
XCONFIGURE

XCONFIGURE is a collection of configure wrapper scripts for various HPC applications. The purpose of the scripts is
to configure the application in question to make use of Intel's software development tools (Intel Compiler, Intel MPI,
Intel MKL). XCONFIGURE helps to rely on a "build recipe", which is known to expose the highest performance or to
reliably complete the build process.

Contributions are very welcome!

Each application (or library) is hosted in a separate directory. To configure (and ultimately build) an application, one
can rely on a single script which then downloads a specific wrapper into the current working directory (of the desired
application).
wget --no -check - certificate https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh

echo " EXAMPLE : recipe for Quantum Espresso "
./ configure -get.sh qe hsw

On systems without access to the Internet, one can download (or clone) the entire collection upfront. To configure an
application, please open the config folder directly or use the documentation and then follow the build recipe of the
desired application or library.

Documentation

• ReadtheDocs: online documentation with full text search: CP2K, ELPA, LIBINT, LIBXC, LIBXSMM, QE,
and TF.

• PDF: a single documentation file.

Related Projects

• Spack Package Manager: [http://computation.llnl.gov/projects/spack-hpc-package-manager%5D(http:
//computation.llnl.gov/projects/spack-hpc-package-manager)

• EasyBuild / EasyConfig (University of Gent): [https://github.com/easybuilders%5D(https://github.com/easyb
uilders)

Please note that XCONFIGURE has a narrower scope when compared to the above package managers.

Applications

CP2K

This document describes building CP2K with several (optional) libraries, which may be beneficial for functionality or
performance.

• LIBXSMM targets DBCSR, DBM/DBT, GRID, and other components
• LIBINT enables a wide range of workloads (almost necessary)
• LIBXC enables exchange-correlation functionals for DFT
• MPI is auto-detected (Intel MPI and OpenMPI supported)
• MKL or Intel Math Kernel Library:

– Provides LAPACK/BLAS and ScaLAPACK library
– Provides FFTw library

1

CONTRIBUTING.md#contributing
https://github.com/hfp/xconfigure/archive/master.zip
https://github.com/hfp/xconfigure/tree/master/config
https://xconfigure.readthedocs.io/
https://xconfigure.readthedocs.io/
https://github.com/hfp/xconfigure/tree/master/config/cp2k
https://github.com/hfp/xconfigure/tree/master/config/elpa
https://github.com/hfp/xconfigure/tree/master/config/libint
https://github.com/hfp/xconfigure/tree/master/config/libxc
https://github.com/hfp/xconfigure/tree/master/config/libxsmm
https://github.com/hfp/xconfigure/tree/master/config/qe
https://github.com/hfp/xconfigure/tree/master/config/tf
https://github.com/hfp/xconfigure/raw/main/xconfigure.pdf
http://computation.llnl.gov/projects/spack-hpc-package-manager%5D(http://computation.llnl.gov/projects/spack-hpc-package-manager)
http://computation.llnl.gov/projects/spack-hpc-package-manager%5D(http://computation.llnl.gov/projects/spack-hpc-package-manager)
https://github.com/easybuilders%5D(https://github.com/easybuilders)
https://github.com/easybuilders%5D(https://github.com/easybuilders)
https://github.com/libxsmm/libxsmm
../libint/README.md#libint
../libxc/README.md#libxc

For functionality and performance, the dependencies are almost necessary or highly recommended. For instance,
LIBXSMM has been incorporated since CP2K 3.0 and enables high performance in several components of CP2K. The
optional ELPA library for matrix diagonalization eventually improves the performance over ScaLAPACK (also refer to
PREFERRED_DIAG_LIBRARY in CP2K's Input Reference).

Note: CP2K's install_cp2k_toolchain.sh (under tools/toolchain) as well as CMake based builds are out of scope in
this document (see official CP2K guide).

XCONFIGURE provides a collection of helper scripts, optional patches, and an ARCH-file supporting:

• GNU Compiler Collection (default, if ifx or ifort are not available, explicit with make ARCH=Linux-x86-64-intelx VERSION=psmp GNU=1)
• Intel Compiler (default, if ifx is available, explicit with make ARCH=Linux-x86-64-intelx VERSION=psmp INTEL=2)

Note: Intel Classic Compiler is used by default, if ifort is available but ifx or gfortran are not available, and it can
be explicitly selected with make ARCH=Linux-x86-64-intelx VERSION=psmp INTEL=1).

Step-by-step Guide

This step-by-step guide assumes the GNU Compiler Collection (GNU Fortran), Intel MPI and Intel MKL as prerequisites
(adding an Intel repository to the Linux distribution's package manager, installing Intel MKL and Intel MPI or
supporting an HPC fabric is out of scope in this document. is not subject of this document). Building LIBXSMM,
LIBINT, and LIBXC is part of the steps.

Note: in an offline environment, it is best to download the entire XCONFIGURE project upfront and to upload it to
the target system. Offline limitations can be worked around and overcome with additional steps. This step-by-step
guide assumes Internet connectivity.

For the following steps, it is necessary to place LIBINT, LIBXC, LIBXSMM, and CP2K into a common directory
($HOME is assumed). The resulting folder structure looks like:

• libint-v2.6.0-cp2k-lmax-6
• libint/gnu
• libxc-6.2.2
• libxc/gnu
• libxsmm
• cp2k

1) First, please download configure-get.sh to any location and make the prerequisites available (GNU Compiler
Collection, Intel MPI and Intel MKL):
wget https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh

source /opt/intel/ oneapi /mpi/ latest /env/vars.sh
source /opt/intel/ oneapi /mkl/ latest /env/vars.sh

2) The second step builds a LIBINT which is already preconfigured for CP2K. To fully bootstrap LIBINT is out of
scope for this step.
cd $HOME && curl -s https :// api. github .com/repos/cp2k/libint -cp2k/ releases / latest \
| grep " browser_download_url " | grep "lmax -6" \
| sed "s/..*: \" \(..*[^\ "]\)\".*/ url \1/" \
| curl -LOK -

A rate limit applies to anonymous GitHub API requests of the same origin. If the download fails, it can be worth
trying an authenticated request relying on a GitHub account (-u "user:password").
cd $HOME && tar xvf libint -v2 .6.0 - cp2k -lmax -6. tgz
rm libint -v2 .6.0 - cp2k -lmax -6. tgz
cd libint -v2 .6.0 - cp2k -lmax -6

/path/to/configure -get.sh libint
./ configure -libint -gnu.sh

make -j $(nproc)
make install
make distclean

2

../libxsmm/README.md#libxsmm
https://www.cp2k.org/version_history
../elpa/README.md#eigenvalue-solvers-for-petaflop-applications-elpa
https://manual.cp2k.org/trunk/CP2K_INPUT.html
https://www.cp2k.org/howto:compile
https://github.com/hfp/xconfigure/archive/refs/heads/main.zip
https://github.com/cp2k/libint-cp2k/releases
../libint/README.md#boostrap-for-cp2k

There can be issues about target flags requiring a build-system able to execute compiled binaries. To avoid cross-
compilation (not supported here), please rely on a build-host matching the capabilities of the target system.

3) The third step builds LIBXC.
cd $HOME && wget https :// gitlab .com/libxc/libxc /-/ archive /6.2.2/ libxc -6.2.2. tar.bz2
tar xvf libxc -6.2.2. tar.bz2

rm libxc -6.2.2. tar.bz2
cd libxc -6.2.2

/path/to/configure -get.sh libxc
./ configure -libxc -gnu.sh

make -j $(nproc)
make install
make distclean

During configuration, please disregard any messages suggesting libtoolize --force.

4) The fourth step makes LIBXSMM available, which is compiled as part of the last step.
##cd $HOME && git clone https :// github .com/ libxsmm / libxsmm .git && cd libxsmm && git checkout develop
cd $HOME && wget https :// github .com/ libxsmm / libxsmm / archive /refs/heads/ develop .zip
unzip $HOME/libxsmm - develop .zip && ln -s libxsmm - develop libxsmm
##cd $HOME/ libxsmm && make GNU =1 -j $(nproc)

It can be useful to build LIBXSMM also in a separate fashion (see last/commented line above). This can be useful for
building a stand-alone reproducer in DBCSR's GPU backend as well as CP2K's DBM reproducer.

5) This last step builds CP2K and LIBXSMM inside of CP2K's source directory. A serial version VERSION=ssmp as
opposed to VERSION=psmp is possible, however OpenMP remains a requirement of CP2K's code base.

Downloading GitHub-generated assets from [https://github.com/cp2k/cp2k/releases%5D(https://github.com/cp2k/cp
2k/releases) like "Source code (zip)" or "Source code (tar.gz)" will miss submodules which are subsequently missed
when building CP2K.
cd $HOME && git clone https :// github .com/cp2k/cp2k.git
cd $HOME/cp2k && git pull && git submodule update --init --recursive
cd $HOME/cp2k/exts/dbcsr && git checkout develop && git pull

cd $HOME/cp2k && /path/to/configure -get.sh cp2k

Offline environment: no Internet connectivity is out of scope in this guide (configure-get.sh), but one can:
cd $HOME/cp2k
cp /path/to/ xconfigure / config /cp2k /*. sh .
cp /path/to/ xconfigure / config /cp2k/Linux -x86 -64- intelx .* arch
git apply cpassert .git.diff

Building CP2K proceeds with:
cd $HOME/cp2k
rm -rf exe lib obj
make ARCH=Linux -x86 -64- intelx VERSION =psmp GNU =1 cp2k -j $(nproc)

The initial output of the build looks like:
Discovering programs ...
==
Using the following libraries :
LIBXSMMROOT =/ path/to/ libxsmm
LIBINTROOT =/ path/to/ libint /gnu
LIBXCROOT =/ path/to/libxc/gnu
==
LIBXSMM develop (Linux)
--

Once the build is completed, the CP2K executable is ready (exe/Linux-x86-64-intelx/cp2k.psmp):

3

https://github.com/cp2k/cp2k/releases%5D(https://github.com/cp2k/cp2k/releases)
https://github.com/cp2k/cp2k/releases%5D(https://github.com/cp2k/cp2k/releases)

$ LIBXSMM_VERBOSE =1 exe/Linux -x86 -64- intelx /cp2k.psmp
[...]
LIBXSMM_VERSION : develop
LIBXSMM_TARGET : spr

The ARCH-file attempts to auto-detect optional libraries using I_MPI_ROOT, MKLROOT environment variables as well as
searching certain standard locations. LIBXSMM, LIBINT, and LIBXC are expected in directories parallel to CP2K's
root directory. In general, build-keys such as LIBXSMMMROOT, LIBINTROOT, LIBXCROOT, ELPAROOT, and others are supported.
There are several other build-keys to customize the build (e.g., SYM=1, DBG=1, OPT=2, NDEBUG=0, AVX=2, or IMPI=0).

CP2K on GPUs

Please apply USE_ACCEL=opencl (like USE_ACCEL=cuda for CUDA) to XCONFIGURE's build instructions. The OpenCL
support enables DBCSR's OpenCL backend as well as CP2K's GPU-enabled DBM/DBT component.

Further, DBCSR can be built stand-alone and used to exercise and test GPU acceleration as well, which is not subject
of XCONFIGURE. Further, within DBCSR some driver code exists to exercise GPU performance in a stand-alone
fashion (does not even rely on DBCSR's build system; see DBCSR ACCelerator Interface). The OpenCL backend in
DBCSR provides tuned kernels for CP2K. Similarly, CP2K's DBM component (/path/to/cp2k/src/dbm) can be built
and exercised in a stand-alone fashion.

The OpenCL backend has comprehensive runtime-control by the means of environment variables. This can be used
to assign OpenCL devices, to aggregate sub-devices (devices are split into sub-devices by default), to extract kernel
shapes used by a specific workload, and to subsequently tune specific kernels.

Running CP2K

Running CP2K may go beyond a single node, and pinning processes and threads becomes even more important. There
are several schemes available. As a rule of thumb, a high rank-count for lower node-counts may yield best results
unless the workload is very memory intensive. In the latter case, lowering the number of MPI-ranks per node is
effective especially if a larger amount of memory is replicated rather than partitioned by the rank-count. In contrast
(communication bound), a lower rank count for multi-node computations may be desired. To ease running CP2K, there
are a number of supportive scripts provided by XCONFIGURE: plan.sh (see here), run.sh (see here), and info.sh.

As soon as several experiments are finished, it becomes handy to summarize the log-output. For this case, an info-script
(info.sh) is available attempting to present a table (summary of all results), which is generated from log files (.txt and
.out extension by default). Log files can be captured with tee, or the output is captured by the job scheduler.
./ run.sh benchmarks /QS/H2O -64. inp | tee cp2k -h2o64 -20240725 b.txt
ls -1 *. txt
cp2k -h2o64 -20240725 a.txt
cp2k -h2o64 -20240725 b.txt

./ info.sh [-best] [/ path/to/logs]
H2O -64 Nodes R/N T/R Cases/d Seconds
cp2k -h2o64 -20240725 a 2 32 4 807 107.237
cp2k -h2o64 -20240725 b 4 16 8 872 99.962

Note: the "Cases/d" metric is calculated with integer arithmetic and hence represents fully completed cases per day
(based on 86400 seconds per day). The number of seconds (as shown) is end-to-end (wall time), i.e., total time to
solution including any (sequential) phase (initialization, etc.). Performance is higher if the workload requires more
iterations (some publications present a metric based on iteration time).

Sanity Check

There is nothing that can replace the full regression test suite. However, to quickly check whether a build is sane or
not, one can run for instance benchmarks/QS/H2O-64.inp and check if the SCF iteration prints like the following:

4

https://cp2k.github.io/dbcsr/develop/page/3-developer-guide/3-programming/2-accelerator-backend/index.html
https://github.com/cp2k/dbcsr/tree/develop/src/acc/opencl/smm/params
https://cp2k.github.io/dbcsr/develop/page/3-developer-guide/3-programming/2-accelerator-backend/3-libsmm_ocl/index.html
plan.md
https://raw.githubusercontent.com/hfp/xconfigure/main/config/cp2k/run.sh

Step Update method Time Convergence Total energy Change
--

1 OT DIIS 0.15E+00 0.5 0.01337191 -1059.6804814927 -1.06E+03
2 OT DIIS 0.15E+00 0.3 0.00866338 -1073.3635678409 -1.37E+01
3 OT DIIS 0.15E+00 0.3 0.00615351 -1082.2282197787 -8.86E+00
4 OT DIIS 0.15E+00 0.3 0.00431587 -1088.6720379505 -6.44E+00
5 OT DIIS 0.15E+00 0.3 0.00329037 -1092.3459788564 -3.67E+00
6 OT DIIS 0.15E+00 0.3 0.00250764 -1095.1407783214 -2.79E+00
7 OT DIIS 0.15E+00 0.3 0.00187043 -1097.2047924571 -2.06E+00
8 OT DIIS 0.15E+00 0.3 0.00144439 -1098.4309205383 -1.23E+00
9 OT DIIS 0.15E+00 0.3 0.00112474 -1099.2105625375 -7.80E -01

10 OT DIIS 0.15E+00 0.3 0.00101434 -1099.5709299131 -3.60E -01
[...]

The column called "Convergence" must monotonically converge towards zero.

References

[https://nholmber.github.io/2017/04/cp2k-build-cray-xc40/%5D(https://nholmber.github.io/2017/04/cp2k-build-
cray-xc40/)
[https://xconfigure.readthedocs.io/cp2k/plan/%5D(https://xconfigure.readthedocs.io/cp2k/plan/)
[https://www.cp2k.org/static/downloads%5D(https://www.cp2k.org/static/downloads)
[https://www.cp2k.org/howto:compile%5D(https://www.cp2k.org/howto:compile)

ELPA

Build Instructions

ELPA 2021 Download and unpack ELPA and make the configure wrapper scripts available in ELPA's root folder.
Consider CP2K's download area (cache) as an alternative source for downloading ELPA.
echo "wget --content - disposition https :// www.cp2k.org/ static / downloads /elpa -2021.11.002. tar.gz"
wget --content - disposition https :// elpa.mpcdf.mpg.de/ software /tarball - archive / Releases /2021.11.002/ elpa -2021.11.002. tar.gz
tar xvf elpa -2021.11.002. tar.gz
cd elpa -2021.11.002

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh elpa

Please make the Intel Compiler and Intel MKL available on the command line. This depends on the environment. For
instance, many HPC centers rely on module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make clean
./ configure -elpa -skx -omp.sh
make -j ; make install

make clean
./ configure -elpa -skx.sh
make -j ; make install

Even if ELPA was just unpacked (and never built before), make clean is recommended in advance of building ELPA
("unknown module file format"). After building and installing the desired configuration(s), one may have a look at the
installation:
[user@system elpa -2021.11.002] $ ls ../ elpa

intel -skx
intel -skx -omp

For different targets (instruction set extensions) or for different versions of the Intel Compiler, the configure scripts
support an additional argument ("default" is the default tagname):
./ configure -elpa -skx -omp.sh tagname

5

https://nholmber.github.io/2017/04/cp2k-build-cray-xc40/%5D(https://nholmber.github.io/2017/04/cp2k-build-cray-xc40/)
https://nholmber.github.io/2017/04/cp2k-build-cray-xc40/%5D(https://nholmber.github.io/2017/04/cp2k-build-cray-xc40/)
https://xconfigure.readthedocs.io/cp2k/plan/%5D(https://xconfigure.readthedocs.io/cp2k/plan/)
https://www.cp2k.org/static/downloads%5D(https://www.cp2k.org/static/downloads)
https://www.cp2k.org/howto:compile%5D(https://www.cp2k.org/howto:compile)
https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html
https://www.cp2k.org/static/downloads

As shown above, an arbitrary "tagname" can be given (without editing the script). This might be used to build
multiple variants of the ELPA library.

ELPA 2020 Download and unpack ELPA and make the configure wrapper scripts available in ELPA's root folder.
Consider CP2K's download area (cache) as an alternative source for downloading ELPA.
echo "wget --content - disposition https :// elpa.mpcdf.mpg.de/ software /tarball - archive / Releases /2020.11.001/ elpa -2020.11.001. tar.gz"
wget --content - disposition https :// www.cp2k.org/ static / downloads /elpa -2020.11.001. tar.gz
tar xvf elpa -2020.11.001. tar.gz
cd elpa -2020.11.001

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh elpa

Please make the Intel Compiler and Intel MKL available on the command line. This depends on the environment. For
instance, many HPC centers rely on module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make clean
./ configure -elpa -skx -omp.sh
make -j ; make install

make clean
./ configure -elpa -skx.sh
make -j ; make install

Even if ELPA was just unpacked (and never built before), make clean is recommended in advance of building ELPA
("unknown module file format"). After building and installing the desired configuration(s), one may have a look at the
installation:
[user@system elpa -2020.11.001] $ ls ../ elpa

intel -skx
intel -skx -omp

ELPA 2019 Download and unpack ELPA and make the configure wrapper scripts available in ELPA's root folder.
wget --content - disposition https :// elpa.mpcdf.mpg.de/ software /tarball - archive / Releases /2019.11.001/ elpa -2019.11.001. tar.gz
tar xvf elpa -2019.11.001. tar.gz
cd elpa -2019.11.001

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh elpa

Please make the Intel Compiler and Intel MKL available on the command line. This depends on the environment. For
instance, many HPC centers rely on module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make clean
./ configure -elpa -skx -omp.sh
make -j ; make install

make clean
./ configure -elpa -skx.sh
make -j ; make install

Even if ELPA was just unpacked (and never built before), make clean is recommended in advance of building ELPA
("unknown module file format"). After building and installing the desired configuration(s), one may have a look at the
installation:
[user@system elpa -2019.11.001] $ ls ../ elpa

intel -skx
intel -skx -omp

6

https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html
https://www.cp2k.org/static/downloads
https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html

ELPA 2018 Please use ELPA 2017.11.001 for CP2K 6.1. For CP2K 7.1, please rely on ELPA 2019. ELPA 2018 fails
or crashes in several regression tests in CP2K (certain rank-counts produce an incorrect decomposition), and
hence ELPA 2018 should be avoided in production.

ELPA 2017 Download and unpack ELPA and make the configure wrapper scripts available in ELPA's root folder. It
is recommended to package the state (Tarball or similar), which is achieved after downloading the wrapper scripts.

Note: In Quantum Espresso, the __ELPA_2018 interface must be used for ELPA 2017.11 (-D__ELPA_2018). The
__ELPA_2017 preprocessor definition triggers the ELPA1 legacy interface (get_elpa_row_col_comms, etc.), which
was removed in ELPA 2017.11. This is already considered when using XCONFIGURE's wrapper scripts.
wget --content - disposition https :// elpa.mpcdf.mpg.de/ software /tarball - archive / Releases /2017.11.001/ elpa -2017.11.001. tar.gz
tar xvf elpa -2017.11.001. tar.gz
cd elpa -2017.11.001

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh elpa

Please make the Intel Compiler and Intel MKL available on the command line. This depends on the environment. For
instance, many HPC centers rely on module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make clean
./ configure -elpa -skx -omp.sh
make -j ; make install

make clean
./ configure -elpa -skx.sh
make -j ; make install

Even if ELPA was just unpacked (and never built before), make clean is recommended in advance of building ELPA
("unknown module file format").

References

[https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-
diagonalization%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-
performance-for-diagonalization)
[https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html%5D(https://elpa.mpcdf
.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html)
[https://www.cp2k.org/static/downloads%5D(https://www.cp2k.org/static/downloads)

HDF5

To download, configure, build, and install HDF5, one may proceed as shown below.
wget --content - disposition https :// support . hdfgroup .org/ftp/HDF5/ releases /hdf5 -1.12/ hdf5 -1.12.1/ src/hdf5 -1.12.1. tar.bz2
tar xvf hdf5 -1.12.1. tar.bz2
cd hdf5 -1.12.1

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh hdf5

Please make the intended compiler available on the command line. For instance, many HPC centers rely on
module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):

7

https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-diagonalization%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-diagonalization)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-diagonalization%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-diagonalization)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-diagonalization%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2l-elpa-optional-improved-performance-for-diagonalization)
https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html%5D(https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html)
https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html%5D(https://elpa.mpcdf.mpg.de/software/tarball-archive/ELPA_TARBALL_ARCHIVE.html)
https://www.cp2k.org/static/downloads%5D(https://www.cp2k.org/static/downloads)
https://support.hdfgroup.org/ftp/HDF5/releases/

make distclean
./ configure -hdf5 -skx.sh
make -j; make install

References

[https://support.hdfgroup.org/ftp/HDF5/releases/%5D(https://support.hdfgroup.org/ftp/HDF5/releases/)
[https://hdfgroup.org/%5D(https://hdfgroup.org/)

LIBINT

Overview

LIBINT consists of a compiler specializing the library by generating source files according to the needs of the desired
application. XCONFIGURE scripts support both preconfigured LIBINT as well as starting from generic source code.

After running the desired XCONFIGURE script on the generic source code, a compressed Tarball is left behind inside
of the original directory (libint-cp2k-lmax6.tgz). The exported code (as generated for CP2K's requirements), can be
unarchived, compiled, and installed using the XCONFIGURE scripts again (but faster because generating the source
code is omitted).

For CP2K 7.x and onwards, LIBINT 2.5 (or later) is needed. For CP2K 6.1 (and earlier), LIBINT 1.1.x is required
(1.2.x, 2.x, or any later version cannot be used).

Version 2.x

LIBINT generates code to an extent that is often specific to the application. The downloads from LIBINT's home
page are not configured for CP2K, which can be handled by XCONFIGURE. LIBINT configured for CP2K, can be
downloaded as well (take "lmax-6" if unsure).

To just determine the download-URL of an already configured package:
curl -s https :// api. github .com/repos/cp2k/libint -cp2k/ releases / latest \
| grep " browser_download_url " | grep "lmax -6" \
| sed "s/..*: \" \(..*[^\ "]\)\" .*/\1/ "

To download the lmax6-version right away, run the following command:
curl -s https :// api. github .com/repos/cp2k/libint -cp2k/ releases / latest \
| grep " browser_download_url " | grep "lmax -6" \
| sed "s/..*: \" \(..*[^\ "]\)\".*/ url \1/" \
| curl -LOK -

Note: A rate limit applies to GitHub API requests of the same origin. If the download fails, it can be worth trying an
authenticated request by using a GitHub account (-u "user:password").

To download the latest generic source code package of LIBINT (small package but full bootstrap for CP2K applies):
wget https :// github .com/ evaleev / libint / archive /refs/tags/v2 .9.0. tar.gz

Unpack the archive of choice and download the XCONFIGURE scripts:
tar xvf libint -v2 .6.0 - cp2k -lmax -6. tgz && cd libint -v2 .6.0 - cp2k -lmax -6
tar v2 .9.0. tar.gz && cd v2 .9.0

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh libint

There can be issues with target flags requiring a build-system able to execute a binary compiled with the flags of
choice. To avoid cross-compilation (not supported here), please rely on a build system that matches the target system.
For example, to configure and make for an Intel Xeon Scalable processor such as "Cascadelake" or "Skylake" server
("SKX") using, e.g., Intel Compiler:

8

https://support.hdfgroup.org/ftp/HDF5/releases/%5D(https://support.hdfgroup.org/ftp/HDF5/releases/)
https://hdfgroup.org/%5D(https://hdfgroup.org/)
https://github.com/evaleev/libint/releases
https://github.com/evaleev/libint/releases
https://github.com/cp2k/libint-cp2k/releases/latest
README.md#boostrap-for-cp2k

make distclean
./ configure -libint -skx.sh
make -j $(nproc); make install

To build native code for the system running the scripts using, e.g., GNU Compiler:
make distclean
./ configure -libint -gnu.sh
make -j $(nproc); make install

Make sure to run make distclean before reconfiguring for a different variant, e.g., changing between GNU and Intel
compiler. Further, for different compiler versions, different targets (instruction set extensions), or any other difference,
the configure-wrapper scripts support an additional argument (a "tagname"):
./ configure -libint -hsw.sh tagname

As shown above, an arbitrary "tagname" can be given (without editing the script). This might be useful when building
multiple variants of the LIBINT library.

Version 1.x

Download and unpack LIBINT and make the configure wrapper scripts available in LIBINT's root folder. Please note
that the "automake" package is a prerequisite.
wget --content - disposition https :// github .com/ evaleev / libint / archive /release -1 -1 -6. tar.gz
tar xvf release -1 -1 -6. tar.gz
cd libint -release -1-1-6

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh libint

For example, to configure and make for an Intel Xeon E5v4 processor (formerly codenamed "Broadwell"):
make distclean
./ configure -libint -hsw.sh
make -j $(nproc); make install

References

[https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-
exchange%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-
including-hf-exchange)
[https://github.com/evaleev/libint/releases/tag/release-1-1-6%5D(https://github.com/evaleev/libint/releases/tag/r
elease-1-1-6)
[https://github.com/cp2k/libint-cp2k/releases/latest%5D(https://github.com/cp2k/libint-cp2k/releases/latest)

Med File Library (libmed)

To download, configure, build, and install libmed, one may proceed as shown below.
wget --content - disposition https :// files.salome - platform .org/ Salome /other/med -4.1.0. tar.gz
tar xvf med -4.1.0. tar.gz
cd med -4.1.0

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh libmed

Please make the intended compiler available on the command line. For instance, many HPC centers rely on
module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

9

https://github.com/evaleev/libint/archive/release-1-1-6.tar.gz
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-exchange%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-exchange)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-exchange%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-exchange)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-exchange%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2g-libint-optional-enables-methods-including-hf-exchange)
https://github.com/evaleev/libint/releases/tag/release-1-1-6%5D(https://github.com/evaleev/libint/releases/tag/release-1-1-6)
https://github.com/evaleev/libint/releases/tag/release-1-1-6%5D(https://github.com/evaleev/libint/releases/tag/release-1-1-6)
https://github.com/cp2k/libint-cp2k/releases/latest%5D(https://github.com/cp2k/libint-cp2k/releases/latest)
https://salome-platform.org/downloads/

Note: Please make the "hdf5-tools" command available, or pay attention to the console output after configuring
libmed. In general, an HDF5 development package is necessary to pass the default configuration as implemented by
XCONFIGURE. One can adjust the configure wrapper script for custom-built HDF5 by pointing to an (non-default)
installation location.

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make distclean
./ configure -med -skx.sh
make -j; make install

References

[https://salome-platform.org/downloads/%5D(https://salome-platform.org/downloads/)
[http://wiki.opentelemac.org/doku.php?id=installation_linux_med%5D(http://wiki.opentelemac.org/doku.php?id
=installation_linux_med)
[http://opentelemac.org/%5D(http://opentelemac.org/)

LIBXC

To download, configure, build, and install LIBXC 2.x, 3.x (CP2K 5.1 and earlier is only compatible with LIBXC 3.0 or
earlier), 4.x (CP2K 7.1 and earlier is only compatible with LIBXC 4.x), or 5.x (CP2K 8.1 and later require LIBXC 5.x),
one may proceed as shown below. For CP2K, see also How to compile the CP2K code). In general, only the latest
major release of LIBXC (by the time of the CP2K-release) is supported.
wget --content - disposition https :// www.tddft.org/ programs /libxc/down.php?file =6.2.2/ libxc -6.2.2. tar.gz
tar xvf libxc -6.2.2. tar.gz
cd libxc -6.2.2

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh libxc

Please make the Intel Compiler available on the command line. This depends on the environment. For instance, many
HPC centers rely on module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make distclean
./ configure -libxc -skx.sh
make -j; make install

Note: Please disregard messages during configuration suggesting libtoolize --force.

References

[https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals%5D
(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals)

LIBXSMM

LIBXSMM is a library for specialized dense and sparse matrix operations, and deep learning primitives. The build
instructions can be found at [https://github.com/libxsmm/libxsmm%5D(https://libxsmm.readthedocs.io/#build-
instructions) (PDF).

10

https://salome-platform.org/downloads/%5D(https://salome-platform.org/downloads/)
http://wiki.opentelemac.org/doku.php?id=installation_linux_med%5D(http://wiki.opentelemac.org/doku.php?id=installation_linux_med)
http://wiki.opentelemac.org/doku.php?id=installation_linux_med%5D(http://wiki.opentelemac.org/doku.php?id=installation_linux_med)
http://opentelemac.org/%5D(http://opentelemac.org/)
https://gitlab.com/libxc/libxc/-/releases
https://www.tddft.org/programs/libxc/
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2k-libxc-optional-wider-choice-of-xc-functionals)
https://github.com/libxsmm/libxsmm%5D(https://libxsmm.readthedocs.io/#build-instructions)
https://github.com/libxsmm/libxsmm%5D(https://libxsmm.readthedocs.io/#build-instructions)
https://github.com/libxsmm/libxsmm/raw/master/documentation/libxsmm.pdf

METIS

To download, configure, build, and install METIS, one may proceed as shown below.
wget --content - disposition http :// glaros .dtc.umn.edu/ gkhome /fetch/sw/metis/metis -5.1.0. tar.gz
tar xvf metis -5.1.0. tar.gz
cd metis -5.1.0

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh metis

Please make the intended compiler available on the command line. For instance, many HPC centers rely on
module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make distclean
./ configure -metis -skx.sh
make -j; make install

References

[http://glaros.dtc.umn.edu/gkhome/metis/metis/download%5D(http://glaros.dtc.umn.edu/gkhome/metis/metis/
download)
[http://glaros.dtc.umn.edu/gkhome/views/metis%5D(http://glaros.dtc.umn.edu/gkhome/views/metis)

Plumed

To download, configure, build, and install Plumed 2.x (CP2K requires Plumed2), one may proceed as shown below.
See also How to compile CP2K with Plumed.
wget --content - disposition https :// github .com/ plumed / plumed2 / archive /v2 .8.0. tar.gz
tar xvf plumed2 -2.8.0. tar.gz
cd plumed2 -2.8.0

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh plumed

Please make the intended compiler available on the command line. For instance, many HPC centers rely on
module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

Note: Please make the "python" command available, which may point to Python2 or Python3. For example,
create a bin directory at $HOME (mkdir -p ${HOME}/bin), and create a symbolic link to either Python2 or Python3 (e.g.,
ln -s /usr/bin/python3 ${HOME}/bin/python).

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make distclean
./ configure -plumed -skx.sh
make -j; make install

References

[https://github.com/plumed/plumed2/releases/latest%5D(https://github.com/plumed/plumed2/releases/latest)
[https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-
sampling-methods%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-
various-enhanced-sampling-methods)
[https://www.cp2k.org/howto:install_with_plumed%5D(https://www.cp2k.org/howto:install_with_plumed)
[https://www.plumed.org/%5D(https://www.plumed.org/)

11

http://glaros.dtc.umn.edu/gkhome/metis/metis/download
http://glaros.dtc.umn.edu/gkhome/metis/metis/download%5D(http://glaros.dtc.umn.edu/gkhome/metis/metis/download)
http://glaros.dtc.umn.edu/gkhome/metis/metis/download%5D(http://glaros.dtc.umn.edu/gkhome/metis/metis/download)
http://glaros.dtc.umn.edu/gkhome/views/metis%5D(http://glaros.dtc.umn.edu/gkhome/views/metis)
https://www.plumed.org/download
https://github.com/plumed/plumed2/releases/latest
https://www.cp2k.org/howto:install_with_plumed
https://github.com/plumed/plumed2/releases/latest%5D(https://github.com/plumed/plumed2/releases/latest)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-sampling-methods%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-sampling-methods)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-sampling-methods%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-sampling-methods)
https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-sampling-methods%5D(https://github.com/cp2k/cp2k/blob/master/INSTALL.md#2o-plumed-optional-enables-various-enhanced-sampling-methods)
https://www.cp2k.org/howto:install_with_plumed%5D(https://www.cp2k.org/howto:install_with_plumed)
https://www.plumed.org/%5D(https://www.plumed.org/)

QE

Build Instructions

Download, unpack Quantum Espresso and make the configure wrapper scripts available in QE's root folder. Please
note that the configure wrapper scripts support QE 6.x (prior support for 5.x is dropped). Before building QE, one
needs to complete the recipe for ELPA.

Note: the ELPA configuration must correspond to the desired QE configuration, e.g., configure-elpa-skx-omp.sh and
configure-qe-skx-omp.sh ("omp").
wget https :// gitlab .com/QEF/q-e/-/ archive /qe -6.6/q-e-qe -6.6. tar.bz2
tar xvf q-e-qe -6.6. tar.bz2
cd q-e-qe -6.6

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh qe

Please make the Intel Compiler available on the command line, which may vary with the computing environment. For
instance, many HPC centers rely on module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, configure for an Intel Xeon Scalable Processor (applicable to CPUs previously codenamed "Skylake" and
"Cascadelake" server), and build the desired application(s), e.g., "pw", "cp", or "all".
./ configure -qe -skx -omp.sh
make pw -j

Building "all" (or make without target argument) requires repeating make all until no compilation error occurs. This is
because of some incorrect build dependencies (build order issue which might have been introduced by the configure
wrapper scripts). In case of starting over, one can run make distclean, reconfigure the application, and build it again.
For different targets (instruction set extensions) or different versions of the Intel Compiler, the configure scripts support
an additional argument ("default" is the default tagname):
./ configure -qe -skx -omp.sh tagname

As shown above, an arbitrary "tagname" can be given (without editing the script). This might be used to build
multiple variants of QE. Please note: this tagname also selects the corresponding ELPA library (or should match the
tagname used to build ELPA). Make sure to save your current QE build before building an additional variant!

Run Instructions

To run Quantum Espresso in an optimal fashion depends on the workload and on the "parallelization levels", which can
be exploited by the workload in question. These parallelization levels apply to execution phases (or major algorithms)
rather than staying in a hierarchical relationship (levels). It is recommended to read some of the primary references
explaining these parallelization levels (a number of them can be found in the Internet including some presentation
slides). Time to solution may vary by factors depending on whether these levels are orchestrated or not. To specify
these levels, one uses command line arguments along with the QE executable(s):

• -npool: try to maximize the number of pools. The number depends on the workload, e.g., if the number of
k-points can be distributed among independent pools. Indeed, per trial-and-error it is rather quick to check if a
workload fails to pass the initialization phase. One may use prime numbers: 2, 3, 5, etc. (default is 1). For
example, when npool=2 worked it might be worth trying npool=4. On the other hand, increasing the number
pools duplicates the memory consumption accordingly (larger numbers are increasingly unlikely to work).

• -ndiag: this number determines the number of ranks per pool used for dense linear algebra operations (DGEMM
and ZGEMM). For example, if 64 ranks are used in total per node and npool=2, then put ndiag=32 (QE selects
the next square number which is less equal than the given number, e.g., ndiag=25 in the previous example).

• -ntg: specifies the number of tasks groups per pool being used for, e.g., FFTs. One can start with
NTG=$((NUMNODES*NRANKS/(NPOOL*2))). If NTG becomes zero, NTG=${NRANKS} should be used (number of ranks per
node). Please note the given formula is only a rule of thumb, and the number of task groups also depends on the
number of ranks as the workload is scaled out.

12

https://gitlab.com/QEF/q-e/tags
https://www.quantum-espresso.org/
../elpa/README.md
https://www.quantum-espresso.org/Doc/user_guide/node18.html

To run QE, below command line can be a starting point ("numbers" are presented as Shell variables to better understand
the inner mechanics). Important for hybrid builds (MPI and OpenMP together) are the given environment variables.
The KMP_AFFINITY assumes Hyperthreading (SMT) is enabled (granularity=fine), and the "scatter" policy allows to easily
run less than the maximum number of Hyperthreads per core. As a rule of thumb, OpenMP adds only little overhead
(often not worth a pure MPI application) but allows to scale further out when compared to pure MPI builds.
mpirun -bootstrap ssh -genvall \

-np $((NRANKS_PER_NODE * NUMNODES)) -perhost ${ NRANKS } \
-genv I_MPI_PIN_DOMAIN =auto -genv I_MPI_PIN_ORDER =bunch \
-genv KMP_AFFINITY =compact , granularity =fine ,1 \
-genv OMP_NUM_THREADS =${ NTHREADS_PER_RANK } \
/path/to/pw.x \<command -line - arguments \>

Performance

An info-script (info.sh) is available attempting to present a table (summary of all results), which is generated from
log files (use tee, or rely on the output of the job scheduler). There are only certain file extensions supported (.txt,
.log). If no file matches, then all files (independent of the file extension) are attempted to be parsed (which will go
wrong eventually). For legacy reasons (run command is not part of the log, etc.), certain schemes for the filename are
eventually parsed and translated as well.
./run -qe.sh | tee qe -asrf112 -4 x16x1.txt
ls -1 *. txt
qe -asrf112 -2 x32x1.txt
qe -asrf112 -4 x16x1.txt

./ info.sh [-best] /path/to/logs -or -cwd
AUSURF112 Nodes R/N T/R Cases/d Seconds NPOOL NDIAG NTG
qe -asrf112 -2 x32x1 2 32 2 533 162.35 2 25 32
qe -asrf112 -4 x16x1 4 16 4 714 121.82 2 25 32

Please note that the number of cases per day (Cases/d) are currently calculated with integer arithmetic and eventually
lower than just rounding down (based on 86400 seconds per day). The number of seconds taken are end-to-end (wall
time), i.e., total time to solution including any (sequential) phase (initialization, etc.). Performance is higher if the
workload requires more iterations (some publications present a metric based on iteration time).

References

[https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor%5D(https:
//software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor)
[https://www.quantum-espresso.org/Doc/user_guide/node1.html%5D(https://www.quantum-espresso.org/Doc/use
r_guide/node1.html)

TensorFlow™ with LIBXSMM

There is a recipe available for TensorFlow with LIBXSMM (PDF). However, the recipe also contains information
about building TensorFlow with Intel MKL and MKL-DNN (see section about Performance Tuning).

TensorFlow Serving

For experimentation, there is a recipe available for TensorFlow Serving with LIBXSMM. Please note this recipe is
likely outdated and not intended for production use.

13

https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor%5D(https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor)
https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor%5D(https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor)
https://www.quantum-espresso.org/Doc/user_guide/node1.html%5D(https://www.quantum-espresso.org/Doc/user_guide/node1.html)
https://www.quantum-espresso.org/Doc/user_guide/node1.html%5D(https://www.quantum-espresso.org/Doc/user_guide/node1.html)
https://libxsmm.readthedocs.io/tensorflow/
https://github.com/hfp/libxsmm/raw/master/documentation/tensorflow.pdf
https://libxsmm.readthedocs.io/tensorflow/#performance-tuning-and-profiling
tfserving.md

Vc: SIMD Vector Classes for C++

To download, configure, build, and install Vc, one may proceed as shown below.
wget --content - disposition https :// github .com/ VcDevel /Vc/ archive /refs/tags /1.4.2. tar.gz
tar xvf Vc -1.4.2. tar.gz
cd Vc -1.4.2

wget --content - disposition https :// github .com/hfp/ xconfigure /raw/main/configure -get.sh
chmod +x configure -get.sh
./ configure -get.sh vc

Please make the intended compiler available on the command line. For instance, many HPC centers rely on
module load.
source /opt/intel/ compilers_and_libraries_2020 .4.304/ linux/bin/ compilervars .sh intel64

For example, to configure and make for an Intel Xeon Scalable processor ("SKX"):
make distclean
./ configure -vc.sh
cd build; make -j; make install

References

[https://github.com/VcDevel/Vc/releases%5D(https://github.com/VcDevel/Vc/releases)
[https://github.com/VcDevel/Vc%5D(https://github.com/VcDevel/Vc)

Appendix

CP2K MPI/OpenMP-hybrid Execution (PSMP)

Overview

CP2K's grid-based calculation as well as DBCSR's block sparse matrix multiplication (Cannon algorithm) prefer a
square-number for the total rank-count (2d communication pattern). This is not to be obfuscated with a Power-of-Two
(POT) rank-count that usually leads to trivial work distribution (MPI).

It can be more efficient to leave CPU-cores unused in order to achieve this square-number property rather than using
all cores with a "non-preferred" total rank-count (sometimes a frequency upside over an "all-core turbo" emphasizes
this property further). Counter-intuitively, even an unbalanced rank-count per node i.e., different rank-counts per
socket can be an advantage. Pinning MPI processes and placing threads requires extra care to be taken on a per-node
basis to load a dual-socket system in a balanced fashion or to setup space between ranks for the OpenMP threads.

Because of the above-mentioned complexity, a script for planning MPI/OpenMP-hybrid execution (plan.sh) is available.
Here is a first example for running the PSMP-binary on an SMP-enabled (Hyperthreads) dual-socket system with
24 cores per processor/socket (96 hardware threads in total). At first, a run with 48 ranks and 2 threads per core
comes to the mind (48x2). However, for instance 16 ranks with 6 threads per rank can be better for performance (16x6).
To easily place the ranks, Intel MPI is used:
mpirun -np 16 \

-genv I_MPI_PIN_DOMAIN =auto -genv I_MPI_PIN_ORDER =bunch \
-genv OMP_PLACES = threads -genv OMP_PROC_BIND = SPREAD \
-genv OMP_NUM_THREADS =6 \
exe/Linux -x86 -64- intelx /cp2k.psmp workload .inp

Note: For hybrid codes, I_MPI_PIN_DOMAIN=auto is recommended as it spaces the ranks according to the number
of OpenMP threads (OMP_NUM_THREADS). It is not necessary and not recommended to build a rather complicated
I_MPI_PIN_PROCESSOR_LIST for hybrid codes (MPI plus OpenMP). To display and to log the pinning and thread affiniza-
tion at the startup of an application, I_MPI_DEBUG=4 can be used with no performance penalty. The recommended
I_MPI_PIN_ORDER=bunch ensures that ranks per node are split as even as possible with respect to sockets (e.g., 36 ranks
on a 2x20-core system are put in 2x18 ranks instead of 20+16 ranks).

14

https://github.com/VcDevel/Vc/releases/latest
https://github.com/VcDevel/Vc/releases%5D(https://github.com/VcDevel/Vc/releases)
https://github.com/VcDevel/Vc%5D(https://github.com/VcDevel/Vc)

To achieve a similar placement with OpenMPI, ranks are mapped to "execution slots" (--map-by slot) along with
specifying the number of processing elements (PE). By default, execution slots are counted in number of physical cores
which yields --map-by slot:PE=3 for the same system (mentioned above).
mpirun -np 16 --map -by slot:PE=3 \

-x OMP_PLACES = threads -x OMP_PROC_BIND = SPREAD \
-x OMP_NUM_THREADS =6 \
exe/Linux -x86 -64- intelx /cp2k.psmp workload .inp

Note: Intel MPI's I_MPI_PIN_ORDER=bunch to balance the number of ranks between sockets (see above) appears hard to
achieve with OpenMPI therefore an undersubscribed system may not be recommended. To display and to log the
pinning and thread affinization at the startup of an application, mpirun --report-bindings can be used.

The end of the next section continues with our example and extends execution to multiple nodes of the above-mentioned
system.

Plan Script

To configure the plan-script, the metric of the compute nodes can be given for future invocations so that only the
node-count is required as an argument. The script's help output (-h or --help) initially shows the "system metric" of
the computer the script is invoked on. For a system with 48 cores (two sockets, SMP/HT enabled), setting up the
"system metric" looks like (plan.sh <num-nodes> <ncores-per-node> <nthreads-per-core> <nsockets-per-node>):
./ plan.sh 1 48 2 2

The script is storing the arguments (except for the node-count) as default values for the next plan (file:
$HOME/.xconfigure-cp2k-plan). This allows to supply the system-type once, and to plan with varying node-counts in a
convenient fashion. Planning for 8 nodes of the above kind yields the following output (plan.sh 8):
==
384 cores: 8 node(s) with 2x24 core(s) per node and 2 thread (s) per core
==
[48 x2]: 48 ranks per node with 2 thread (s) per rank (14% penalty)
[24 x4]: 24 ranks per node with 4 thread (s) per rank (14% penalty)
[12 x8]: 12 ranks per node with 8 thread (s) per rank (33% penalty)
--
[32 x3]: 32 ranks per node with 3 thread (s) per rank (34% penalty) -> 16 x16
[18 x5]: 18 ranks per node with 5 thread (s) per rank (25% penalty) -> 12 x12
[8 x12]: 8 ranks per node with 12 thread (s) per rank (0% penalty) -> 8x8
[2 x48]: 2 ranks per node with 48 thread (s) per rank (0% penalty) -> 4x4
--

The first group of the output displays POT-style (trivial) MPI/OpenMP configurations (penalty denotes potential
communication overhead), however the second group (if present) shows rank/thread combinations with the total
rank-count hitting a square number (penalty denotes waste of compute due to not filling each node). For the given
example, 8 ranks per node with 12 threads per rank is chosen (8x12) and MPI-executed:
mpirun -perhost 8 -host node1 ,node2 ,node3 ,node4 ,node5 ,node6 ,node7 ,node8 \

-genv I_MPI_PIN_DOMAIN =auto -genv I_MPI_PIN_ORDER =bunch -genv I_MPI_DEBUG =4 \
-genv OMP_PLACES = threads -genv OMP_PROC_BIND = SPREAD -genv OMP_NUM_THREADS =12 \
exe/Linux -x86 -64- intelx /cp2k.psmp workload .inp

Note: For Intel MPI as well as OpenMPI, mpirun's host-list (mpirun -host) is setup with unique node-names, and this
is the only style that is explained in this article. There is a competing style where nodes names are duplicated for the
sake of enumerating available ranks (or "execution slots" in case of OpenMPI), which is not exercised in this article.

For OpenMPI, the quantity (per node) of the previously mentioned "execution slots" (measured in number of physical
cores) are sometimes not known to OpenMPI (depends on cluster/scheduler setup). For instance, mpirun may be
complaining about an attempt to use too many execution slots simply because OpenMPI believes all systems represent
a single such slot (instead of 2x24 cores it only "sees" a single core per system). In such case, it is not recommended to
"oversubscribe" the system because rank/thread affinity will likely be wrong (mpirun --oversubscribe). Instead, the list
of unique nodes names (-host) may be augmented with the number of physical cores on each of the nodes (e.g., ":48"
in our case).

15

mpirun -npernode 8 -host node1 :48, node2 :48, node3 :48, node4 :48, node5 :48, node6 :48, node7 :48, node8 :48 \
--map -by slot:PE=6 --report - bindings \
-x OMP_PLACES = threads -x OMP_PROC_BIND = SPREAD -x OMP_NUM_THREADS =12 \
exe/Linux -x86 -64- intelx /cp2k.psmp workload .inp

Note: It can be still insufficient to augment the nodes with the expected number of slots (:48). If OpenMPI's mpirun
is still complaining, it might be caused and solved by the job scheduler. For example, qsub (PBS) may be instructed
with -l select=8:mpiprocs=48 in the above case (mpirun in this job can use less than 48 ranks per node).

The plan-script also suggests close-by configurations (lower and higher node-counts) that can hit the square-property
("Try also the following node counts"). The example (as exercised above) was to illustrate how the script works,
however it can be very helpful when running jobs especially on CPUs with not many prime factors in the core-count.
Remember, the latter can be also the case for virtualized environments that reserve some of the cores to run the
Hypervisor i.e., reporting less cores to the Operating System (guest OS) when compared to the physical core-count.

References

[https://github.com/hfp/xconfigure/raw/main/config/cp2k/plan.sh%5D(https://github.com/hfp/xconfigure/raw/
main/config/cp2k/plan.sh)
[https://xconfigure.readthedocs.io/cp2k/%5D(https://xconfigure.readthedocs.io/cp2k/)
[https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html%5
D(https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html)

16

https://github.com/hfp/xconfigure/raw/main/config/cp2k/plan.sh%5D(https://github.com/hfp/xconfigure/raw/main/config/cp2k/plan.sh)
https://github.com/hfp/xconfigure/raw/main/config/cp2k/plan.sh%5D(https://github.com/hfp/xconfigure/raw/main/config/cp2k/plan.sh)
https://xconfigure.readthedocs.io/cp2k/%5D(https://xconfigure.readthedocs.io/cp2k/)
https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html%5D(https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html)
https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html%5D(https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html)

	XCONFIGURE
	Documentation
	Related Projects

	Applications
	CP2K
	Step-by-step Guide
	CP2K on GPUs
	Running CP2K
	Sanity Check
	References

	ELPA
	Build Instructions
	References

	HDF5
	References

	LIBINT
	Overview
	Version 2.x
	Version 1.x
	References

	Med File Library (libmed)
	References

	LIBXC
	References

	LIBXSMM
	METIS
	References

	Plumed
	References

	QE
	Build Instructions
	Run Instructions
	Performance
	References

	TensorFlow™ with LIBXSMM
	TensorFlow Serving
	Vc: SIMD Vector Classes for C++
	References

	Appendix
	CP2K MPI/OpenMP-hybrid Execution (PSMP)
	Overview
	Plan Script
	References

