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Why formalize things on computers

Writing correct programs is hard:

The human mind is focused on the big picture;
Hard to take track of all the trivial / particular cases.

Some excerpts of my contribution to Sagemath:
determinant / rank / invertibility of 0× 0 and 1× 1 matrices
empty set and its permutation
empty partition / composition / parking function / tableau . . .
the 0 and 1 species
. . .

What about proofs ?
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Are our proofs always correct ?

Donald Knuth:
Beware of bugs in the above code; I have only proved
it correct, not tried it.

Often in combinatorics, and particularly in bijective combinatorics,
proofs are algorithms, together with justifications that they meet
their specifications...
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Are our proofs always correct ?

The Littlewood-Richardson rule:

stated (1934) by D. E. Littlewood and A. R. Richardson,
wrong proof, wrong example.
Robinson (1938), wrong completed proof.
more wrong published proofs...
first correct proof: Schützenberger (1977).
nowadays: dozens of different proofs. . .

Wikipedia: The Littlewood–Richardson rule is notorious
for the number of errors that appeared prior to its complete,
published proof. Several published attempts to prove it are
incomplete, and it is particularly difficult to avoid errors when
doing hand calculations with it: even the original example in D.
E. Littlewood and A. R. Richardson (1934) contains an error.
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The case of the Littlewood-Richardson rule ?

A footnote in Macdonald’s book:

Gordon James reports that he was once told that:
“The Littlewood-Richardson rule helped to get men on

the moon, but it was not proved until after they had got
there. The first part of this story might be an
exaggeration.”

This sentence appears in James, G. D. (1987) The representation
theory of the symmetric groups.
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The case of the Littlewood-Richardson rule ?

More quotation of James:
It seems that for a long time the entire body of experts

in the field was convinced by these proofs; at any rate it was
not until 1976 that McConnell pointed out a subtle ambiguity
in part of the construction underlying the argument.

[...]
How was it possible for an incorrect proof of such a central

result in the theory of Sn to have been accepted for close to
forty years? The level of rigor customary among
mathematicians when a combinatorial argument is required, is
(probably quite rightly) of the nonpedantic hand-waving kind;
perhaps one lesson to be drawn is that a higher degree of
care will be needed in dealing with such combinatorial
complexities as occur in the present level of development of
Young’s approach.
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Problem
Suppose that, back in 1977, they had had our current proof
assistant technology. Would it have been feasible to check
Schützenberger proof ? If so, how long would it have taken ?

Theorem (Constructive answer !)

Yes ! Less than 5 month and two weeks !

commit f990146b8c6e062fe025740a08f888deb9481c2d
Date: Thu Jul 24 17:46:58 2014 +0200

Schensted’s algorithm.

commit 2418282695455261e5459b33d3e8f979d57c3bdb
Date: Sun Jan 4 15:31:16 2015 +0100

DONE the proof of the Littlewood_Richardson rule !!!!
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History of Coq and Mathcomp

1985 – T. Coquand : Calculus of constructions
1989 – T. Coquand, G. Huet: creation of Coq
2004 – G. Gonthier, B. Werner : 4 color theorem in Coq
Along their way Ssreflect “small scale reflection”.
2006 – 2018 Mathematical component: a library of formalized
mathematics.

basic data structures, algebra, group an representation theory;
the infrastructure for the machine checked proofs of:

2012 – Coq checked proof of Feit-Thomson’s theorem:
Every finite group of odd order is solvable.
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Formal (mechanized) proofs

Aim
Write a proof that is checked by computer all the way down to the
logical foundation.

Proof assistant / interactive theorem prover :
A kind of Integrated Development Environment (IDE) which helps
writing such proofs by constantly checking the coherence and
keeping track of missing parts.

Note: Proof assistant 6= automated theorem prover
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What is needed to build a proof assistant ?

Three ingredients:
1 A way to store algorithms that allows for
manipulating them and reasoning about them;

2 A way to store proofs that allows for
manipulating them and reasoning about them;

3 A way to mechanically check everything.
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Proofs as programs (Curry-Howard)

Suppose that
we have data encoding a proof a and two statements A and B
the system is able to make so-called judgments:
to verify that a is a correct proof of A (written as a : A)

Then, the statement A→ B means that each time we have a proof
of A, we can construct a proof of B .

Curry-Howard correspondence in a nutshell

The idea is “simply” to encode a proof of A→ B by a function
(= a program) which takes a proof of A and returns a proof of B .

Similarly, a proof of ∀x ,P(x), is encoded as a function which takes
x and returns a proof of P(x).
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Type theory based proof assistants

Proof assistant = a system that:

manipulates (stores, executes, . . . ) functions (Λ-calculus)

checks judgments such as a : A (typed Λ-calculus)

To make it more usable, we need also
building blocks for custom data structures: records, unions

(Calculus of Inductive Construction ≈ Galina)
helpers for writing proof/programs incrementally

(tactic language).
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You only need to remember:

Summary

proof, statement, data, programs, etc are all the same first
class manipulated objects called terms
some terms are allowed (from the logic or by their definition)
to appear on the right of the judgment symbol “:”. They are
called types. They encode usual data types as well as
statement
every term has a type

Enough for the theory. . .

Time for a demo. . .
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Boolean reflection

Two ways to deal with statements:
inductive formulas (i.e. data structure storing a proof):
and, or, exist...:
⇒ good for reasoning, deducing, implication chaining. . .

decision procedure (i.e. function returning a boolean):
⇒ good for combinatorial analysis, automatically taking care
of trivial cases. . .

Boolean reflection
Going back and forth between the two ways:

reflect (maxn m n = m) (m >= n).
reflect (exists2 x : T, x \in s & a x) (has a s)
reflect (filter s = s) (all s)
reflect (forall x, x \in s -> a x) (all a s).
reflect (exists2 i, i < size s & nth x0 s i = x) (x \in s).
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Integer Partitions

Partition: λ := (λ0 ≥ λ1 ≥ · · · ≥ λl > 0).
|λ| := λ0 + λ1 + · · ·+ λl et `(λ) := l .

Ferrers diagram of a partitions : (5, 3, 2, 2)↔
is_part

Fixpoint is_part sh := (* Predicate *)
if sh is sh0 :: sh’
then (sh0 >= head 1 sh’) && (is_part sh’)
else true.

Lemma is_partP sh : reflect (* Boolean reflection lemma *)
(last 1 sh != 0 /\ forall i, (nth 0 sh i) >= (nth 0 sh i.+1))
(is_part sh).

Lemma is_part_ijP sh : reflect (* Boolean reflection lemma *)
(last 1 sh != 0 /\ forall i j, i <= j -> (nth 0 sh i) >= nth 0 sh j)
(is_part sh).

Lemma is_part_sortedE sh : (is_part sh) = (sorted geq sh) && (0 \notin sh).

http://hivert.github.io/Coq-Combi/Combi.Combi.partition.html#is_part


The Littlewood-Richardson rule 20 de 40

Symmetric Polynomials

n-variables : Xn := {x0, x1, . . . xn−1}.
Polynomials in X : C[X] = C[x0, x1, . . . , xn−1]; ex: 3x3

0 x2 + 5x1x4
2 .

Definition (Symmetric polynomial)

A polynomial is symmetric if it is invariant under any permutation
of the variables: for all σ ∈ Sn,

P(x0, x1, . . . , xn−1) = P(xσ(0), xσ(1), . . . , xσ(n−1))

P(a, b, c) = a2b + a2c + b2c + ab2 + ac2 + bc2

Q(a, b, c) = 5abc + 3a2bc + 3ab2c + 3abc2
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Schur symmetric polynomials (Jacobi)

Definition (Schur symmetric polynomial)

Partition λ := (λ0 ≥ λ1 ≥ · · · ≥ λl−1) with l ≤ n; set λi := 0 for i ≥ l .

sλ =

∑
σ∈Sn

sign(σ)Xσ(λ+ρ)n∏
0≤i<j<n(xj − xi )

=

∣∣∣∣∣∣∣∣∣∣∣

x
λn−1+0
1 x

λn−1+0
2 ... x

λn−1+0
n

x
λn−2+1
1 x

λn−2+1
2 ... x

λn−2+1
n

...
...

. . .
...

xλ1+n−2
1 xλ1+n−2

2 ... xλ1+n−2
n

xλ0+n−1
1 xλ0+n−1

2 ... xλ0+n−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 ... 1
x1 x2 ... xn
x2
1 x2

2 ... x2
n

...
...

. . .
...

xn−1
1 xn−1

2 ... xn−1
n

∣∣∣∣∣∣∣∣

s(2,1)(a, b, c) = a2b + ab2 + a2c + 2abc + b2c + ac2 + bc2
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Littlewood-Richardson coefficients

Proposition

The family (sλ(Xn))`(λ)≤n is a (linear) basis of the ring of
symmetric polynomials on Xn.

Definition (Littlewood-Richardson coefficients)

Coefficients cνλ,µ of the expansion of the product:

sλsµ =
∑
ν

cνλ,µsν .

Fact: sλ(Xn−1, xn := 0) = sλ(Xn−1) if `(λ) < n else 0.
Consequence: cνλ,µ are independant of the number of variables.
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Young Tableau

Definition

Filling of a partition shape;
non decreasing along the rows;
strictly increasing along the columns.

row reading

d d e
b c c c d
a a a b b d e

= ddebcccdaaabbde
5
2 6 9
1 3 4 7 8

= 526913478
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Young Tableau: formal definition

dominate

Variable (T : ordType) (Z : T). (* Ordered type Order <A *)

Definition dominate (u v : seq T) :=
(size u <= size v &&
(all (fun i => nth Z u i >A nth Z v i) (iota 0 (size u))).

Lemma dominateP u v :
reflect (size u <= size v /\

forall i, i < size u -> nth Z u i >A nth Z v i)
(dominate u v).

is_tableau

Fixpoint is_tableau (t : seq (seq T)) :=
if t is t0 :: t’ then

[&& (t0 != [::]), sorted t0,
dominate (head [::] t’) t0 & is_tableau t’]

else true.

Definition to_word t := flatten (rev t).

http://hivert.github.io/Coq-Combi/Combi.Combi.tableau.html#dominate
http://hivert.github.io/Coq-Combi/Combi.Combi.tableau.html#is_tableau
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Combinatorial definition of Schur functions

Definition

sλ(X) =
∑

T tableaux of shape λ

XT

where XT is the product of the elements of T .

s(2,1)(a, b, c) = a2b + ab2 + a2c + 2abc + b2c + ac2 + bc2

s(2,1)(a, b, c) = b
a a + b

a b + c
a a + b

a c + c
a b + c

b b + c
a c + c

b c

Note: I’ll prove the equivalence of the two definitions as a
consequence of a particular case of the LR-rule (Pieri rule) by
relating it with recursively unfolding determinants.
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tabsh

Variable n : nat.
Variable R : comRingType. (* Commutative ring *)

(* ’I_n : integer in 0,1,...,n-1 *)
(* ’P_d : partition of the integer d *)
(* {mpoly R[n]} : the ring of polynomial over the commutative ring R *)
(* in n variables (P.-Y. Strub) *)

Definition is_tab_of_shape sh :=
[ pred t :> seq (seq ’I_n.+1) | (is_tableau t) && (shape t == sh) ].

Structure tabsh sh := TabSh {tabshval; _ : is_tab_of_shape sh tabshval}.
[...]
Canonical tabsh_finType sh := [...] (* Finite type *)

Schur

Definition Schur d (sh : ’P_d) : {mpoly R[n]} :=
\sum_(t : tabsh n sh) \prod_(i <- to_word t) ’X_i.

http://hivert.github.io/Coq-Combi/Combi.Combi.tableau.html#tabsh
http://hivert.github.io/Coq-Combi/Combi.MPoly.Schur_mpoly.html#Schur
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Yamanouchi Words

|w |x : number of occurrence of x in w .

Definition
Sequence w0, . . . ,wl−1 of integers such that for all k, i ,∣∣wi , . . . ,wl−1

∣∣
k ≥

∣∣wi , . . . ,wl−1
∣∣
k+1

Equivalently (|w |i )i≤max(w) is a partition and w1, . . . ,wl−1 is also
Yamanouchi.

(), 0, 00, 10, 000, 100, 010, 210,

0000, 1010, 1100, 0010, 0100, 1000, 0210, 2010, 2100, 3210
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The LR Rule at last !

Theorem (Littlewood-Richardson rule)

cνλ,µ is the number of (skew) tableaux of shape the difference ν/λ,
whose row reading is a Yamanouchi word of evaluation µ.

C 5432
331,421 = 3

1 2
0 0

1
0 0

0 2
0 1

1
0 0

0 1
0 2

1
0 0

C 7542
431,4321 = 4

2 3
1 1 2

0 1
0 0 0

2 3
0 1 2

1 1
0 0 0

1 3
0 2 2

1 1
0 0 0

0 3
1 2 2

1 1
0 0 0

C 7542
4321,431 = 4

2
1 1
0 1
0 0 0

1
1 2
0 1
0 0 0

1
0 2
1 1
0 0 0

0
1 2
1 1
0 0 0
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The formal statement

definition of LR-yam tableaux

(** yameval P = type of Yamanouchi word of evaluation P *)
Lemma is_skew_reshape_tableauP (w : seq nat) :

size w = sumn (P / P1) ->
reflect

(exists tab, [/\ is_skew_tableau P1 tab,
shape tab = P / P1 & to_word tab = w])

(is_skew_reshape_tableau P P1 w).

Definition LRyam_set :=
[set y : yameval P2 | is_skew_reshape_tableau P P1 y].

Definition LRyam_coeff := #|LRyam_set|.

Then the Littlewood-Richardson rule

Theorem LRyam_coeffP :
Schur P1 * Schur P2 =
\sum_(P : ’P_(d1 + d2) | included P1 P) Schur P *+ LRyam_coeff P.

http://hivert.github.io/Coq-Combi/Combi.LRrule.therule.html#is_skew_reshape_tableau
http://hivert.github.io/Coq-Combi/Combi.LRrule.therule.html#LRyam_coeffP
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Getting definition right

There is not a single “good” definition:

Lots of different equivalent ways. (eg: partitions, tableaux)

Even more difficult for algorithms ( standardization, shuffle):

Constraints:
Pure functional programming:
no variable, no mutable data structure

All function must be total (e.g. nth but option)

Only trivially terminating programs are allowed:
Only recursive call on subterms are allowed.

http://hivert.github.io/Coq-Combi/Combi.Combi.partition.html#is_part
http://hivert.github.io/Coq-Combi/Combi.Combi.tableau.html#is_tableau
http://hivert.github.io/Coq-Combi/Combi.Combi.std.html#std_rec
http://hivert.github.io/Coq-Combi/Combi.LRrule.shuffle.html#shuffle_from_rec
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Choices in constructive mathematics

Sometime you have a choice to make where any choice will do:

Example: contructing a conjugating permutation between two
permutations with same cycle type: Conjugacy classes of Sn

(* (s ^ c)%g == s conjugated by c *)
Theorem conj_permP s t :

reflect (exists c, t = (s ^ c)%g) (cycle_type s == cycle_type t).

currently, you have to write a precise program to make the
choice and prove that it works
the proof is usually easy because any choice will do
but writing the program making the choice can be harder than
expected.

http://hivert.github.io/Coq-Combi/Combi.SymGroup.cycletype.html#conj_permP
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Equality / set theory

Coq is based on CIC 6= set theory.

Constructive logic (not that much a problem in combinatorics)
Excluded middle P \/ ~ P is not provable (but can be added
as an axiom).

SSReflect deals smoothly with objects with decidable equality

This forbids generating series !
but see C. Cohen, B. Djalal Formalization of a Newton Series
Representation of Polynomials

The equality in type theory is “stronger” that in set theory
No proof of functional extensionality:

(forall x, f x = f y) -> f = g
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Greene Theorem

Disjoint support increasing subsequences:

ababcabbadbab

RS(w): Robinson-Schensted tableau of w :

Theorem
For any word w, and integer k

The sum of the length of the k-th first row of RS(w) is the
maximum sum of the length of k disjoint support increasing
subsequences of w;
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Equality on dependent type nightmare

Subsequences of a word w encoded by subsets of the indices of the
letter of w : {set ’I_(size w)}. But, when

x := u ++ [:: a; b] ++ v

y := u ++ [:: b; a] ++ v

x and y are two different words !
{set ’I_(size x)} and {set ’I_(size y)}: different types

Equality on dependent type

One can only write u = v if u and v are of the same type.
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Cast between dependent type nightmare

Here is a solution:
Prove that Hcast : size x = size y

Then cast_ord Hcast : ’I_(size w) -> ’I_(size y)

Then define: cast_set

(* f @: S == image of S by the function f *)
Definition cast_set n m (H : n = m) : {set ’I_n} -> {set ’I_m} :=

[fun s : {set ’I_n} => (cast_ord H) @: s].

swap_set

Definition swap (i : ’I_(size x)) : ’I_(size x) :=
if i == pos0 then pos1 else if i == pos1 then pos0 else i.

Definition swap_setX :=
[fun S : {set ’I_(size x)} => swap @: S : {set ’I_(size x)}].

Definition swap_set : {set ’I_(size x)} -> {set ’I_(size y)} :=
(fun S : {set ’I_(size x)} =>

[set cast_ord Hcast x | x in S]) \o swap_setX.

http://hivert.github.io/Coq-Combi/Combi.SSRcomplements.ordcast.html#cast_set
http://hivert.github.io/Coq-Combi/Combi.LRrule.Greene_inv.html#NoSetContainingBoth.swap_set
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Should you try (or is this a big waste of time) ? My two cents

I’m pretty convinced (I’m not the only one: Voevodsky, Hales)
that in the future (how far ?), formal math (not Coq/CIC) will
becomes very important (as is computation today).

However, currently, experts are not satisfied with the
foundation (equality. . . ).

This was much easier that I first expected !

Boolean reflection : very good job dealing with trivial cases
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Should you try (or is this a big waste of time) ? My two cents

Lots of time spent on reusable basic stuff
(tableau / partition / rewriting systems / symmetric fncts). . .

Some other results:

The hook-length formulas: 3 weeks (joint work w. C. Paulin)

Cycle decomposition: 2 months (T. Benjamin, undergrad)

Basic theory of symmetric functions: 3 months

Character theory of the symmetric groups: 1 month

This is transforming math into a video-game

Fun if you like it, but very addictive !

http://hivert.github.io/Coq-Combi/index.html
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Want to have a closer look ?

The code:

https://github.com/hivert/Coq-Combi

The documentation:

http://hivert.github.io/Coq-Combi

https://github.com/hivert/Coq-Combi
http://hivert.github.io/Coq-Combi
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