by skillful 3D modelers with the help
of computer-aided design (CAD) software (e.g., Solidworks
[16], blender [17], etc.), which limits the mass production
of large-scene meshing. Hence, developing an efficient mesh
method that could reconstruct large scenes in real-time draws
increasing research interests and serves as a hot topic in the
community of 3D reconstruction.

Performing mesh reconstruction in real-time is particularly
important in practical usages. Firstly, online mesh recon-
struction makes data collection effective by providing a live
preview, which is essential to give users a reference. Especially
for non-expert users, a live preview can provide feedback about
which parts of the scene have already been reconstructed in
good quality and where additional data is needed. Secondly,
online mesh reconstruction can immediately output the mesh
of the scene once data collection is complete, saving addi-
tional post-processing time of offline mesh reconstruction and
boosting the productivity of mass production. Thirdly, it is par-
ticularly important for those real-time applications, especially
fully autonomous robotic applications. A real-time update of
mesh can provide better maps with denser representation and
higher accuracy, enabling the agent to navigate itself better.

Reconstructing the mesh of large scenes from sensor mea-
surements in real-time remains one of the most challenging
problems in computer graphics, 3D vision, and robotics, which
require reconstructing the surfaces of scenes with triangle
facets adjacently connected by edges. This challenging prob-
lem needs to build the geometry structure with very high
accuracy, and the triangle facet should be reconstructed on
surfaces that actually exist in the real world. Besides, a
good mesh reconstruction method should also suppress the
appearance of holes on the reconstructed surface and avoid the
reconstruction of triangle silver (i.e., the noodle-like triangles
with an acute shard angle). Real-time mesh reconstruction in
large scenes is even more challenging as it further requires the
reconstruction to operate efficiently and incrementally.

In this work, we propose a real-time mesh reconstruction
framework termed ImMesh to achieve the goal of simultaneous
localization and meshing on the fly. ImMesh is a well-
engineered system comprised of four tightly-coupled modules
delicately designed for efficiency and accuracy. Among them,
we implement a novel mesh reconstruction method in our
meshing module. Specifically, our meshing module first uti-
lizes the voxels for partitioning the 3D space and allows fast
finding of voxels that contain points of new scans. Then, the
voxel-wise 3D meshing problem is converted into a 2D one by
performing dimension reduction for efficient meshing. Finally,
the triangle facets are incrementally reconstructed with the
voxel-wise mesh pull, commit and push steps. To the best of
our knowledge, this is the first work in literature to reconstruct
the triangle mesh of large-scale scenes online with a standard
CPU. The main contributions of our work are:

‚ We propose ImMesh, a novel SLAM framework designed
to achieve simultaneous localization and mesh reconstruc-
tion using a LiDAR sensor. ImMesh is built upon our

previous work VoxelMap [18], and incorporates a novel
mesh reconstruction method. This proposed approach
can efficiently and incrementally reconstruct the mesh of
scenes online, achieving real-time performance in large-
scale scenarios on a standard desktop CPU.

‚ We comprehensively evaluated ImMesh’s runtime per-
formance and meshing accuracy using real-world and
synthetic data, by comparing our runtime performance
and meshing accuracy against existing baselines to assess
its effectiveness.

‚ We additionally demonstrate how real-time meshing can
be applied in potential applications by presenting two
practical examples: point cloud reinforcement and losless
texture reconstruction (see Fig. 1(b and c)).

‚ We make ImMesh publicly available on our GitHub:
github.com/hku-mars/ImMesh for sharing our
findings and making contributions to the community,

II. RELATED WORKS

In this section, we discuss the related works of mesh
reconstruction based on 3D point clouds, which are closely
related to this work. Depending on whether the reconstruction
processes can perform online, we categorize existing mesh
reconstruction methods into two classes: offline methods and
online methods.

A. Offline mesh reconstruction

The offline methods usually require a global map in prior,
for example, the full registered point cloud of the scene.
Then, a global mesh reconstruction process is used to build
the mesh. In this category, the most notable works include:
methods based on Poisson surface reconstruction (Poisson-
based), and methods based on Delaunay tetrahedralization
(i.e., 3D Delaunay triangulation) and graph cut (Delaunay-
based).

1) Poisson surface reconstruction (Poisson-based): Given
a set of 3D points with oriented normals that are sampled
on the surface of a 3D model, the basic idea of Poisson
surface reconstruction [19, 20] is to cast the problem of mesh
reconstruction as an optimization problem, which solves for
an approximate indicator function of the inferred solid whose
gradient best matches the input normals. Then, the continuous
isosurface (i.e., the triangle mesh) is extracted from the indica-
tor function using the method [21, 22], similar to adaptations
of the Marching Cubes [23] with octree representations.

Benefiting from this implicit representation, where the mesh
is extracted from the indicator function instead of being
estimated directly, Poisson surface reconstruction can produce
a watertight manifold mesh and is resilient to scanner noise,
misalignment, and missing data. Hence, in the communities of
graphics and vision, these types of methods [19, 20, 24] have
been widely used for reconstructing the mesh from given 3D
scanned data.

2) Delaunay triangulation and graph cut (Delaunay-
based): In the category of offline mesh reconstruction meth-
ods, approaches [25]–[27] based on Delaunay tetrahedraliza-
tion and graph cut have also been widely used for generating

https://github.com/hku-mars/ImMesh

3

the mesh, relying on the reconstructed 3D point cloud and the
sensor’s poses. The basic idea of this class of methods is first
to build a tetrahedral decomposition of 3D space by computing
the 3D Delaunay triangulation of the 3D point set. Then, the
Delaunay tetrahedra were labeled as two classes (i.e., “inside”
or “outside”) with the globally optimal label assignment (i.e.,
the graph cut). Finally, the triangle mesh can be extracted as
the interface between these two classes.

Besides these two classes of methods, there are other offline
mesh reconstruction methods, such as the ball-pivoting algo-
rithm [28]. This algorithm works by pivoting a ball of fixed
radius around each point in the point cloud and constructing a
triangle whenever three balls overlap. [29] involves extracting
the curve skeleton using Laplacian-based contraction, and then
reconstructing the surface with the skeleton-assisted topology.
However, these methods are often not the first choice due to
various limitations such as robustness, accuracy, and efficiency
when compared to Poisson- and Delaunay-based methods [30].

Unlike these offline mesh reconstruction methods, our pro-
posed work ImMesh can perform online in an incremental
manner without the complete point cloud of the scene. Besides,
ImMesh also achieves a satisfactory meshing accuracy that
is higher than Poisson-based methods and slightly lower
than Delaunay-based methods (see our experimental results
in Section VIII-C).

B. Online mesh reconstruction
1) Voxel volume-based methods (TSDF-based): The online

mesh reconstruction method is predominated by TSDF-based
methods, which represent the scene in a voxel volumetric
theme. These methods implicitly reconstruct the mesh in a
two-step pipeline, which first establishes the truncated signed
distance to the closest surface of voxels, then extracts the
continuous triangle mesh by leveraging the Marching Cubes
algorithm [23] from volumes. TSDF-based methods are pop-
ularized by KinectFusion [31], with many follow-up works
focused on scaling this approach to larger scenes [32, 33],
adding multi-resolution capability [34, 35], and improving
efficiency [36]–[38]. Since these classes of methods can be
easily implemented with parallelism, they can achieve real-
time performance with the acceleration of GPUs.

Compared to these methods, our work ImMesh shows
several advantages: Firstly, in ImMesh, the triangle mesh is
directly reconstructed from the point cloud in one step, while
for TSDF-based methods, the mesh is implicitly built in a two-
step pipeline (i.e., SDF update followed by a mesh extraction).
Secondly, ImMesh can output the mesh in scan rate (i.e.,
sensor sampling rate), while the mesh extraction of TSDF-
based methods is usually at a lower rate. Thirdly, ImMesh
achieves real-time performance by running on a standard
CPU, while TSDF-based methods need GPU acceleration for
real-time SDF updates. Lastly, TSDF-based methods require
adequate observation for the calculation of the SDF of each
voxel w.r.t. the closest surface, which needs the data to be
sampled by a depth sensor of high resolution and moving at a
low speed. On the contrary, our work exploits high-accuracy
LiDAR points for meshing and is robust to points data of low
density.

2) Surfel-based mesh reconstruction: Besides TSDF-based
methods, another popular approach is representing the scene
with a set of points or surfels (e.g., oriented discs). For
example, in work [33, 39, 40], the maps are reconstructed with
point-based representation, and its “surface” is rendered with
the approaches of “point-based rendering” that originated from
the communities of computer graphics [41]–[43]. Besides,
in work [44], the high-quality map is reconstructed with
surfel-based representations (i.e., use patches). Such forms of
mapping representation are popularized in works [45]–[48]. To
reconstruct a dense map, these classes of methods need a large
number of points or tiny patches to represent the surface of the
models, which is an inefficient representation with high usage
of system memory and computation resources. In contrast, our
work reconstructs the surface of models with triangle mesh,
which uses triangle facets of proper size adjacently connected
by edges. It is the most efficient solid-model representation
that has been widely adopted in most modern 3D software.

Compared with the works reviewed above, our proposed
work is in a class by itself, which contains the following
advantages:

‚ It is an online mesh reconstruction method that recon-
structs the triangle mesh in an incremental manner. It
can achieve real-time performance in large-scale scenes
(e.g., traveling length reaches 7.5 km) by just running on
a standard desktop CPU.

‚ It explicitly reconstructs the triangle mesh by directly
taking the registered LiDAR points as meshing vertices,
performing the voxel-wise meshing operation as each new
LiDAR scan is registered.

‚ It is delicately designed for the purpose of efficiency
and achieves satisfactory meshing precision comparable
to existing high-accuracy offline methods.

III. SYSTEM OVERVIEW

Fig. 2 depicts the overview of our proposed system (Im-
Mesh), which consists of a map structure and four modules
that work jointly to achieve the goal of simultaneous localiza-
tion and meshing in real-time. As shown in Fig. 2, from left
to right are: receiver (in red), localization (in orange), map
structure (in green), meshing (in blue) and broadcaster (in
purple).

In the rest sections, we will first introduce our map struc-
tures in Section IV, showing the detail of the data structures
used in other modules. Next, we will introduce our receiver
and localization module in Section V. Then, we will present
how our meshing modules work in Section VI. Finally, in
Section VII, we will introduce the broadcaster module, which
publishes the localization and meshing results to other appli-
cations.

IV. MAP STRUCTURE

As shown by the map structure (in green) in Fig. 2, we
designed four data types, including mesh vertices, triangle
facets, regions, and voxels, as well as two data structures:
a hash table for efficient data lookup and an incremental

4 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

Fig. 2: This figure shows the overview of our proposed work ImMesh, which utilizes the raw input sensor data to achieve the goal of
simultaneous localization and meshing. It is constituted by four tightly-coupled modules and a map structure, from left (input) to right
(output) are: receiver (in red), localization (in orange), map structure (in green), meshing (in blue) and broadcaster (in purple).

kd-tree (ikd-tree) for k nearest neighbors (kNN) search and
downsampling.

The relationship among these map structures is depicted
in Fig. 3, where we partition the 3D space into two types of
volumetric grids: regions and voxels. Triangle facets are stored
inside the regions containing them and are also indexed in
a global hash table of triangle facets, and mesh vertices are
stored inside the voxels containing them and are also indexed
in a global list of vertices. Additionally, we maintain two hash
tables to facilitate the efficient lookup of regions and voxels.

A. Data types: Region, voxel, triangle facet, and mesh vertex

1) Region R: Region have a much larger size SR (e.g.,
SR “ 10.0 m) compared to voxel’s size SO (e.g., SO “

0.4 m). They contain triangle facets whose centers are located
inside, allowing for the broadcaster to asynchronously copy
these triangle facets. Additionally, each region has a status flag
fR to identify its syncing status, which can be either Sync-
required or Synced. This status indicates the update flag related
to the data synchronization of triangle facets.

2) Voxel O: Voxels enable the meshing module to ef-
ficiently retrieve all in-voxel mesh vertices for voxel-wise
meshing operations. Each voxel Oi also has a status flag fO
indicating whether it has new points appended. Specifically,
Oi is marked as Activated if new mesh vertices are registered
from the latest LiDAR scan. The Activated flag is reset to
Deactivated after the voxel-wise meshing operation has been
performed on this voxel.

3) Triangle facet T: In our work, triangle facets are stored
in regions. A triangle facet describes a small surface that
exists in the reconstructed scene. It is maintained online by
our meshing module and is asynchronously copied to the
broadcaster module for publishing. For a triangle facet T, it
is constituted by the following elements: 1) The sorted indices
Pts idpTq of three mesh vertices that form this triangle:
Pts idpTq “ ti, j, ku, i ă j ă k. 2) The center CenterpTq
and normal NormpTq (both in the global reference frame) of
this facet.

4) Mesh vertex V: In ImMesh, mesh vertices are the points
that constitute the geometric structure (shape) of mesh. For
the i-th vertex Vi, it contains the following elements: 1)
The unique index (id) of this vertex IdpViq in the global
list containing all the vertices in the map. 2) Its 3D position
PospViq P R3 in the global frame. 3) The list Tri listpViq

of triangles facets whose vertices contain Vi.

B. Data structure: Hash tables and Incremental kd-Tree (ikd-
Tree)

In our work, we leverage a global list for accessing mesh
vertices by indices. Besides, we employ two data structures
(i.e., hash tables and incremental kd-tree (ikd-Tree)) for effi-
ciently managing our four data types. Specifically, we leverage
the hash tables for efficient lookup of regions, voxels, and
triangle facets, and maintain an ikd-Tree to enable the fast
kNN search of mesh vertices.

1) Hash tables: To facilitate efficient lookup of the data
types (i.e., regions, voxels, and triangle facets), and avoid
excessive memory consumption from allocating regular data

5

World
Hierachical

 voxels
Hash
table

L3-Voxel
O3

Mesh
vertices

etc.
L3-Voxel

O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.
L2-Voxel

O2

Trianlge
facets

etc.

Octree

Higher level
Voxel O4+

Hierarchical
voxels

L3-Voxel
O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.

Octree

Higher level
Voxel O4+

Hierarchical
voxels

Hierachical
 voxels

Higher level
Voxel O3+

Mesh
vertices

etc.
Higher level

Voxel O3+

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.
L2-Voxel

O2

Trianlge
facets

etc.

Octotree

Higher level
Voxel O3+

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.

Octotree

World
Hierachical

 voxels
Hash
table

L3-Voxel
O3

Mesh
vertices

etc.
L3-Voxel

O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.
L2-Voxel

O2

Trianlge
facets

etc.

Octree

Higher level
Voxel O4+

Hierarchical
voxels

L3-Voxel
O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.

Octree

Higher level
Voxel O4+

Hierarchical
voxels

Hash
table
Hash
table

Hash table
of voxels

··· ······ ···

··· ······ ··· ······

Hash table
of regions

Voxel

Mesh
vertices

Trianlge
facets

Trianlge
facets

Mesh
vertices

Mesh vertices

V1 V2 Vi···V1 V2 Vi···
Mesh vertices

V1 V2 Vi···

Mesh vertices
V1 V2 Vi···V1 V2 Vi···

Mesh vertices
V1 V2 Vi···

L3-Voxel
O3

Mesh
vertices

etc.
L3-Voxel

O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.
L2-Voxel

O2

Trianlge
facets

etc.

Octree

Higher level
Voxel O4+

Hierarchical
voxels

L3-Voxel
O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.

Octree

Higher level
Voxel O4+

Hierarchical
voxels

··
·

··
·

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts

Region

Triangle facets
T1 T2 Tj···T1 T2 Tj···
Triangle facets

T1 T2 Tj···

Region

Triangle facets
T1 T2 Tj···

··· ······ ··· ······

Hash table
of voxels

··· ······ ···

Hash table
of regions

Voxel

Mesh vertices
V1 V2 Vi···V1 V2 Vi···

Mesh vertices
V1 V2 Vi···

··
·

··
·

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts

Region

Triangle facets
T1 T2 Tj···T1 T2 Tj···
Triangle facets

T1 T2 Tj···

Region

Triangle facets
T1 T2 Tj······ ······ ··· ······

Hash table
of voxels

··· ······ ···

Hash table
of regions

Voxel

··
·

··
·

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts

RegionRegion

··· ······ ··· ······
Triangle facetsTriangle facets

Ti··· ···Ti··· ···
Triangle facets

Ti··· ···

Mesh vertices

Vj··· ···Vj··· ···

Hash table
of voxels ΞO

··· ······ ···

··· ······ ··· ······

RegionRegion

Triangle facetsTriangle facets

Ti··· ···Ti··· ···
Triangle facets

Ti··· ···

Region

Triangle facets

Ti··· ···

Voxel Ok

Mesh vertices
Vk··· ···Vk··· ···

Mesh vertices
Vk··· ···

Status flag fOStatus flag fO

(Activated / Deactivated)

Status flag fO

(Activated / Deactivated)

Voxel Ok

Mesh vertices
Vk··· ···

Status flag fO

(Activated / Deactivated)

Region Ri

Triangle facets
Ti··· ···Ti··· ···

Triangle facets
Ti··· ···

Status flag fRStatus flag fR

(Sync-required / Synced)

Status flag fR

(Sync-required / Synced)

Region Ri

Triangle facets
Ti··· ···

Status flag fR

(Sync-required / Synced)

··
·

··
·

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts
 Ξ

T

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts
 Ξ

T

RiRj

Ξ ξ HH

Hash table
of regions ΞR

Ξ ξ H
HR

 O(Ri) O(Ri)

 T(Ti) T(Ti)

3
D

 s
p

ac
e

i

k

SRSR

SOSO OkOk

Hash table
of voxels ΞO

··· ······ ···

··· ······ ··· ······

Voxel Ok

Mesh vertices
Vk··· ···Vk··· ···

Mesh vertices
Vk··· ···

Status flag fOStatus flag fO

(Activated / Deactivated)

Status flag fO

(Activated / Deactivated)

Voxel Ok

Mesh vertices
Vk··· ···

Status flag fO

(Activated / Deactivated)

Region Ri

Triangle facets
Ti··· ···Ti··· ···

Triangle facets
Ti··· ···

Status flag fRStatus flag fR

(Sync-required / Synced)

Status flag fR

(Sync-required / Synced)

Region Ri

Triangle facets
Ti··· ···

Status flag fR

(Sync-required / Synced)

··
·

··
·

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts
 Ξ

T

··
·

··
·

H
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts
 Ξ

T

RiRj

Hash table
of regions ΞR

 T(Ti) T(Ti)

3
D

 s
p

ac
e

i

k

SRSR

SOSO OkOk

Global hash table
of voxels ΞO

··· ······ ···

··· ······ ··· ······

Voxel Ok

Mesh vertices in the voxel

Vn··· ···Vn··· ···
Mesh vertices in the voxel

Vn··· ···

Status flag fOStatus flag fO

(Activated / Deactivated)

Status flag fO

(Activated / Deactivated)

Voxel Ok

Mesh vertices in the voxel

Vn··· ···

Status flag fO

(Activated / Deactivated)

Region Ri

Triangle facets in the region

Tm··· ···Tm··· ···
Triangle facets in the region

Tm··· ···

Status flag fRStatus flag fR

(Sync-required / Synced)

Status flag fR

(Sync-required / Synced)

Region Ri

Triangle facets in the region

Tm··· ···

Status flag fR

(Sync-required / Synced)
RiRj

Global hash table
of regions ΞR

3
D

 s
p

ac
e

i

k

SRSR

SOSO OkOk

G
lo

b
al

 li
st

 o
f

ve
rt

ic
e

s
G

lo
b

al
 li

st
 o

f
ve

rt
ic

e
s

··
·

··
·

··
·

··
·

G
lo

b
al

 h
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts
 Ξ

T

··
·

··
·

G
lo

b
al

 h
as

h
 t

ab
le

 o
f

tr
ia

n
gl

e
 f

ac
e

ts
 Ξ

T

··
·

··
·

··
·

··
·

 T(Tm) T(Tm)

n-th

(n-1)-th

(n+1)-th

n-th

(n-1)-th

(n+1)-th

Fig. 3: In ImMesh, we partition the 3D space into two types of volumetric grids: regions and voxels. Triangle facets are stored inside the
regions, and mesh vertices are stored inside the voxels. Additionally, we maintain three hash tables to facilitate efficient lookup of these data
types.

structures in continuous memory space, we employ a spatial
hashing scheme. This scheme allows us to compactly store,
access, and update the data structure by mapping them into a
hash table using appropriate hash functions, as illustrated in
Fig. 3.

Given a 3D vector p “ rx, y, zsT P R3, its correspond-
ing hash key Hppq is calculated via the 3D hash function
Hashpx, y, zq, shown as below:

Hppq “ Hashpx, y, zq “ Int Hashpxi, yi, ziq (1)
“ Modppxi ¨ p1q ‘ pyi ¨ p2q ‘ pzi ¨ p3q, nq (2)

xi “ Roundpx ˚ 100{Sq, yi “ Roundpy ˚ 100{Sq

zi “ Roundpz ˚ 100{Sq
(3)

where xi, yi, zi are the corresponding integer-rounded coordi-
nates, S is size of a region (i.e., SR) or voxel (i.e., SO), ‘ is
the XOR operation, and function Modpa, bq is the calculation
of integer a modulus another integer b. p1, p2, p3 are three
large prime numbers for reducing the collision probability
[33, 49], n is the hash table size. In our work, we set the value
of p1, p2, p3 and n as 116101, 37199, 93911 and 201326611,
respectively.

In our map structure, we maintain three independent hash
tables for regions, voxels, and triangle facets, denoted as: ΞR,
ΞO, and ΞT, respectively. For a region Ri, a voxel Oj , and
a triangle facet Tk, they are mapped to hash tables (i.e., ΞR,
ΞO, and ΞT) through the hash keys HRpRiq, HOpOjq, and
HTpTkq are calculated as below:

R ÞÑ ΞR : HRpRiq “Hppiq, pi P R3 (4)

O ÞÑ ΞO : HOpOjq “Hppjq, pj P R3 (5)
T ÞÑ ΞT : HTpTkq “ Int HashpPts idpTkqq (6)

where pi (and pj) can be any point that located inside region
Ri (and voxel Oj). The hash function HRp¨q in (4) and HRp¨q

in (5) are distinguished with different container’s size S in (3).

Besides, we use function Ψp¨q to denote the retrieval of Ri,
Oj , and Tk from the hash tables, shown as follows:

R Ð[ΞR : Ri “ ΨpΞR,HRpRiqq (7)
O Ð[ΞO : Oj “ ΨpΞO,HOpOjqq (8)
T Ð [ΞT : Tk “ ΨpΞT,HTpTkqq (9)

Notice that the hash table is unstructured, indicating that
neighboring regions (or voxels) are not stored spatially but in
different parts of the buckets, as illustrated by two neighboring
regions Ri and Rj in Fig. 3.

Lastly, for resolving the possible hash collision (i.e., two
pieces of data in a hash table share the same hash value),
we adopt the technique in [33], using the implementation of
unordered map container [50] in C++ standard library (std)
[51].

2) Incremental kd-Tree (ikd-Tree): We maintain an incre-
mental kd-tree to enable the fast kNN search of mesh vertices.
The ikd-Tree is proposed in our previous work [52, 53],
which is an efficient dynamic space partition data structure
for fast kNN search. Unlike existing static kd-trees (e.g., kd-
tree implemented in PCL [54] and FLANN [55]) that require
rebuilding the entire tree at each update, ikd-Tree achieves
lower computation time by updating the tree with newly
coming points in an incremental manner. In ImMesh, we use
the ikd-Tree for: 1) ensuring that the distance between any
two mesh vertices remains larger than the minimum value ξ,
thereby maintaining the triangle mesh at a proper resolution.
2) enabling the vertex dilation operation in our voxel-wise
meshing operation to erode the gaps between neighbor voxels.

V. RECEIVER AND LOCALIZATION

The receiver module is designed for processing and packag-
ing the input sensor data. As shown in the red box of Fig. 2,
our receiver module receives the streaming of LiDAR data
from live or offline recorded files, processes the data to a uni-
fied data format (i.e., customized point cloud data) that make

6 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

ImMesh compatible with LiDARs of different manufacturers,
scanning mechanisms (i.e., mechanical spinning, solid-state)
and point cloud density (e.g., 64-, 32-, 16-lines, etc.). Besides,
if the IMU source is available, our input module will also
package the IMU measurements within a LiDAR frame by
referring to the sampling time.

The localization module utilizes the input data stream of
receiver module, reuses the voxels for estimating the sensor
poses of 6 DoF by registering the points to planes in voxels in
real-time. Our localization module is built upon our previous
work VoxelMap [18], which represents the environment with
the probabilistic planes and estimating pose with an iterated
Kalman filter.

A. Voxel map construction

Our localization is built by representing the environment
with probabilistic planes, which accounts for both LiDAR
measurement noises and sensor pose estimation errors, and
constructs the voxel-volumetric maps in a coarse-to-fine adap-
tive resolution manner. Since the main focus of this work is
on meshing, we only discuss those processes in localization
module that are closely related to our meshing module. For
the detailed modeling and analysis of LiDAR’s measurement
noise and sensor estimation errors, we recommend our readers
to our previous work VoxelMap [18].

For each LiDAR point, we first compensate the in-frame
motion distortion with an IMU backward propagation intro-
duced in [52]. Denoting Lpi the i-th LiDAR point after motion
compensation, it is registered to the world frame as Wpi with
the estimated sensor pose pWL R,WL tq P SEp3q:

Wpi “
W
L RLpi `

W
L t (10)

The registered LiDAR point Wpi is stored inside the voxels.
Given all points Wpi pi “ 1, ..., Nq inside a voxel O, the
points covariance matrix A is

p̄ “
1

N

N
ÿ

i“1

Wpi, A “
1

N

N
ÿ

i“1

`

Wpi ´ p̄
˘ `

Wpi ´ p̄
˘T

(11)

where the symmetric matrix A depicted the distribution of pall
oints. Perform the eigenvalue decomposition of matrix A:

AU “

»

–

λ1
λ2

λ3

fi

fl

“

u1 u2 u3

‰

, λ1 ě λ2 ě λ3 (12)

where λ1, λ2, λ3 are the eigenvalues and u1,u2,u3 are the
correspondent eigenvectors. In our meshing module, we use
these calculated eigenvectors of voxel O for performing the
dimension reduction through projection, as we will discuss in
Section VI-D.

In our localization module, voxel O might be subdivided
into smaller sub-voxels to construct possible planar features
at finer resolutions for robust localization in unstructured
environments. Then, the sensor pose pWL R,WL tq is estimated
by minimizing the point-to-plane residual. While this paper
primarily focuses on our mesh reconstruction method, we
refer readers to our previous work [18] for more details on
the implementation of our localization module, including the
voxel subdivision and state estimation.

B. Point cloud registration

With the estimated sensor pose pWL R,WL tq, we perform the
point cloud registration for transforming each measurement
point Lpi from the LiDAR frame to the global frame (i.e.,
the first LiDAR frame) with (10). This registered point cloud
is then used for: 1) publishing to other applications with our
broadcaster. 2) updating the voxel map (detailed in [18]). 3)
appending to map structure that serves as the mesh vertices
for shaping the geometry structure of our online reconstructed
triangle mesh.

If a new registered point does not lie on an existing voxel
O (or region R), a new voxel (or region) will be created and
added to the hash table ΞO (or ΞR). Subsequently, the newly
registered point will be included in the newly constructed
voxel.

1) Append of mesh vertices: The registered LiDAR points
are also used for forming the meshing vertices in map struc-
ture. To be detailed, we first leverage a voxel-grid filter to
downsample the newly registered LiDAR point cloud. Then,
to avoid the appearance of tiny triangles in reconstructing
the mesh, we leverage the ikd-Tree for keeping the minimum
distance ξ between any of two meshing vertices. That is, for
each register LiDAR point Wpi in the global frame, we search
for the nearest mesh vertex in map structure with ikd-Tree. If
the Euclidean distance between this point and the searched
vertex is smaller than ξ, we will discard this point. Otherwise,
this point will be used for: 1) constructing a new mesh vertex
Vi, where i is the unique index indicating that Vi is the i-th
appended vertex. 2) adding the vertex Vi to the ikd-Tree. 3)
pushing back Vi to the vertex array of the voxel Oj that Vi

lies in. After, the status flag fOj
of Oj is set as activated for

notifying the meshing module for performing the voxel-wise
meshing operation.

VI. MESHING

In ImMesh, our meshing module takes the registered LiDAR
scan for incrementally reconstructing the triangle mesh on the
fly. We explicitly reconstruct the triangle mesh by directly
utilizing 3D registered LiDAR points as mesh vertices enabled
by two facts of LiDAR sensors: 1) The points sampled by
LiDAR and registered via the LiDAR odometry and mapping
[18] have very high positional accuracy. Hence, they can
accurately shape the geometric structure of the mesh. 2) A
LiDAR measurement point naturally lies on the surface of the
detected object, with two other points in the same plane that
can form a triangle facet to represent its underlying surface.

A. Goals and requirements

With the accurate mesh vertices appended from the point
cloud registration in Section V-B, the problem of online mesh
reconstruction is converted to another goal, which is to seek
a proper way of real-time reconstructing the triangle facets
with a growing 3D point set. This new problem is barely
researched to date. Given a set of growing 3D points, our
meshing module is designed to incrementally reconstruct the
triangle facets considering the following four requirements:

7

Firstly, precision is our primary consideration. For each
reconstructed triangle facet representing the surface of the
scene, we require it to lie on an existing plane.

Secondly, the reconstructed mesh should be hole-less. In
the dense reconstruction of the surface triangle mesh, the
appearance of holes is unacceptable since they lead to the
wrong rendering results, where surfaces behind a real object
are rendered.

Thirdly, the reconstruction of triangle mesh should avoid
constructing sliver triangles. A sliver triangle (i.e., the noodle-
like triangle), as defined in the communities of computer
graphics [56], is a thin triangle whose area is nearly zero,
an undesired property in the field of computer graphics. For
example, these noodle-like triangles would cause some errors
in the numerical analysis on them [57]. Besides, these unfa-
vorable properties cause troubles in the pipelines of rendering
(e.g., rasterization, texturing, and anti-aliasing [6, 7, 58]),
which leads to the loss of accuracy in calculating (e.g., depth
testing, interpolation, etc.) the pixel values distributed near the
sharp angle [7, 59, 60].

Lastly, the complexity of triangle mesh reconstruction
should be computationally efficient to meet the requirement of
real-time applications. The time consumption of each meshing
process should not exceed the sampling duration of two
consecutive LiDAR frames.

B. Challenges and approaches

To achieve our goals of dense incremental meshing with
the four requirements listed above, our system is proposed
based on a deep analysis of the challenges. The challenges
and corresponding scientific approaches are briefed below:

The first challenge is that the global map is continuously
grown by the newly registered LiDAR points, with each update
of a LiDAR scan only affecting parts of the scene. Hence,
an incremental mesh reconstruction method should be able to
process only those parts of the scene with new points. In our
work, we incrementally perform the mesh reconstruction with
a mechanism similar to git [61]. For each incremental mesh
update, we first retrieve the data of the voxels with new mesh
vertices appended via the pull step (detailed in Section VI-E1).
Then, an efficient voxel-wise meshing algorithm is executed to
reconstruct the mesh with these data. The incremental mod-
ifications of newly reconstructed results w.r.t. pulled results
are calculated in our commit step (detailed in Section VI-E2).
Finally, these incremental modifications are merged to the
global map via our push step (detailed in Section VI-E3).

Given a set of 3D vertices, the second challenge is how
to correctly and efficiently reconstruct the triangle facets
representing the surfaces of the scene. Since it is hard to
directly reconstruct mesh from these mesh vertices in 3D
space, our work performs the meshing operation in 2D. To
be detailed, for vertices located in a voxel O, we first project
them into a proper plane (i.e., the estimated plane given by
the localization module). The mesh of these 2D points is
constructed using the 2D meshing algorithms and is recovered
back to 3D (detailed in Section VI-D2).

Fig. 4: The comparisons of mesh reconstruction with (a) and without
(b) the vertex dilation.

C. Voxel-wise vertex retrieval

1) Retrieval of in-voxel vertices: To reconstruct the triangle
mesh incrementally, the first step is to retrieve the vertices
that need to mesh with the newly added points. ImMesh uses
voxels for dividing the 3D space, and uses the flag fO of each
voxel O for identifying whether O has newly appended mesh
vertices (i.e., activated voxel).

Take an activated voxel Oi as an example. We perform a
voxel-wise meshing operation to reconstruct the triangle facets
with all in-voxel vertices. For all vertices inside the voxel Oi,
we denote them as VIn

i “ tVj1 ,Vj2 , ...,Vjmu.
2) Vertex dilation: In practice, if we perform the meshing

operation with only the in-voxel mesh vertices, the gaps
between neighborhood voxels will appear due to the absence of
triangles facets across voxels, as shown in Fig. 4(b). Motivated
by morphological operations (e.g., dilation and erosion) in
digital image processing [62], we perform the 3D point cloud
dilation for adding neighborhood points of VIn

i to erode the
gaps between voxels, as shown in Fig. 4(a).

For vertex Vij P VIn
i , we perform the radius-search

operation by leveraging the ikd-Tree [53] for searching the
nearest vertices of Vij with their Euclidean distance smaller
than a given value dr (usually set as 1{4 of the size of a voxel).
Using Ṽij to denote the searched neighbor vertices of Vij ,
we have:

@V P Ṽij ,
ˇ

ˇ|PospVq ´ PospVij q
ˇ

ˇ | ď dr. (13)

We enumerate each Vij P V
In
i and union the corresponding

Ṽij into Vi (excluding duplicated vertices), which is the set
of dilated vertices. The full algorithm of our voxel-wise vertex
retrieval is shown in Algorithm 1.

8 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

Algorithm 1: Voxel-wise vertex retrieval of Oi

Input : The activated voxel Oi

Output: The retrieved vertex set Vi

Start : Copy all in-voxel pointer list to VIn
i .

Vi “ VIn
i .

1 foreach Vij P VIn
i do

2 Ṽij = RadiusSearch(Vij ,dr)
3 foreach V P Ṽij do
4 if V R Vi then
5 Vi “ Vi YV

Return: The retrived vertex set Vi after dilation

D. Dimension reduction through projection
With the mesh vertices Vi retrieved from Algorithm 1, we

introduce the voxel-wise mesh reconstruction.
1) Projection of 3D vertices on a 2D plane: Since it is hard

to directly mesh in real-time with Vi, which is distributed in
3D space, we simplify the 3D meshing problem into a 2D
one by projecting Vi on a suitable plane. This dimension
reduction by projection is inspired by two key observations:
1) Every LiDAR point can be viewed as lying on a small
local surface around it. Hence, for vertices Vi retrieved from
Algorithm 1 that are distributed in a small area (i.e., inside a
voxel Oi), they tend to form a planar-like point cluster. 2) For
these planar-like point clusters, we can approximately mesh
them in a 2D view on their lying surface. To preserve the
3D space spanned by Vi to the best extent, the plane pn,qq
suitable for projection should be formed by the two principal
components of Vi, which is essentially the plane fitted from
Vi and has already been calculated in our localization module
in Section V-A. The norm n of the plane is the eigenvector
u3 that corresponds to the minimum eigenvalue λ3 in (12),
which is the eigendecomposition of point covariance matrix
A in voxel Oi. q is the center points inside Oi.

For each vertex Vij P Vi, we project it to plane pn,qq.
The resultant 2D point pij is calculated as:

pij “ rφ, ρs
T
P R2 (14)

φ “
`

PospVij q ´ q
˘T

u1, ρ “
`

PospVij q ´ q
˘T

u2 (15)

where u1,u2 are the other two eigenvectors in (12). We use
Pi “ tpi1 ,pi2 , ...,pimu to denote the 2D point set after
projected onto the plane.

2) Two-dimensional Delaunay triangulation: After the pro-
jection, the dimension of 3D meshing problem is reduced to
a 2D one, which can be solved by 2D Delaunay triangulation.

As introduced in [63, 64], a Delaunay triangulation DelpPq
for a 2D point set P “ tp1,p2, ...,pmu is a triangulation
such that no point in P is inside the circumcircle of any
triangle. Using T “ DelpPq to denote the triangle facets after
triangulation, T has the following properties: 1) Any of two
facets are either disjoint or share a lower dimensional face (i.e.,
edge or point). 2) The set of facets in T is connected with
adjacency relation. 3) The domain PT , which is the union
of facets in T , has no singularity1. With these three useful

1The union UT of all simplices in T is called the domain of T . A
point in the domain of T is said to be singular if its surrounding in PT
is neither a topological ball nor a topological disc (view https://doc.cgal.org/
latest/Triangulation 2/index.html of [63] for detail).

3
D

 m
e

sh
in

g

3
D

 m
e

sh
in

g

Fig. 5: In ImMesh, we reduce the 3D meshing problem to a 2D one
by projecting the 3D vertices onto their principal plane.

properties, the 2D Delaunay triangulation has been widely
applied for reconstructing dense facets with a given 2D point
set (e.g., [65]).

Considering our requirements in Section VI-A, we chose
Delaunay triangulation to reconstruct the mesh for its remark-
able properties as follows. Firstly, it is a 2D triangulation
providing mesh with no hole left in the convex hull of P ,
which satisfies our first requirement. Secondly, it naturally
avoids sliver triangles by maximizing the minimum angles
of the triangles in triangulation, which meets our second
requirement. Finally, it is a fast algorithm suitable for real-
time requirements. The algorithm complexity of n points is
Opnlogpnqq in 2D (p.s. Opn2q in 3D) [66].

Denote the triangle facets after the Delaunay triangula-
tion of Pi (from Section VI-D) as T i “ DelpPiq “
tTi1 ,Ti2 , ...,Tinu. For each triangle facets Tij P T i, we
retrieve the indices of its three vertices with: tα, β, γu “
Pts idpTij q, indicating that this triangle is formed with
2D points tpiα ,piβ ,piγ u. Returning back to 3D space, we
constitute a triangle facet Tij with vertices tViα ,Viβ ,Viγ u,
as shown in Fig. 5. Then, the center CenterpTij q and norm
NormpTij q of Tij are calculated as below:

CenterpTij q “
`

PospViαq ` PospViβ q ` PospViγ q
˘

{3 (16)
NormpTij q “ n{p||n||q (17)

n “ pPospViαq ´ PospViβ qq ˆ
`

PospViγ q ´ PospViβ q
˘

(18)

Additionally, to ensure proper face orientation for identify-
ing the front-back face, which is crucial for various computer
graphics applications such as front-back face culling, lighting,
and shading, we adjust the normal of Tij to make it always
face towards the current LiDAR position by:

If : ppWL t´ CenterpTij qq
T NormpTij q ă 0 (19)

Then : NormpTij q “ ´NormpTij q (20)

where W
L t is the LiDAR position of current scan, which

is estimated in our localization module. Furthermore, if the
normal is flipped in (20), we will change the indices of Tij

from tα, β, γu to tβ, α, γu when publishing this facet in our
broadcaster, which is necessary to ensure the correct normal
orientation in certain rendering engines (e.g., in [67]).

https://doc.cgal.org/latest/Triangulation_2/index.html
https://doc.cgal.org/latest/Triangulation_2/index.html
https://doc.cgal.org/latest/Triangulation_2/index.html
https://doc.cgal.org/latest/Triangulation_2/index.html

9

E. Voxel-wise meshing with pull, commit, and push

With the triangle facets T i newly constructed by the voxel-
wise meshing operation, we incrementally merge T i to the
existing triangle facets in the voxel currently saved in map
structure. This update is designed with a mechanism similar to
git [61] (a version control software) that includes pull, commit,
and push steps.

1) Pull: The pull operation aims to retrieve existing triangle
facets T Pull

i in the i-th L2 voxel. Given vertices Vi in the
voxel, which is obtained from Algorithm 1, we retrieve the
triangle facets T Pull

i from the map structure as shown in
Algorithm 2.

Algorithm 2: Voxel-wise mesh pull.
Input : The retrieved vertex set Vi from Algorithm 1
Output: Existing triangles facets in the voxel T Pull

i

Start : T Pull
i “ tnullu

1 foreach Vj P Vi do
2 Get triangles having vertex Vj : T Vj “ Tri ListpVjq

foreach Tk P T Vj do
3 Get all vertices of Tk: tα, β, γu “ Pts idpTkq

4 if pVα P Viq and pVβ P Viq and pVγ P Viq then
5 T Pull

i “ T Pull
i YTk

Return: T Pull
i

2) Commit: In this step, we incrementally update the newly
reconstructed triangle facets T i (in Section VI-D2) to the
existing facets T Pull

i (from Algorithm 2). These incremental
updates are summarized into an array of mesh facets to be
added T Add

i and an array of mesh facets to be erased T Erase
i .

The detailed processes of this commit step are shown in
Algorithm 3.

Algorithm 3: Voxel-wise mesh commit.
Input : The pulled triangle facets T Pull

i from Algorithm 2
The reconstructed triangle facets T i

Output: The triangle facets to be added T Add
i .

The triangle facets to be erased T Erase
i .

Start : T Add
i “ tnullu, T Erase

i “ tnullu
1 foreach Tj P T i do
2 if Tj R T Pull

i then
3 T Add

i “ T Add
i YTj

4 foreach Tj P T Pull
i do

5 if Tj R T i then
6 T Erase

i “ T Erase
i YTj

Return: The triangle facets to be added T Add
i and erased

T Erase
i .

3) Push: With the incremental modification T Erase
i and

T Add
i from the previous commit step, we perform the addition

and erasion operations of triangle facets in push step by:
1) constructing (or deleting) the triangle facet structures (as
defined in Section IV-A3). 2) adding (or removing) the pointer
to these facet structures to other data structures (i.e., mesh

Algorithm 4: Voxel-wise mesh push.
Input : The triangle facets that need to erased T Erase

i .
The triangle facets that need to added T Add

i .
1 Function Add_triangle(Tj):
2 Get vertex indices tα, β, γu “ Pts idpTjq

3 Find the region Rk with CenterpTjq via (7).
4 Set the status flag fRk of region Rk to Sync-required.
5 Add TG

j to region Rk and triangles list of vertices Vα, Vβ ,
Vγ

6 Function Erase_triangle(Tj):
7 Get vertex indices tα, β, γu “ Pts idpTjq

8 Remove Tj from triangles list of vertices Vα, Vβ , Vγ .
9 Find the region Rk with CenterpTjq via (7).

10 Set the status flag fRk of region Rk to Sync-required.
11 Remove Tj from region Rk.
12 Delete triangle Tj from memory.

13 foreach Tj P T Add
i do

14 Add_triangle(Tj)

15 foreach Tj P T Erase
i do

16 Erase_triangle(Tj)

vertices and regions). The detailed processes of push step are
shown in Algorithm 4.

F. Parallelism

To further improve the real-time performance, we imple-
ment our algorithms with parallelism for better utilization of
the computation power of a multi-core CPU. In ImMesh, we
have two major parallelisms as follows:

The first parallelism is implemented between the local-
ization module and the meshing module. Except for the
point cloud registration in localization module, which needs
to operate the mesh vertices as the meshing operation, the
remaining processes of localization module are parallelized
with the meshing module. More specifically, once our meshing
processes start, the localization module is allowed to process
the new incoming LiDAR scans for estimation of the pose of
LiDAR. However, the subsequent point cloud registration step
is only allowed to be executed after the end of the current
meshing process.

The second parallelism is implemented among the voxel-
wise meshing operation of each activated voxel. The voxel-
wise meshing operations of different voxels are independent;
thus, no conflicted operations exist on the same set of data.

G. The full meshing algorithm

To sum up, our full meshing processes are shown in
Algorithm 5.

VII. BROADCASTER

In ImMesh, the broadcaster module publishes our state
estimation results (i.e., odometry) and mapping results (i.e.,
newly registered point cloud and triangle mesh) to other
applications. Additionally, if a depth image is needed, the
broadcaster module will rasterize the triangle meshes into a
depth image.

10 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

Algorithm 5: The full meshing process of each update
of LiDAR scan

Input : The set of voxels O “ tO1,O2, ...,Omu that
activated in Section V-B

Start : The triangle facets that need to added
T Add

“ tnullu, and to be erased T Erase
“ tnullu

in this update .
1 foreach Oi P O do in parallel
2 Retrieve vertices Vi with Algorithm 1.
3 Reconstruct the triangle facets T i with Vi (Section

VI-D2),
4 Performing voxel-wise mesh pull (Algorithm 2) to get

T Pull
i . Ź // Mesh pull

5 Performing voxel-wise mesh commit (Algorithm 3) to
get the triangle facets that need to be added T Add

i and
erased T Erase

i . Ź // Mesh commit
6 T Add

“ T Add
Ť

T Add
i , T Erase

“ T Erase
Ť

T Erase
i

/* === Mesh push start === */
7 foreach Tj P T Add do
8 Add_triangle(Tj) Ź // In Algorithm 4

9 foreach Tj P T Erase do
10 Erase_triangle(Tj) Ź // In Algorithm 4

/* === Mesh push end === */
11 foreach Oi P O do
12 Reset status flag fOi of Oi as deactived.

A. Broadcast of triangle facets
Since the triangle facets are stored in regions in an un-

structured way, they can not be directly applied for broadcast.
To resolve this problem, our broadcaster module maintains
a background thread that asynchronously copies the triangle
facets from each sync-required region (set as sync-required
after the triangle facets are updated in Algorithm 4) to a
structured array for broadcasting. Then, these sync-required
regions are marked as synced after the copying. Finally, The
broadcaster module publishes the newest triangle facets to
other applications.

B. Rasterization of depth image
Some robotic applications, such as autonomous navigation

[68] and exploration [69] tasks, require dense accurate depth
images for obstacle avoidance. To meet the requirements of
these scenarios, the broadcaster module utilizes the triangle
facets from Section VII-A to rasterize a depth image at any
customized resolution and FoV, based on the fast implemen-
tation of OpenGL [58].

Besides depth image rasterization, the mesh obtained by
our meshing module can reinforce the raw LiDAR point
cloud measurements by increasing the resolution and enlarging
the FoV. In detail, with the projection matrix and estimated
pose used for rasterizing the depth image, the 3D points are
obtained (i.e., unproject) from each pixel of the depth image.
The unprojected 3D points would have higher resolution and
larger FoV than the raw LiDAR measurement scan (see our
Application-1 in Section VIII-D).

VIII. EXPERIMENTS AND RESULTS

In this paper, we conduct the experiments by evaluating our
meshing ability, especially on the runtime performance and
accuracy in reconstructing the triangle mesh.

Fig. 6: (a) shows our handheld device for data collection and online
mesh reconstruction. (b) shows a snapshot of our accompanying video
[70] (starting at 00:09) of Experiment-1, with three time-aligned
views of different sources including a screen-recorded view (in red),
a camera preview (in yellow), and a third-person view (in blue).

A. Experiment-1: ImMesh for immediate mesh reconstruction

In this experiment, we verify the overall performance of
ImMesh toward real-time simultaneous localization and mesh-
ing with live video demonstrations. As shown in Fig. 6(b),
we record the entire process of our data collection at the
campus of the University of Hong Kong (HKU), deploying
the ImMesh for simultaneously estimating the sensor pose and
reconstructing the triangle mesh on the fly. The accompanying
video [70] (starting at 00:09) demonstration of this experiment
is available on YouTube.

1) Experiment setup: Our handheld device for data collec-
tion is shown in Fig. 6(a), which includes a mini-computer
(equipped with an Intel i9-10900 CPU and 64 GB RAM),
a Livox avia 3D LiDAR (FoV: 70.4 ˝ˆ77.2˝), and an RGB
camera for previewing. In this experiment video, three time-
aligned views of different sources are presented, including:
1) a screen-recorded view that shows the estimated pose and
online reconstructed triangles mesh of ImMesh. 2) a camera
preview that records the video stream of the front-facing
camera. 3) a third-person view that records the whole process
of this experiment.

2) Result and analysis: As presented in the video, benefit-
ing from the accurate uncertainty models of the LiDAR point
and plane that account for both LiDAR measurement noise
and sensor pose estimation errors in our localization module,
ImMesh is able to provide the 6 DoF pose estimation of high
accuracy in real-time. Without any additional processing (i.e.,
loop detection), all of these two trials can close the loop itself
after traveling 957 m and 391 m, respectively. In addition, with
the efficient architecture design and careful engineering im-
plementation on our meshing module, the triangle mesh of the
surrounding environment is incrementally reconstructed on the
fly. With the live preview of real-time meshing, it informs users
whether the data collection is sufficient enough for any part
of the scene. This important function could lower the revisit
chances and facilitate the collection process. Immediately after
the data collection, the dense accurate triangle mesh of this
scene would be available for analysis. Due to this reason, our
system is named as the Immediately Meshing (ImMesh).

B. Experiment-2: Extensive evaluation of ImMesh on public
datasets with various types of LiDAR in different scenes

With all the modules delicately designed for efficiency, both
the localization and meshing modules easily achieve real-
time performances on a standard multi-core CPU. In this

https://youtu.be/pzT2fMwz428?t=9
https://youtu.be/pzT2fMwz428?t=9
https://youtu.be/pzT2fMwz428?t=9
https://youtu.be/pzT2fMwz428?t=9

11

TABLE I: The specifications of LiDARs in four datasets

Dataset Kitti NCLT NTU VIRAL R3LIVE

LiDAR

Velodyne HDL-64E Velodyne HDL-32E Ouster OS1-16 Gen1 Livox Avia
Scanning

mechanism
Mechanical,

spinning 64-line
Mechanical,

spinning 32-line
Mechanical,

spinning 16-line
Solid-state,

Risley prism
Field of View

(Horizontal˝ ˆ Vertical˝) 360.0˝ ˆ 26.8˝ 360.0˝ ˆ 41.3˝ 360.0˝ ˆ 33.2˝ 70.4˝ ˆ 77.2˝

Points per secondr1s 1,333,312 695,000 327,680 240,000

Price (U.S. Dollar) $ 75,000 $ 8,800 $ 3,500 $ 1,599
1 Only show the point rate of single-return mode.

TABLE II: This table shows the detailed information (e.g., length, duration, scenarios) of each testing sequence, the time consumption of
ImMesh in processing a LiDAR scan, and the number of vertices and facets of each reconstructed mesh in Experiment-2. Our accompanying
video [70] (starting at 05:21) that visualizes the online mesh reconstruction process with sequence Kitti 00 is available on YouTube.

Sequece Traveling
length (m)

Durations
(s)

LiDAR
frames

Meshing
mean/Std (ms)

Localization
mean/Std (ms)

Number of
vertices (m)

Number of
facets(m) Scenarios

Kitti 00 3,724.2 456 4,541 32.1 / 12.0 49.0 / 11.7 3.33 7.70 Urban city
Kitti 01 2,453.2 146 1,101 34.5 / 10.5 51.1 / 18.5 2.03 4.05 High way
Kitti 02 5,058.9 509 4,661 33.5 / 7.0 36.2 / 9.5 4.39 10.03 Residential
Kitti 03 560.9 88 801 28 / 7.1 49.0 / 12.2 0.73 1.55 Countryside; Road
Kitti 04 393.6 27 271 30.1 / 9.4 42.4 / 12.9 0.41 0.85 Urban city; Road
Kitti 05 2,205.6 303 2,761 29.6 / 8.2 38.7 / 11.5 2.17 4.95 Residential
Kitti 06 1,232.9 123 1,101 23.1 / 5.6 56.9 / 9.7 0.89 1.89 Urban city
Kitti 07 2,453.2 114 1,101 20.7 / 7.4 31.3 / 8.6 0.76 1.71 Urban city
Kitti 08 3,222.8 441 4,071 32.4 / 7.8 45.7 / 17.7 3.56 7.94 Urban city
Kitti 09 1,705.1 171 1,591 34.5 / 7.5 43.1 / 19.2 1.83 4.12 Countryside; Road
Kitti 10 919.5 132 1,201 23.4 / 6.9 30.9 / 11.9 0.94 2.10 Residential

NCLT 2012-01-15 7,499.8 6739 66,889 26.3 / 14.1 21.3 / 9.8 9.66 26.61 Campus; Indoor
NCLT 2012-04-29 3,183.1 2598 25,819 25.4 / 13.9 19.1 / 5.4 4.82 13.43 Campus
NCLT 2012-06-15 4,085.9 3310 32,954 24.5 / 14.4 22.3 / 7.7 6.36 17.47 Campus
NCLT 2013-01-10 1,132.3 1024 10,212 20.2 / 12.5 19.3 / 6.5 2.02 5.50 Campus
NCLT 2013-04-05 4,523.6 4167 41,651 20.6 / 13.8 26.8 / 11.7 9.58 23.98 Campus

NTU VIRAL eee 01 265.3 398 3,987 11.2 / 6.7 14.5 / 3.4 0.60 1.38 Aerial; Outdoor
NTU VIRAL nya 01 200.6 396 3,949 9.4 / 5.3 10.2 / 1.7 0.54 1.24 Aerial; Indoor
NTU VIRAL rtp 01 449.6 482 4,615 12.1 / 8.5 10.9 / 2.6 0.72 2.03 Aerial; Outdoor
NTU VIRAL sbs 01 222.1 354 3,542 11.4 / 8.0 17.2 / 3.2 0.47 1.15 Aerial; Outdoor
NTU VIRAL tnp 01 319.4 583 5,795 6.3 / 3.7 8.8 / 1.2 0.16 0.41 Aerial; Indoor

R3LIVE hku campus 00 190.6 202 2,022 12.0 / 7.3 11.5 / 3.2 0.58 1.24 Campus
R3LIVE hku campus 01 374.6 304 3,043 20.4 / 12.6 17.2 / 6.9 1.32 2.86 Campus
R3LIVE hku campus 02 354.3 323 3,236 13.5 / 6.4 11.9 / 2.8 0.87 1.91 Campus
R3LIVE hku campus 03 181.2 173 1,737 12.2 / 5.7 11.3 / 2.9 0.55 1,13 Campus

R3LIVE hku main building 1,036.9 1170 11,703 16.9 / 14.3 12.5 / 8.0 3.03 6.80 Indoor; Outdoor
R3LIVE hku park 00 247.3 228 2,285 30.1 / 15.9 12.6 / 3.7 0.92 2.38 Cluttered field
R3LIVE hku park 01 401.8 351 3,520 31.5 / 12.2 12.6 / 3.9 1.67 3.96 Cluttered field

R3LIVE hkust campus 00 1,317.2 1073 10,732 26.0 / 12.8 18.0 / 7.6 4.92 11.25 Campus
R3LIVE hkust campus 01 1,524.3 1162 11,629 27.1 / 13.9 16.8 / 6.7 5.35 12.64 Campus
R3LIVE hkust campus 02 2,112.2 1618 4,787 26.7 / 14.5 20.3 / 6.1 1.99 4.65 Campus
R3LIVE hkust campus 03 503.8 478 16,181 33.6 / 13.3 21.0 / 5.3 7.67 18.25 Campus

TABLE III: Two ImMesh configurations for two types of LiDARs
(i.e., mechanical and solid-state LiDAR).

Minimum point Size of region Size of voxel
distance ξ (m) SR (m) SO (m)

Mechanical LiDAR 0.15 15.0 0.60
Solid-state LiDAR 0.10 10.0 0.40

experiment, we evaluate the average time consumption on four
public datasets with the computation platform listed in Section
VIII-A1.

The four datasets we chose are: Kitti dataset [71], NCTL
dataset [72], NTU VIRAL dataset [73] and R3LIVE dataset
[74]. They are collected in different scenarios ranging from
structured urban buildings to field-cluttered complex environ-

TABLE IV: The average/maximum time of meshing and localization
module for processing each LiDAR scan in four datasets.

Kitti NCLT NTU VIRAL R3LIVE
mean/max mean/max mean/max mean/max

Meshing (ms) 31.3 / 34.5 24.2 / 25.4 9.8 / 17.2 25.3 / 33.6
Localization (ms) 42.2 / 56.9 22.3 / 26.8 11.9 / 17.2 16.6 / 21.0

ments (see TABLE V), using various types of LiDARs that
include mechanical spinning LiDAR of different channels and
solid-state LiDAR of small FoV (see TABLE I).

1) Experiment setup: ImMesh is robust to its parameter
values, which requires minimal user-adjustable parameters to
achieve good results without extensive parameter tuning. We

https://youtu.be/pzT2fMwz428?t=321
https://youtu.be/pzT2fMwz428?t=321

12 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

Fig. 7: The screenshots of our Microsoft AirSim simulator used for generating synthetic data. (a, c, and e) show the “Urban city” environments,
while (b, d, f, and g) depict the “Cluttered field” environments. The yellow frustums in (a„d) represent the poses of LiDAR sensor used to
capture synthetic data. These frustums are set as invisible during data generation, as shown in (e-g). The images within the green and blue
boxes in (a and d) respectively show the produced depth and RGB images.

benchmark ImMesh in four datasets with only two sets of
configurations. The two configurations are reasonably required
for adapting two classes of LiDARs (i.e., mechanical and
solid-state LiDAR), as shown in TABLE III. Since the 3D
points sampled by a solid-state LiDAR are distributed in a
small sensor FoV, the accumulated point cloud of solid-state
LiDAR usually has a higher density. Therefore, we set the
minimum point distance and voxel size for solid-state LiDAR
1.5 times smaller than those for mechanical LiDAR, as shown
in TABLE III. We maintained the same configuration for the
other setups except for some necessary adjustments to match
the hardware setup.

2) Result and analysis: TABLE V shows the detailed
information (e.g., length, duration, scene) of each sequence,
the average time consumption of our localization and meshing
module in processing a LiDAR scan, and the number of
vertices and facets of each reconstructed mesh. From Table
V, it is seen that the average cost-time of both localization
and meshing modules are closely related to the density of the
input LiDAR scan. To be detailed, the LiDAR of a higher

channel has a much higher point sampling rate (see Table I)
which causes more data to be processed in each update of a
LiDAR frame (e.g., more points in a voxel and more voxels
activated in each frame). Besides, the processing time varies
among different scenarios for the same set of datasets. The
sequences sampled in a high-way or field environment (e.g.,
Kitti 01, Kitti 09) usually have a longer LiDAR sampling
range, leading to more points per frame to be processed.
Thanks to the efficient data structures (e.g., ikd-Tree, hash
tables) and parallelism strategy, which allows us to perform
the state estimation and incremental mesh reconstruction si-
multaneously, the time consumption of large-scale datasets is
bounded in an acceptable value (ď35 ms for meshing, ď49 ms
for localization).

The average and maximum time consumption of ImMesh
in the four datasets are shown in TABLE IV, reflecting
that our system satisfies the real-time requirement even with
different types of LiDARs and scenarios. Notice that the
LiDAR frame rate are 10 Hz for all datasets, and our meshing

13

Fig. 8: The qualitative comparison of ground truth and four evaluated methods, which are tested with the depth images resolution
of 640 ˆ 480. The facets colored in red represent surfaces that have been incorrectly reconstructed, with 80% of their sampling
points not lying on the ground truth surface (i.e., the distances between these points and the nearest ground truth surface are larger
than 5 cm).

Fig. 9: The qualitative comparisons of four methods that evaluated with depth images of different resolutions. The facets colored
in red represent surfaces that have been incorrectly reconstructed, with 80% of their sampling points not lying on the ground truth
surface.

and localization modules run in parallel (see Section VI-F).

C. Experiment-3: Quantitative evaluation of ImMesh

In this experiment, we use both real-world and synthetic
data to conduct the quantitative evaluations of ImMesh, by
comparing it against existing reconstruction methods.

1) Preparation of large-scale, real-world data: We con-
ducted a quantitative evaluation using large-scale real-world

LiDAR data collected from the Complex Urban Dataset [75].
This dataset provides a high-quality set of ground truth LiDAR
poses and ground truth point clouds, which enables a com-
prehensive assessment of our proposed method and existing
baselines. The detailed traveling length and the number of
LiDAR frames of tested sequences are shown in TABLE V.

2) Preparation of synthetic data: To further evaluate the
performance of all the methods under diverse scenarios, with
varying levels of clutteredness, we generated synthetic data
using the Microsoft AirSim simulator [4]. The screenshots of

14 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

TABLE V: The quantitative evaluation result with real-world data from Complex Urban Dataset. The Ò denotes larger is better while Ó
indicates lower is better.

Sequence Traveling
length (Km)

Number of
LiDAR frames Method Cost time ↓

(hour:min:sec)

Fairness Correctness
Max-Min

angle (°) ↓ C2SE ↓ Compleness
(m) ↓

Accuracy
(m) ↓

Recall
(%) ↑

Precision
(%) ↑ F-score ↑

Urban01 11.72 13846 Poi 09:58:30 60.1014 0.9760 0.0632 0.0724 0.8554 0.7563 0.8028
ImMesh (ours) 00:05:39 56.2941 0.8630 0.0404 0.0568 0.9477 0.8260 0.8827

Urban02 4.20 8961 Poi 05:49:36 59.9695 0.9739 0.0792 0.0822 0.8818 0.7261 0.7964
ImMesh (ours) 00:03:01 57.3564 0.8605 0.0392 0.0556 0.9623 0.8398 0.8968

Urban03 3.06 9091 Poi 04:55:04 60.1614 0.9770 0.0070 0.0059 0.8871 0.7754 0.8275
ImMesh (ours) 00:03:07 57.4131 0.8628 0.0398 0.0564 0.9597 0.8359 0.8935

TABLE VI: The quantitative evaluation result with synthetic data generated with Microsoft AirSim simulator.

Method Scenario Resolution Cost time
(min:sec) ↓

Fairness Correctness
Max-Min

angle (°) ↓ C2SE ↓ Compleness
(m) ↓

Accuracy
(m) ↓

Recall
(%) ↑

Precision
(%) ↑ F-score ↑

Del Urban city 640 × 480 17:51 48.5148 0.7825 0.0883 0.0341 0.7976 0.7976 0.7976
ImMesh (ours) Urban city 640 × 480 00:31 48.0909 0.7843 0.1002 0.0265 0.7290 0.8525 0.7859

Poi Urban city 640 × 480 15:42 53.4110 0.8664 0.1094 0.2244 0.7367 0.7798 0.7576
TSDF Urban city 640 × 480 00:25 64.7606 1.0530 0.1506 0.0361 0.5859 0.8665 0.6991

Del Urban city 320 × 240 07:22 49.1746 0.7960 0.0928 0.0515 0.7685 0.7470 0.7576
ImMesh (ours) Urban city 320 × 240 00:23 52.9000 0.8235 0.1002 0.0265 0.7290 0.7821 0.7546

Poi Urban city 320 × 240 04:42 52.7233 0.8566 0.1216 0.0788 0.6845 0.6904 0.6875
TSDF Urban city 320 × 240 00:25 64.4962 1.0474 0.1544 0.0655 0.4994 0.7397 0.5962

Del Urban city 160 × 120 02:02 49.8635 0.8098 0.1186 0.0914 0.6822 0.5574 0.6135
ImMesh (ours) Urban city 160 × 120 00:19 54.4587 0.8466 0.1341 0.0834 0.5493 0.5914 0.5696

Poi Urban city 160 × 120 01:03 54.6500 0.9052 0.1849 0.1453 0.4777 0.6159 0.5381
TSDF Urban city 160 × 120 00:24 65.1098 1.0564 0.2802 0.2508 0.3352 0.4799 0.3947

Del Cluttered field 640 × 480 21:14 56.6578 0.8304 0.2767 0.0496 0.7489 0.7036 0.7255
ImMesh (ours) Cluttered field 640 × 480 00:33 57.1687 0.8558 0.2953 0.0519 0.7027 0.7404 0.7211

Poi Cluttered field 640 × 480 24:31 59.5750 0.9649 0.3052 0.3960 0.6981 0.7009 0.6995
TSDF Cluttered field 640 × 480 00:24 65.4224 1.0882 0.4130 0.4270 0.4837 0.4936 0.4886

Del Cluttered field 320 × 240 07:38 57.9700 0.8526 0.2919 0.0882 0.5416 0.7198 0.6181
ImMesh (ours) Cluttered field 320 × 240 00:25 57.6159 0.8603 0.3105 0.0784 0.6146 0.6404 0.6272

Poi Cluttered field 320 × 240 10:28 59.4470 0.9722 0.3620 0.3395 0.5630 0.5506 0.5567
TSDF Cluttered field 320 × 240 00:23 65.7206 1.0892 0.5268 0.4784 0.2114 0.2567 0.2319

Del Cluttered field 160 × 120 01:56 59.4879 0.8785 0.3438 0.1781 0.3947 0.5696 0.4663
ImMesh (ours) Cluttered field 160 × 120 00:21 60.1208 0.8970 0.3512 0.1694 0.4200 0.4863 0.4507

Poi Cluttered field 160 × 120 01:07 59.1544 0.9744 0.3541 0.4164 0.3775 0.3820 0.3797
TSDF Cluttered field 160 × 120 00:23 65.1832 1.0815 0.5561 0.3681 0.2099 0.2944 0.2451

our simulating scenarios are presented in Fig. 7, where we
prepared two typical environments: “Urban city” (Fig. 7(a, c,
and e)) and “Cluttered field” (Fig. 7(b, d, f, and g)), both of
which have dimensions of 20 mˆ10 mˆ8 m. The “Urban city”
environment consists of structured objects, such as buildings,
towers, and water tanks, providing a realistic representation
of an urban setting. On the other hand, the “Cluttered field”
environment incorporates a diverse range of plants, including
trees, flowers, grasses, and other vegetation, creating a more
complex and cluttered scenario.

To simulate point clouds collected by a real LiDAR, we
unproject the 3D points from the depth image. The depth
images are obtained by querying the AirSim’s API, specifically
the images shown within the green box in Fig. 7(a and b).
The depth image has a field of view (FoV) of 120˝ ˆ 80˝.
We manually positioned the poses, represented by the yellow
frustums in Fig. 7(a „ d), to ensure that the generated point
cloud covers most of the surfaces in the scene. Additionally,
we simulate LiDAR data with different point cloud densities
by generating data using three different sets of depth image
resolutions: 640ˆ 480, 320ˆ 240, and 160ˆ 120, as shown
in TABLE VI.

3) Experiment setup: In this experiment, we performed a
comprehensive evaluation of meshing ability among our work

and existing mesh reconstruction baselines, which includes
a TSDF-based method implemented by Point cloud library
(PCL) [54] with GPU acceleration, Delaunay triangulation and
graph cut based method implemented by OpenMVS [76], and
the official implementation of Poisson surface reconstruction
[19, 20].

We conducted the evaluation of these methods on a desktop
PC equipped with an Intel i7-9700K CPU, 64Gb RAM, and
an Nvidia 2080 Ti GPU with 12Gb of graphics memory.
We fed online reconstruction method ImMesh and TSDF-
based (TSDF) methods with LiDAR points frame by frame.
To mitigate the impact of pose estimation errors on meshing
results, we disabled the pose estimation module and provided
the ground truth poses to the online mesh reconstruction
methods ImMesh and TSDF. For the offline mesh recon-
struction methods, namely Delaunay triangulation (Del) and
Poisson surface reconstruction (Poi), we fed them with the
accumulated point cloud from all frames. Additionally, to
address the issue of uneven point cloud density, which can
result in errors when calculating normals for Poi, and to
prevent Del from reconstructing small facets that could bias
accuracy calculations. We leverage a voxel grid filter with
a leaf size of 1.0 cm ˆ 1.0 cm ˆ 1.0 cm to downsample the
accumulated point cloud before providing it as input to both

15

Fig. 10: The first row of images shows the comparisons between a raw LiDAR frame (colored in white) and our reinforced points (colored
in magenta) under different sets of rasterizing FoV. The second and third rows of images show the comparisons of raw and reinforced points
after projection on the current sensor frame. For more detailed visualizations of this process, please refer to our accompanying video [70]
(starting at 08:19) on YouTube.

Poi and Del.
Due to the limited graphics memory (12Gb for Nvidia 2080

Ti), we set the TSDF cell size as 0.2 m such that TSDF
can utilize the GPU acceleration while preserving satisfying
precision in the mesh reconstruction. For our ImMesh, the
parameter configuration for solid-state LiDAR is used, as
shown in TABLE III. For Poi, we set the octree level as 12 and
removed large hulls by deleting facets with one of their edges
longer than 15.0 cm. For other configurations of all methods,
we set them as their default configuration. It is noted that other
than TSDF using GPUs for acceleration, the rest methods, Del,
Poi, and ours, use the CPU only. We compare the efficiency
of four methods by evaluating their time consumption in
reconstructing the mesh. For online methods (i.e., TSDF and
ours), we accumulate the processing time of all frames, while
for offline methods (i.e., Poi and Del), we count the total
time in processing the offline data. The results of their time
consumption are listed in TABLE V and TABLE VI.

4) Evaluation of fairness: In this experiment, we employ
the triangle fairness criteria to evaluate the quality of recon-
structed triangle facets. This evaluation involves analyzing the
average error of the maximum and minimum interior angles of
the triangles (as utilized in work [77]), which we refer to as the
Max-Min angle in TABLE V and TABLE VI. Additionally, we
consider the average ratio of the circumradius to the shortest
edge length (referred to as C2SE in Tables) as used in works
[78, 79]. A lower value for both the Max-Min angle and C2SE
indicates higher mesh quality, as it signifies that the triangle
facets are closer to being equilateral.

In the evaluation with large-scale, real-world data, the
results for Del and TSDF methods were not available due
to specific limitations: 1) For Del, we encountered difficulties
when running it with the Complex Urban Dataset. Despite

multiple attempts, the Del method either crashed midway or
failed to produce any result after running for over three days.
2) As for TSDF, allocating the voxels requires a massive
amount of graphics memory. This exceeds the capabilities of
our hardware platforms, particularly for sequences in Table V
with a traveling length of over 3 kilometers.

As indicated by the fairness metrics listed in TABLE V and
VI, we can conclude that leveraging Delaunay triangulation
eliminates the formation of sliver triangles. The Del method
demonstrates the best results in this regard. Following that is
ImMesh, which utilizes Delaunay triangulation for meshing
the point set after dimension reduction through projection.
On the other hand, the meshes reconstructed by the Poi and
TSDF methods, which employ the marching cubes algorithm,
exhibit inferior results. This is due to the inherent limitation
of the marching cubes algorithm [23], which generates sliver
triangles when a facet is positioned closely and nearly parallel
to the edges of the cube.

5) Evaluation of correctness: For the quantitative evalua-
tion of the methods’ correctness in reconstructing the mesh,
we utilized 3D geometry metrics as employed in works Neu-
ralRecon [80] and Atlas [81]. These metrics encompass the
following measurements: accuracy, completeness, precision,
recall, and F-score. The calculations for these metrics are as
follows:

Accuracy: meanpPPpminp˚PP˚ ||p´ p˚||q

Completeness: meanp˚PP˚pminpPP ||p´ p˚||q

Precision: meanpPPpminp˚PP˚ ||p´ p˚|| ă 0.05q

Recall: meanp˚PP˚pminpPP ||p´ p˚|| ă 0.05q

F-score:
2ˆ Precisionˆ Recall

Precision` Recall

https://youtu.be/pzT2fMwz428?t=499
https://youtu.be/pzT2fMwz428?t=499

16 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

where P refers to the point cloud obtained by uniformly
sampling the reconstructed mesh generated by the method
under evaluation. This point cloud is sampled at a spatial
resolution of 0.01 m. On the other hand, P˚ represents the
downsampled ground truth point cloud. It is also downsampled
at a spatial resolution of 0.01 m.

The quantitative evaluation results for metrics such as accu-
racy, completeness, precision, recall, and F-score are provided
in TABLE VI. We can observe that Del achieves the highest
overall correctness in constructing the mesh of the scene.
Following that, ImMesh demonstrates slightly lower precision.
Then, Poi exhibits even lower mesh correctness, and TSDF
shows the lowest correctness among all methods.

The qualitative comparison results of the four benchmarked
methods evaluated with synthetic data are presented in Fig. 8
and Fig. 9. In these figures, the red facets represent incorrectly
reconstructed surfaces with 80% of their sampling points not
lying on a ground truth surface (i.e., the distances between
these points and the nearest ground truth surface are larger than
5 cm). Among the evaluated methods, Del and ImMesh exhibit
comparable results in reconstructing the mesh of scenes well.
In contrast, Poi exhibits lower mesh correctness due to the
presence of unwanted facets at the sharp edges of the models,
as indicated in the fourth column of Fig. 8. The TSDF method
shows the lowest results with the appearance of holes on the
reconstructed surface, as observed in the roofs of buildings
and the leaves of trees shown in the fifth column of Fig. 8.

When reconstructing complex and small objects in the
scene, such as the flower in the “Cluttered field” environment,
as depicted in the RGB image shown in the bottom-left corner
of Fig. 7(f) and the corresponding mesh models displayed
in the fifth row of Fig. 8. Del, TSDF and ImMesh fail to
recover the details of surface well. This limitation arises
from different factors for each method: Del requires a large
number of camera-to-point correspondences to extract intricate
surface details, which may pose challenges when dealing with
complex and tiny objects. TSDF and ImMesh are constrained
by the fixed voxel size, which can not reconstruct the details
of surfaces whose size is smaller than voxel. What is worth
mentioning is that we found Poi can recover the details of
the flower’s petals well. This is achieved through the use of a
scalable resolution based on an octree structure, which allows
Poi to adapt its resolution for reconstructing small and intricate
surfaces.

In addition, as observed in Fig. 9 and with the metrics listed
in Table VI, we can see that as the point cloud becomes sparser
(due to lower resolution depth images), the correctness of the
reconstruction methods decreases accordingly. However, both
Del and ImMesh demonstrate stronger robustness in resiliently
handling the drop in point cloud density. On the other hand, the
meshes reconstructed by Poi and TSDF exhibit discontinuities
and contain more holes and gaps when compared to the results
of Del and ImMesh.

Lastly, in the evaluation with real-world data from Complex
Urban Dataset [75], we discovered that the mesh reconstructed
by Poi also exhibits unwanted facets appearing at the edges
of objects such as buildings and trees. These undesirable
facets, as indicated by the red facets in Fig. 8 and Fig. 9

for Poi, have a negative impact on the overall correctness of
the reconstruction. As a result, Poi performs inferiorly across
all evaluated correctness metrics when compared to ImMesh,
as shown in TABLE V.

6) Evaluation of runtime performance: According to the
cost time listed in TABLE V, it is clear that ImMesh demon-
strates a significant advantage in terms of runtime performance
when evaluated with large-scale sequences. The execution time
of ImMesh is only 0.93% „ 1.06% of that of Poi.

TABLE VI displays the average time consumption of the
four benchmarked methods when evaluated with synthetic
data. The online methods, ImMesh and TSDF, exhibit similar
runtime performance. In contrast, the offline methods (Del and
Poi) consume significantly more time, ranging from 5 to 40
times longer than the online methods (TSDF and ImMesh).
Notably, TSDF achieves comparable runtime performance to
our method with the assistance of an Nvidia 2080 Ti GPU,
highlighting the high computational efficiency of our ImMesh
framework compared to the other three methods.

7) Summary: Based on the results and analysis regard-
ing runtime performance, fairness, and correctness, we have
reached the following conclusions for Experiment-3: 1) For
offline applications, which only care about quality and neglect
time consumption, Del is the best choice, and our ImMesh is
the second best one. 2) For real-time applications, our work
ImMesh is the best choice. Even though TSDF with GPU
acceleration can run in real-time, its meshing correctness is
much lower than ImMesh.

D. Application-1: LiDAR point cloud reinforcement

Benefiting from ImMesh’s real-time ability to reconstruct
the triangle mesh on the fly, depth images can be rasterized
from the reconstructed facets online in the current sensor
frame. By unprojecting the 3D points from the depth image,
point clouds of a regular pattern can be retrieved with wider
FoV and denser distribution than the original input LiDAR
scan. We termed this process as LiDAR point reinforcement.

In this experiment, we demonstrate the LiDAR point cloud
reinforcement with a solid-state LiDAR Livox Avia with FoV
of 70.4˝ˆ77.2˝. The comparisons between the original points
of a LiDAR frame (colored in white) and after our reinforce-
ment (colored in magenta) with different sets of rasterization
FoV are shown in Fig. 10. As the white points shown in
the first row of Fig. 10, the input LiDAR scan is sparse
with an irregular scanning pattern. After the reinforcement,
the resultant 3D points colored in magenta are distributed
in a regular pattern, with a higher density and wider FoV
(as the rasterization FoV is bigger than LiDAR’s). To better
understand their differences, we present the comparisons of
depth images after projection, as shown in the second and
third rows of Fig. 10.

E. Application-2: Rapid, lossless texture reconstruction

In this application, we show how ImMesh can be applied
in applications of lossless texture reconstruction for rapid field
surveying. As shown in Fig. 11(b1„b3), we mounted a Livox

17

Fig. 11: (b1„b3) show our UAV platform for data collection. (a) show the bird view of our lossless texture reconstruction result. (c1 and c2)
show the altitude of this map by coloring the facets in their height w.r.t. the take-off point (i.e., the ground plane in Zone-A). The qualitative
comparison of mapping results in Zone-A, B, and C of ImMesh, ImMesh after texturing, and R3LIVE++ are shown in (d„f). To see the
detailed reconstruction process of the scene, please refer to our accompanying video [70] (starting at 10:22) on YouTube.

avia LiDAR and a Hikvision CA-050-11UC global shutter
RGB camera on a DJI M300 drone platform.

We collected the data in a mountain field by taking off
from Zone-A (see Fig. 11(a)) and flying in a “s”-like pattern
trajectory with a traveling distance of 975 m. We leveraged
ImMesh for reconstructing the mesh from the collected LiDAR
data and used R3LIVE++ [82] for estimating the camera’s
poses (as the yellow frustum shown in Fig. 11(a, c1 and
c2)). We textured each facet of the reconstructed mesh by the
RGB image captured by the nearest camera frame with the
estimated camera pose from R3LIVE++. Benefiting from the
high efficiency of ImMesh and R3LIVE++, the total time of
reconstructing the RGB textured mesh from this sequence of
duration 325 s cost only 686 s, with 328 s for ImMesh, 330 s
for R3LIVE++, and 28 s for texturing. Fig. 11(a) shows a bird

view of our mesh after texturing, with the close-up views of
textured mesh in Zone-A, B, and C shown in Fig. 11(e1, e2,
and e3), respectively. In Fig. 11(c1 and c2), we show the
altitude of this map by coloring the facets in their height w.r.t.
the take-off point (i.e., the ground plane in Zone-A).

As shown by the close-up views in the bottom three rows
of Fig. 11, the reconstructed mesh (d1„d3) from our ImMesh
after texturing (e1„e3) successfully preserves the map textures
when comparing with the RGB-colored point cloud recon-
structed by R3LIVE++ (f1„f3). Due to the limited point cloud
density, the RGB-colored point cloud by R3LIVE++ is unable
to reconstruct the scene losslessly. Compared to existing
counterparts (e.g., 3D reconstruction from photogrammetry
[13, 26]) that reconstructs a scene from captured images (and
RTK measurements), our system shows significant advantages:

https://youtu.be/pzT2fMwz428?t=622

18 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

1) It is a reliable solution that does not require GPS mea-
surement. 2) It is a rapid reconstruction method that costs
only 2„3 times the data sampling time for reconstructing
a scene. 3) It preserves a geometry structure of high accu-
racy that is reconstructed from LiDAR’s measurements.The
accompanying video [70] (starting at 10:22) that records the
full process of this lossless texture reconstruction is available
on our YouTube, and an additional trial is shown in our
Supplementary Material [83].

Notice that in Fig. 11, the presence of isolated mesh facets
is a result of missing scanning data, while the blurry texture
artifacts are caused by the large viewing angle of the facets
and textured images, both can be addressed through proper
data collection processes.

IX. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work, we proposed a novel meshing framework
termed ImMesh for achieving the goal of simultaneous local-
ization and meshing in real-time. The real-time incremental
meshing nature of our system, even in large-scale scenes,
makes it one of a kind. The localization module in ImMesh
represents the surrounding environment in a probabilistic
representation, estimating the sensor pose in real-time by
leveraging an iterated Kalman filter to maximize the posterior
probability. The meshing module directly utilizes the spatially-
downsampled registered LiDAR points as mesh vertices and
reconstructs the triangle facets in a novel incremental manner
in real-time. To be detailed, our meshing module first retrieves
all voxels that contain newly appended vertices. Then, the
voxel-wise 3D meshing problem is converted into a 2D one by
performing dimension reduction for efficient meshing. Finally,
the triangle facets are incrementally reconstructed with pull,
commit, and push steps.

Our system is evaluated by real experiments. First, we
verified the overall performance by presenting live video
demonstrations of how the mesh is immediately reconstructed
in the process of data collection. Then we extensively tested
ImMesh with four public datasets collected by four different
LiDAR sensors in various scenes, which confirmed the real-
time ability of our system. Lastly, we benchmarked the mesh-
ing performance of ImMesh in Experiment-3 by comparing
it against existing meshing baselines. The results show that
ImMesh achieves high meshing accuracy while keeping the
best runtime performance among all methods.

Applications of our system were demonstrated. We first
show how ImMesh can be applied for LiDAR point cloud
reinforcement, which generates reinforced points in a regular
pattern with denser density and wider FoV than raw LiDAR
scans. In Application-2, we combined our works ImMesh and
R3LIVE++ to achieve the goal of lossless texture reconstruc-
tion of scenes. Finally, we make our code publicly available
on our GitHub: github.com/hku-mars/ImMesh.

B. Limitations and future works

One major limitation of our work is its lack of scalability in
spatial resolution. Specifically, when dealing with large planar

surfaces, ImMesh tends to inefficiently reconstruct the mesh
with numerous small facets due to the fixed vertex density.
Conversely, for tiny objects smaller than the size of a voxel,
ImMesh struggles to accurately reconstruct their surfaces, as
mentioned in our quantitative evaluation results in Section
VIII-C5. To address this limitation, our future work will focus
on developing an adaptive resolution meshing strategy.

The second limitation is that our system does not cur-
rently implement any loop correction mechanism, resulting
in potential gradual drift due to accumulated localization
errors at revisited places. This potentially leads to inconsistent
reconstructed results if revisit occurs. In our future work, we
plan to address this limitation by integrating our recent works
[84, 85] on loop detection based on LiDAR point clouds. This
loop detection mechanism will allow us to detect loops online
and apply loop corrections to reduce drift and improve the
consistency of the reconstructed results.

Furthermore, we have noticed that a number of works ap-
peared in the literature recently, which utilize the reconstructed
mesh for improving the localization accuracy of both visual-
slam (e.g., [86]) and LiDAR-slam system (e.g., [87]–[89]).
Motivated by these works, our future work would improve
our localization accuracy by utilizing our online reconstructed
mesh.

Lastly, when realizing the goal of lossless texture recon-
struction of scenes, we combined ImMesh and R3LIVE at
the system level as presented in our Application-2 (in Section
VIII-E). Our future would couple ImMesh with R3LIVE more
tightly to improve the overall efficiency.

X. ACKNOWLEDGEMENTS

The authors would like to thank DJI Co., Ltd2 for providing
devices and research funds.

REFERENCES

[1] S. Mystakidis, “Metaverse,” Encyclopedia, vol. 2, no. 1, pp. 486–497,
2022.

[2] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A survey on metaverse: Fundamentals, security, and privacy,” IEEE
Communications Surveys & Tutorials, 2022.

[3] P. Cipresso, I. A. C. Giglioli, M. A. Raya, and G. Riva, “The past,
present, and future of virtual and augmented reality research: a network
and cluster analysis of the literature,” Frontiers in psychology, p. 2086,
2018.

[4] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics: Results of the 11th International Conference. Springer, 2018,
pp. 621–635.

[5] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning. PMLR, 2021, pp. 1147–1157.

[6] S. Laine and T. Karras, “High-performance software rasterization on
gpus,” in Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, 2011, pp. 79–88.

[7] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering.
AK Peters/crc Press, 2019.

[8] J. Arvo, Graphics gems II. Elsevier, 2013.
[9] P. Jiménez, F. Thomas, and C. Torras, “3d collision detection: a survey,”

Computers & Graphics, vol. 25, no. 2, pp. 269–285, 2001.
[10] C. Ericson, Real-time collision detection. Crc Press, 2004.
[11] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.

2https://www.dji.com

https://youtu.be/pzT2fMwz428?t=622
https://github.com/hku-mars/ImMesh
https://www.dji.com

19

[12] D. Baraff, “An introduction to physically based modeling: rigid body
simulation i—unconstrained rigid body dynamics,” SIGGRAPH course
notes, vol. 82, 1997.

[13] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.

[14] F. Kong, X. Liu, B. Tang, J. Lin, Y. Ren, Y. Cai, F. Zhu, N. Chen, and
F. Zhang, “Marsim: A light-weight point-realistic simulator for lidar-
based uavs,” arXiv preprint arXiv:2211.10716, 2022.

[15] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 4909–4916.

[16] D. S. SolidWorks, “Solidworks®,” Version Solidworks, vol. 1, 2005.
[17] B. O. Community, “Blender—a 3d modelling and rendering package,”

Blender Foundation, 2018.
[18] C. Yuan, W. Xu, X. Liu, X. Hong, and F. Zhang, “Efficient and

probabilistic adaptive voxel mapping for accurate online lidar odometry,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8518–8525,
2022.

[19] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[20] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transactions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.

[21] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface genera-
tion,” ACM Transactions on Graphics (TOG), vol. 11, no. 3, pp. 201–
227, 1992.

[22] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill, “Octree-based
decimation of marching cubes surfaces,” in Proceedings of Seventh
Annual IEEE Visualization’96. IEEE, 1996, pp. 335–342.

[23] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM siggraph computer graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[24] M. Kazhdan, M. Chuang, S. Rusinkiewicz, and H. Hoppe, “Poisson
surface reconstruction with envelope constraints,” in Computer graphics
forum, vol. 39, no. 5. Wiley Online Library, 2020, pp. 173–182.

[25] P. Labatut, J.-P. Pons, and R. Keriven, “Efficient multi-view reconstruc-
tion of large-scale scenes using interest points, delaunay triangulation
and graph cuts,” in 2007 IEEE 11th international conference on com-
puter vision. IEEE, 2007, pp. 1–8.

[26] V. Litvinov and M. Lhuillier, “Incremental solid modeling from sparse
and omnidirectional structure-from-motion data,” in British Machine
Vision Conference, 2013.

[27] M. Jancosek and T. Pajdla, “Exploiting visibility information in surface
reconstruction to preserve weakly supported surfaces,” International
scholarly research notices, vol. 2014, 2014.

[28] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The
ball-pivoting algorithm for surface reconstruction,” IEEE transactions on
visualization and computer graphics, vol. 5, no. 4, pp. 349–359, 1999.

[29] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su, “Point cloud
skeletons via laplacian based contraction,” in 2010 Shape Modeling
International Conference. IEEE, 2010, pp. 187–197.

[30] R. Wang, J. Peethambaran, and D. Chen, “Lidar point clouds to 3-d
urban models : a review,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 11, no. 2, pp. 606–627,
2018.

[31] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE international symposium on mixed and augmented reality.
Ieee, 2011, pp. 127–136.

[32] J. Chen, D. Bautembach, and S. Izadi, “Scalable real-time volumetric
surface reconstruction,” ACM Transactions on Graphics (ToG), vol. 32,
no. 4, pp. 1–16, 2013.

[33] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (ToG), vol. 32, no. 6, pp. 1–11, 2013.

[34] O. Kähler, V. Prisacariu, J. Valentin, and D. Murray, “Hierarchical voxel
block hashing for efficient integration of depth images,” IEEE Robotics
and Automation Letters, vol. 1, no. 1, pp. 192–197, 2015.

[35] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and
S. Leutenegger, “Efficient octree-based volumetric SLAM supporting
signed-distance and occupancy mapping,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 2, pp. 1144–1151, Apr. 2018.

[36] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray,
“Very high frame rate volumetric integration of depth images on mobile
devices,” IEEE transactions on visualization and computer graphics,
vol. 21, no. 11, pp. 1241–1250, 2015.

[37] M. Klingensmith, I. Dryanovski, S. S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3d reconstruction onboard a mobile device us-
ing spatially hashed signed distance fields.” in Robotics: science and
systems, vol. 4, no. 1. Citeseer, 2015.

[38] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 1366–1373.

[39] D. Lefloch, M. Kluge, H. Sarbolandi, T. Weyrich, and A. Kolb, “Com-
prehensive use of curvature for robust and accurate online surface
reconstruction,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 12, pp. 2349–2365, 2017.

[40] D. Lefloch, T. Weyrich, and A. Kolb, “Anisotropic point-based fusion,”
in 2015 18th International Conference on Information Fusion (Fusion).
IEEE, 2015, pp. 2121–2128.

[41] T. Weise, T. Wismer, B. Leibe, and L. Van Gool, “In-hand scanning
with online loop closure,” in 2009 IEEE 12th International Conference
on Computer Vision Workshops, ICCV Workshops. IEEE, 2009, pp.
1630–1637.

[42] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3d model
acquisition,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp.
438–446, 2002.

[43] M. Habbecke and L. Kobbelt, “A surface-growing approach to multi-
view stereo reconstruction,” in 2007 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2007, pp. 1–8.

[44] T. Bodenmueller, “Streaming surface reconstruction from real time 3d
measurements,” Ph.D. dissertation, Technische Universität München,
2009.

[45] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “Elasticfusion: Dense slam without a pose graph.” Robotics:
Science and Systems, 2015.

[46] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[47] W. Gao and R. Tedrake, “Surfelwarp: Efficient non-volumetric single
view dynamic reconstruction,” arXiv preprint arXiv:1904.13073, 2019.

[48] T. Schöps, T. Sattler, and M. Pollefeys, “Surfelmeshing: Online surfel-
based mesh reconstruction,” IEEE transactions on pattern analysis and
machine intelligence, vol. 42, no. 10, pp. 2494–2507, 2019.

[49] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H.
Gross, “Optimized spatial hashing for collision detection of deformable
objects.” in Vmv, vol. 3, 2003, pp. 47–54.

[50] C++ std::unordered map: https://cplusplus.com/reference/unordered
map/unordered map/.

[51] ISO, ISO/IEC 14882:1998: Programming languages – C++, Sep. 1998.
[52] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct

lidar-inertial odometry,” IEEE Transactions on Robotics, 2022.
[53] Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incremental kd tree for

robotic applications,” arXiv preprint arXiv:2102.10808, 2021.
[54] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in

2011 IEEE international conference on robotics and automation. IEEE,
2011, pp. 1–4.

[55] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[56] R. Stevens, Computer Graphics Dictionary, ser. ADVANCES IN
COMPUTER GRAPHICS AND GAME DEVELOPMENT SERIES.
Charles River Media, 2002. [Online]. Available: https://books.google.
com.hk/books?id=XqlJcMi1Pi0C

[57] W. Kahan, “Miscalculating area and angles of a needle-like triangle,”
University of California, Berkeley, vol. 94720, 1776.

[58] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL programming
guide: the official guide to learning OpenGL. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[59] F. Evans, S. Skiena, and A. Varshney, “Optimizing triangle strips for fast
rendering,” in Proceedings of Seventh Annual IEEE Visualization’96.
IEEE, 1996, pp. 319–326.

[60] D. Hearn, M. P. Baker, and M. P. Baker, Computer graphics with
OpenGL. Pearson Prentice Hall Upper Saddle River, NJ:, 2004, vol. 3.

[61] J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. ” O’Reilly
Media, Inc.”, 2012.

https://cplusplus.com/reference/unordered_map/unordered_map/
https://cplusplus.com/reference/unordered_map/unordered_map/
https://books.google.com.hk/books?id=XqlJcMi1Pi0C
https://books.google.com.hk/books?id=XqlJcMi1Pi0C

20 IEEE TRANSACTIONS ON ROBOTICS. ACCEPTED NOV, 2023

[62] K. R. Castleman, Digital image processing. Prentice Hall Press, 1996.
[63] A. Fabri and S. Pion, “Cgal: The computational geometry algorithms

library,” in Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems, 2009, pp.
538–539.

[64] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete and
computational geometry. CRC press, 2017.

[65] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 1689–1696.

[66] D. Attali, J.-D. Boissonnat, and A. Lieutier, “Complexity of the delaunay
triangulation of points on surfaces the smooth case,” in Proceedings of
the nineteenth annual symposium on Computational Geometry, 2003,
pp. 201–210.

[67] “Face culling in opengl.” [Online]. Available: https://www.khronos.org/
opengl/wiki/Face Culling

[68] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transactions
on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[69] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.

[70] J. Lin, C. Yuan, Y. Cai, H. Li, Y. Ren, Y. Zou, X. Hong,
and F. Zhang, “Accompanying video for immesh,” 2023. [Online].
Available: https://youtu.be/pzT2fMwz428

[71] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 2012, pp. 3354–3361.

[72] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of michigan north campus long-term vision and lidar dataset,” The
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2016.

[73] T.-M. Nguyen, S. Yuan, M. Cao, Y. Lyu, T. H. Nguyen, and L. Xie,
“Ntu viral: A visual-inertial-ranging-lidar dataset, from an aerial vehicle
viewpoint,” The International Journal of Robotics Research, vol. 41,
no. 3, pp. 270–280, 2022.

[74] J. Lin and F. Zhang, “R3live: A robust, real-time, rgb-colored, lidar-
inertial-visual tightly-coupled state estimation and mapping package,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 10 672–10 678.

[75] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” The International Journal of Robotics Research, vol. 38, no. 6,
pp. 642–657, 2019.

[76] D. Cernea, “OpenMVS: Multi-view stereo reconstruction library,” 2020.
[Online]. Available: https://cdcseacave.github.io/openMVS

[77] C. L. Lawson, “Software for c1 surface interpolation,” in Mathematical
software. Elsevier, 1977, pp. 161–194.

[78] J. R. Shewchuk, Delaunay refinement mesh generation. Carnegie
Mellon University, 1997.

[79] X.-Y. Li, “Generating well-shaped d-dimensional delaunay meshes,”
Theoretical Computer Science, vol. 296, no. 1, pp. 145–165, 2003.

[80] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao, “Neuralrecon: Real-time
coherent 3d reconstruction from monocular video,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 15 598–15 607.

[81] Z. Murez, T. Van As, J. Bartolozzi, A. Sinha, V. Badrinarayanan, and
A. Rabinovich, “Atlas: End-to-end 3d scene reconstruction from posed
images,” in Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer,
2020, pp. 414–431.

[82] J. Lin and F. Zhang, “R3live++: A robust, real-time, radiance reconstruc-
tion package with a tightly-coupled lidar-inertial-visual state estimator,”
arXiv preprint arXiv:2209.03666, 2022.

[83] J. Lin, C. Yuan, Y. Cai, H. Li, Y. Ren, Y. Zou, X. Hong,
and F. Zhang, “Supplementary material for immesh,” 2023.
[Online]. Available: https://github.com/hku-mars/ImMesh/blob/main/
supply/Supplementary material.pdf

[84] C. Yuan, J. Lin, Z. Zou, X. Hong, and F. Zhang, “Std: Stable triangle
descriptor for 3d place recognition,” arXiv preprint arXiv:2209.12435,
2022.

[85] J. Lin and F. Zhang, “A fast, complete, point cloud based loop closure for
lidar odometry and mapping,” arXiv preprint arXiv:1909.11811, 2019.

[86] V. Panek, Z. Kukelova, and T. Sattler, “Meshloc: Mesh-based visual
localization,” in European Conference on Computer Vision. Springer,
2022, pp. 589–609.

[87] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, “Poisson
surface reconstruction for lidar odometry and mapping,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 5624–5630.

[88] M. Dreher, H. Blum, R. Siegwart, and A. Gawel, “Global localization
in meshes,” in ISARC. Proceedings of the International Symposium on
Automation and Robotics in Construction, vol. 38. IAARC Publications,
2021, pp. 747–754.

[89] M. Oelsch, M. Karimi, and E. Steinbach, “R-loam: Improving lidar
odometry and mapping with point-to-mesh features of a known 3d
reference object,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2068–2075, 2021.

https://www.khronos.org/opengl/wiki/Face_Culling
https://www.khronos.org/opengl/wiki/Face_Culling
https://youtu.be/pzT2fMwz428
https://cdcseacave.github.io/openMVS
https://github.com/hku-mars/ImMesh/blob/main/supply/Supplementary_material.pdf
https://github.com/hku-mars/ImMesh/blob/main/supply/Supplementary_material.pdf

1

Supplementary Material: An additional trial of our lossless texture reconstruction based on ImMesh

Fig. 1: Results of an additional trial test. In this trial, we collected the data by flying over islands in an “B”-like trajectory, as shown by the blue path in (a). (b1) and (b2) show the side
view and bird view of our reconstructed triangle mesh, where the mesh is colored by their altitude w.r.t. the sea level. (a) show the overview of our lossless texture reconstruction result,
where we use the estimated camera poses (the yellow frustums) of R3LIVE++ for texturing the mesh with the collected images. The entire texture reconstruction of this 578 s sequence
only costs 1210 s (on Intel i9-10900), with 583 s for ImMesh, 587 s for R3LIVE++, and 40 s for texturing. To see the detailed reconstruction process of the scene, please refer to our video
on YouTube: youtu.be/pzT2fMwz428?t=892.

https://youtu.be/pzT2fMwz428?t=892

	Introduction
	Related Works
	Offline mesh reconstruction
	Poisson surface reconstruction (Poisson-based)
	Delaunay triangulation and graph cut (Delaunay-based)

	Online mesh reconstruction
	Voxel volume-based methods (TSDF-based)
	Surfel-based mesh reconstruction

	System overview
	Map structure
	Data types: Region, voxel, triangle facet, and mesh vertex
	Region R
	Voxel O
	Triangle facet T
	Mesh vertex V

	Data structure: Hash tables and Incremental kd-Tree (ikd-Tree)
	Hash tables
	Incremental kd-Tree (ikd-Tree)

	Receiver and localization
	Voxel map construction
	Point cloud registration
	Append of mesh vertices

	Meshing
	Goals and requirements
	Challenges and approaches
	Voxel-wise vertex retrieval
	Retrieval of in-voxel vertices
	Vertex dilation

	Dimension reduction through projection
	Projection of 3D vertices on a 2D plane
	Two-dimensional Delaunay triangulation

	Voxel-wise meshing with pull, commit, and push
	Pull
	Commit
	Push

	Parallelism
	The full meshing algorithm

	Broadcaster
	Broadcast of triangle facets
	Rasterization of depth image

	Experiments and results
	Experiment-1: ImMesh for immediate mesh reconstruction
	Experiment setup
	Result and analysis

	Experiment-2: Extensive evaluation of ImMesh on public datasets with various types of LiDAR in different scenes
	Experiment setup
	Result and analysis

	Experiment-3: Quantitative evaluation of ImMesh
	Preparation of large-scale, real-world data
	Preparation of synthetic data
	Experiment setup
	Evaluation of fairness
	Evaluation of correctness
	Evaluation of runtime performance
	Summary

	Application-1: LiDAR point cloud reinforcement
	Application-2: Rapid, lossless texture reconstruction

	Conclusions and future work
	Conclusions
	Limitations and future works

	Acknowledgements
	References

