
Architecture and scalability of
Ethereum

Mirko Bez
mirko.bez@studenti.unipd.it

Giacomo Fornari
giacomo.fornari@studenti.unipd.it

September 1, 2018

Version 1.0.0

mailto:mirko.bez@studenti.unipd.it
mailto:giacomo.fornari@studenti.unipd.it

Contents

1. Introduction 4

2. Architecture 6
2.1. Network layer . 7

2.1.1. Kademlia protocol . 7
2.2. Propagation Layer . 10

2.2.1. Serialization Algorithm . 10
2.2.2. RLPx Transport Protocol . 10
2.2.3. Ethereum Wire Protocol . 12

2.3. Data layer . 13
2.3.1. State . 13
2.3.2. Accounts . 15
2.3.3. Messages and transactions . 15

2.4. Consensus layer . 17
2.4.1. Consensus Algorithm . 17
2.4.2. Transaction Execution . 19
2.4.3. Contract Creation . 20
2.4.4. Message Call . 22

2.5. Application layer . 23
2.5.1. Ethereum Virtual Machine . 23
2.5.2. Smart contract . 25

2.6. External Interaction . 25

3. Scalability 26
3.1. To scale or not to scale . 27
3.2. Background . 27
3.3. The Scale Cube . 29
3.4. X-Axis: Horizontal Duplication . 29

3.4.1. An example: Web server replication 30
3.4.2. State . 31
3.4.3. Ethereum current state and proposals 31

3.5. Y-Axis: Functional Decomposition . 32
3.5.1. An example: Microservice architecture 32
3.5.2. Ethereum current state and proposals 34
3.5.3. Proof of Stake . 34

3.6. Z-Axis: Horizontal Data Partitioning . 35
3.6.1. An example: Sharding . 35
3.6.2. Ethereum current state and proposals 37
3.6.3. Plasma . 38
3.6.4. Sharding in Ethereum . 39

3.7. Tests . 40
3.7.1. Test Configuration . 40

2

3.7.2. Results . 43

4. Conclusions 44

A. Node types 46

B. Solidity 47

3

1. Introduction

The purpose of this report is to investigate the architecture and the scalability of
Ethereum [1]. Ethereum is based on the Blockchain technology. Despite the first appear-
ance of the blockchain in the actual form is due to Satoshi Nakamoto’s groundbreaking
paper, “Bitcoin: A peer-to-peer electronic cash system” (2008) [2], this technology has
become one of the most active research fields in ICT only in the last couple of years.

The aim of the Blockchain technology is to provide a total order of the transactions in
a distributed ledger without relying on a trusted third party (e.g. a bank [3]). Not relying
on a trusted central authority may lead to practical issues like transaction repudiation
and the infamous double-spending problem. The former is self-explanatory and
can be solved by digital signatures, while the latter consists in using the same digital
token to pay multiple entities. It found its first practical decentralized solution with the
appearance of Bitcoin [4]1.

This technology has found, apart from merely financial applications, other applications
such as auctions, supply chain and notary services.

Bitcoin Bitcoin is a state transition system, in which there is a transition from a valid
state to another valid state through a valid transaction. The state consists in the balance
of the addresses2. Each node in the network maintains a local copy of the state and
updates its own copy of the state in a deterministic way according to the transactions.
Therefore, to have an exact replica in each node, the order of transactions should be total
and agreed by every member of the network. The mechanism through which this total
order is provided and maintained is the blockchain, which is literally a chain of blocks.
Each block of the chain contains an ordered list of transactions and is connected to the
previous block by inserting the hash of the previous block in its header. Each node of
the network has the faculty to create transactions and have to sign them to show that it
owns the private key corresponding to a given address. The transactions are spread in
the network through gossip protocols. Once a node receives a new transaction, it verifies
that the transaction is well-formed. If it is the case, the node sends the transactions to
the other known peers. Eventually, the transactions are received by a member of the
network who groups some transactions in a block and tries to find a nonce such that
the hash of the block is smaller than a given value. Since this task is computationally
expensive, if the node finds this value, it adds at the beginning of the transaction list
a transaction in which it assigns to a beneficiary address an amount of newly minted
coins, according to the protocol’s rule3. In addition to this reward, it receives also fees
from the senders of the included transactions. The members of the network who try
to create new blocks are called miners, because their action resembles the extraction of
precious metals. The miners are incentivized to create valid blocks, that is, containing

1We refer to [4] for a complete survey about the history and ancestors of Bitcoin.
2The addresses correspond to a private/public key pair. Each peer of the network can have zero or
more addresses.

3This value was initially 50 bitcoins. This reward halves every 210000 blocks. Currently it is 12.5
bitcoins. Around year 2140 no coins would be minted [5].

4

valid transactions and the correct solution to the puzzle, so the other peers of the network
can accept only valid blocks. They can verify the correctness of the transactions (e.g.
the balance of the addresses is always positive), because they have a local copy of the
state, and the correctness of the nonce by computing a single hash. It is worth noticing
that multiple parties try to create new blocks concurrently, therefore it is possible that
multiple versions of the blockchain co-exist. Indeed, a mechanism to select the canonical
blockchain is needed. In the case of Bitcoin it is simply the longest chain, because it
corresponds to the one with more work invested on it. The co-existence of multiple
blockchain can be very useful in case of a network partition, indeed, once the partition
is over, the peers can agree on the blockchain. The drawback of this system is that
there is no consensus finality [3], thus it is necessary to wait a certain number of blocks
(confirmation blocks) to be sure that the transactions are really confirmed. The number
of confirmation blocks in Bitcoin is six which correspond to approximately one hour [5].
Although this description of Bitcoin abstracts from various details, it is sufficient to

show how the double spending problem is solved. The idea is to let each peer of the
network know the current state and the transactions that are already spent. Moreover,
after the confirmation time the blockchain can be considered immutable and tamper-proof,
because to rewrite the sufficiently old transaction history, an enormous amount of work
should be done. The immutability is an interesting property that can be used to emit
certificates about the ownership of an asset such as a digital artwork or an intellectual
property.

Permissioned vs Permissionless Blockchain Apart Bitcoin, a lot of cryptocurrencies,
also known as altcoins4 came out. They have different peculiarities, but the general
idea is the same as Bitcoin. In the literature [3], it is common to distinct between
permissionless and permissioned blockchains. The former are blockchains in which
everyone can participate in, while the latter requires authentication and is commonly
used by banks or consortium of companies. Prominent examples of permissionless
blockchains are Bitcoin and Ethereum, while a representative permissioned blockchain is
Hyperledger.

Overview In the remainder of the paper we will discuss exclusively Ethereum. Ethereum
can be viewed as a generalization of Bitcoin. While in Bitcoin the execution environment
(i.e. the script language) is stateless and is used only to express conditions to spend the
money, e.g. demonstrate the possession of a given private key, in Ethereum the execution
environment (i.e. the EVM) is stateful and Turing Complete. To avoid the misuse of the
network resources, each opcode is associated with an amount of gas, so the termination
of the computations is always guaranteed.

This paper is organized in two main chapters. The first chapter describes the architec-
ture of Ethereum in a top-down fashion by individuating and describing the layers in
which it can be split. The second chapter analyzes the scalability of the system, both
theoretically, with the analysis of the literature (Section 3.2) and the description of the

4The contraction of "alternative coins".

5

cube of the scalability [6] applied to Ethereum (Section 3.3) and practically, by creating
a private Ethereum Network and running some tests (Section 3.7).

2. Architecture

Although Ethereum clients with different implementations can agnostically participate
in the system, there is no common agreement on the Ethereum architecture. Since “an
implementation is not an architecture” [6], we propose a conceptual model which is
inspired by the OSI reference model. The model is comprised of 1 vertical layer and 5
horizontal layers: the (1) network layer, the specification of the network topology, the
(2) propagation layer, how the nodes communicate and which protocols are used, the
(3) data layer, the data structures and data types, the (4) consensus layer, how the nodes
reach consensus on the state which is represented in the data layer, hence the mining
and the transactions execution process, and the (5) application layer, the smart contract
as the business logic of the system.

We define the Ethereum Virtual Machine (EVM) as a vertical layer because it appears
in the data, consensus and application layers.

E
V
M

Network

Propagation

Data

Consensus

Application

Figure 1: Layers of the Ethereum architecture

Sometimes we could refer to some implementation details along the description of the
layers, because the official documentations are not always complete, especially those
parts regarding the network and propagation layers. In this case, we take as reference
implementation go-ethereum5 (geth), which is directly maintained by the Ethereum
Foundation.

5https://geth.ethereum.org/

6

https://geth.ethereum.org/

2.1. Network layer

The aim of this layer is to build the peer-to-peer network, a decentralized architecture
in which the nodes are logically equivalent and function as a servent (i.e. a node that acts
as both client and server at the same time). In this type of architecture, the nodes are
formed by processes and the links represent the possible communication channels, that
is, a structured overlay network [7] in which the nodes of the network can propagate
the information efficiently. Essentially, this layer is constituted by a slight modification of
the Kademlia protocol [8]. In the Ethereum jargon, this protocol is known as RLPx Node
Discovery Protocol [9]. In the remainder of this Section, we firstly describe Kademlia
and afterward the Ethereum variant.

2.1.1. Kademlia protocol

The Kademlia protocol is an UDP based distributed hash table (DHT) system based
on the XOR-metric for distance [8], that is the distance between two keys x and y is
given by x⊗ y. The nodes have a unique m-bit (e.g. 160) identifier (ID) and are logically
the leaves of a binary tree of size 2m. The identifier of a node corresponds to the path
from the root of this tree to the position of the node.

Each node in the network maintains m lists, which contain the contact information of
the peers at a given XOR-distance from the node. In particular, the i-th list of a given
node contains information regarding nodes at distance between 2i and 2i+1 from it’s ID.
The maximal capacity of these lists, k, is chosen to minimize the probability that all
the nodes in the lists fail at the same time. This parameter is known as system-wide
replication parameter. Because of their maximal capacity the lists are usually denoted by
the term k-bucket.

Each bucket is maintained sorted: at the head we find the least recently seen node and
at the tail the most recently one. When a node receives a message from a sender, it uses
the Algorithm 1 to update the contact table. One important feature of this algorithm is
that, when the node discovers a new node, the latter is added only if one of the already
known peers at the same distance is no more on-line. The rationale for this choice is due
to the observation that the more a node has been on-line, the more likely it is that it
remains up another hour [8].
The basic operation of this system is the key lookup. It is implemented by asking

recursively for closer and closer nodes. A node selects the α peers closest to the searched
key. This operation is efficient because it restricts the selection to the peers contained
in the bucket in which the node would have inserted the searched key6. Afterward, the
node sends asynchronous requests to these peers, that should reply with the contact
information of the k closest nodes it knows. From the replied values the node takes only
the closest α ones. The algorithm performs this step recursively. If in one of the phases
no new closer nodes are discovered, the node retries with the k closest discovered nodes.
The lookup is fundamental to perform the task of storing a 〈key, value〉 pair in the

6It is possible that the k-bucket has less than α entries, in this case the node search also in other
buckets.

7

Algorithm 1 Pseudocode algorithm to update a bucket upon receiving a message from
a node. The sender and the receiver are denoted by the letters S and R, respectively.
distance ← SID ⊗ RID

bucket ← bucket containing nodes at the given distance
if SID ∈ bucket then

move SID to the end of bucket
else

if bucket not full then
insert SID at the end of the list

else
H ← head(bucket)
ping H
if H replies then

move H to the end of the list and discard S
else

evict H and put SID at the end of the list
end if

end if
end if

DHT, retrieving a resource from the DHT and get the contact information of a searched
peer. To perform the lookup and manage the DHT, the Kademlia protocol relies on only
four RPC functions:

• PING is used to check whether a node is still on-line or not

• FIND_NODE requests the replier to respond with the contact information of the k
peers closest to the target

• STORE requests the receiver to store the given key-value pair

• FIND_VALUE requests the receiver to reply with the k nodes closest to the source.
If the receiver has previously stored the key-value pair, it replies with the searched
value.

Difference between RLPx node discovery and Kademlia The RLPx node discovery
protocol is used only for discovery, so STORE and FIND_VALUE RPC functions are not
needed. Each node is assigned to a 512 bit long ID and the XOR distance is calculated
on the hash7 of the IDs. Therefore, conceptually each node stores 256 k-buckets8. The
replication parameter, k, is set to 16 and the concurrency parameter, α, is set to 3 [9].

7With “hash” we always intend the Keccak-256 hash.
8We provide only a general overview of the algorithm. For implementation optimizations we refer to
[8].

8

0 8 16 24

UDP HEADER
Source Port Destination Port

Length Checksum

UDP DATA

Packet-hash

Signature

packet-type

packet-data (RLP-Encoded)

Figure 2: The structure of an RLPx Node Discovery package.

Packet Format The nodes communicate through UDP packets in which the payload
is used to encode the messages of the Ethereum’s network layer. Inside the UDP payload,
the nodes should insert:

• the hash of the juxtaposition of signature, packet-type and packet-data, used to
verify the integrity of the UDP datagram

• the signature, used to check the identity of the sender and can be verified through
the node ID, which is the public key

• the packet-type, that is a byte that uniquely identify the packet type: Ping (0x01),
Pong (0x02), FindNeighbours (0x03) and Neighbours (0x04) [9]

• the packet-data, that has a different format depending on the packet type and
is encoded with the RLP algorithm (Section 2.2.1). We refer to [9] for the exact
content exchanged with the different RLPx node discovery packets.

The packet format is illustrated in Figure 2.

Joining the network In order to join the network for the first time, a new node should
generate a new public-private key pair9 and know the contact of at least one participant.
In Ethereum, this task is accomplished by hard-coding the contact information of some
bootstrap nodes in the client’s code. The aim of these nodes is to provide new nodes with
contact information to other regular nodes that are already participating in the network.

RLPx uses its own URL scheme, the enode. In this scheme, the ID of the node encoded
in hexadecimal format, the IP-Address and the TCP Port of the node are specified:

enode://<hexadecimal-node-id>@<IP>:<TCP-Port>[?discport:<UDP-PORT>]

The discport part is required only if the UDP port (discovery port) does not correspond
to the TCP one. The default UDP discovery port is 30303.

9The public key is the ID and the private key is used to sign the packets.

9

2.2. Propagation Layer

The propagation layer’s objective is to spread the information regarding the blockchain
among all the peers. It exploits the contact information obtained in the network layer.

In this layer, we can identify three main components used to pursue this aim:

• RLP, the main encoding method used to serialize objects in Ethereum

• the RLPx protocol, intended as the transport protocol10, which plays a role very
similar to the OSI transport layer. For the sake of disambiguation, we refer to it as
RLPx Transport Protocol

• the Ethereum Wire Protocol, useful to spread the blockchain information.

2.2.1. Serialization Algorithm

The Recursive Length Prefix (RLP) encoding algorithm is a fundamental building
block in the Ethereum system. It is used both to serialize the content of the UDP and
TCP packets sent as described in Section 2.1 and Section 2.2.2, and to reach a bit level
consensus on the World State through the blockchain as described in Section 2.3.1.

This algorithm is only used to encode byte arrays of arbitrary length. It does neither
try to deal with types nor considering signed integers and floating numbers [1]. The
interpretation of the values is completely dependent on the message in the protocol,
which should also specify the byte-size of the structures involved. According to the
documentation [10], RLP has been chosen for its simplicity and its byte level consistency.
For the formal specification of the algorithm, we refer to the Yellow Paper [1, Appendix
B] and the RLP documentation [11].

2.2.2. RLPx Transport Protocol

The aim of this protocol is to provide a generalized mean to build arbitrary authenti-
cated and encrypted protocols. The protocols built on top of this framework are known
as subprotocols. Everyone can create a new subprotocol by simply selecting 3 ASCII
characters to uniquely identify the protocol and by defining a list of packet types and
the expected structure of their content, which will be encoded with the RLP algorithm.

The relationship between TCP, RLPx and the subprotocol packets is depicted in Fig-
ure 311. The RLPx transport protocol packets are sent as payload in a TCP packet. If
we do not consider the MAC codes used to encrypt the information, these packets consist
of two fields:

• a header, which specifies information such as the size of the frame and the subpro-
tocol that will be used

10https://github.com/ethereum/devp2p/blob/master/rlpx.md#transport
11For the sake of simplicity, here we report only single-framed RLPx packets, but we redirect the

interested reader to the official documentation [12] to get details about multi-framed packets.

10

https://github.com/ethereum/devp2p/blob/master/rlpx.md#transport

Packet Type Packet Data

FrameHeader-MAC Frame-MACRLPx Header

Protocol Type··· ···

TCP PayloadTCP HeaderTCP

RLPx Transport
Protocol

Subprotocol

Figure 3: Relationship between TCP, RLPx and the subprotocols.

• the frame, which is the packet of the subprotocol.

In turn, the subprotocol packet contains a code that uniquely identify the message
type (packet-type) and its content (packet-data), that is specific to the subprotocol. The
content of this packet is serialized using the RLP algorithm.

When two peers establish a connection with the RLPx transport protocol, they perform
a two-way handshake:

1. encoding handshake, used to exchange a cryptographic secret12 that is used to
encrypt and authenticate the subsequent RLPx messages between them

2. protocol handshake, in which the peers exchange and agree on the subprotocols and
versions that both support (from now these pairs will be referred as capabilities).

To perform the protocol handshake, and in general to establish and keep the connection
at this layer, the special subprotocol ÐΞVp2p Wire Protocol [13] is involved. This
subprotocol does not have an identifier and reserves 16 message-types although only 4
are implemented. The Hello (handshake) message is used for the protocol handshake.
This message specifies, among others, the protocol version, the capabilities, the port on
which the client listens and the node ID. The Disconnect message notifies the receiver
that the sender is going to disconnect itself optionally specifying an integer that encodes
a reason13. The Ping and Pong messages are used to check whether the counterpart is
still on-line or not.
After the protocol handshake, both peers know the shared capabilities. Since each

protocol have a predefined amount of reserved message types, sorting them lexicographi-
cally makes it possible to build a data-structure to retrieve the protocol-type from the
packet-type. We show how it works by means of an easy example shown in Table 1. Let’s
suppose that the peers share the capabilities (expressed as tuples 〈subprotocol, version〉)
〈abc, 4〉, 〈abc, 5〉 and 〈zzz, 2〉 and that the capabilities reserve 9, 11 and 5 message types
12It is beyond the scope of this report to describe the exact procedure. For further details, we refer

to the official documentation [12] and to the Go Ethereum implementation https://github.com/
ethereum/go-ethereum/blob/master/p2p/rlpx.go.

13We refer to the ÐΞVp2p specification [13] for a complete list of reason codes.

11

https://github.com/ethereum/go-ethereum/blob/master/p2p/rlpx.go
https://github.com/ethereum/go-ethereum/blob/master/p2p/rlpx.go

Capability Reserved IDs Effective Packet Types
- [0x00, 0x10] [0x00, 0x10]

〈abc, 4〉 [0x00, 0x08] [0x11, 0x1A]
〈abc, 5〉 [0x00, 0x0A] [0x1B, 0x26]
〈zzz, 2〉 [0x00, 0x04] [0x27, 0x3C]

Table 1: Example of data-structure built after the protocol handshake.

respectively. The first row of the table represents the first 16 message types reserved
by the RLPx transport protocol. Then, if one of the peers receives the message of type
0x1C, it can determine that the message should be interpreted as a message of type 0x01
of the capability 〈abc, 5〉.
We notice that, although the RLPx Header (Figure 3) contains a field to specify the

protocol type, it is not used by the implementations of Ethereum (at least geth and
ethereumj14). If it would be the case, it would be sufficient to use the protocol-type in
the RLPx header to identify uniquely a protocol. The reason probably lies in the fact
that ÐΞVp2p protocol do not have an identifier.

2.2.3. Ethereum Wire Protocol

The Ethereum Wire Protocol (eth) [14] is an application level subprotocol of the RLPx
transport protocol. It is used to spread the information about the blockchain and for the
synchronization.

Currently, there are several versions of this protocol. Throughout this section we will
consider only the versions 62 and 63 (which are compatible) that are currently supported
by geth (v1.8.11).

The first message that should be exchanged between two peers is the Status message.
This message type is used to exchange information such as the Ethereum Wire Protocol
version, the network ID, the total difficulty of the heaviest chain known, the hash of the
best known block and the genesis block’s hash. This message should be sent only during
the handshake phase. If the network ID or the genesis block’s hash does not match or the
supported eth protocol versions are not compatible, the peers should drop the connection
since they are either on different chains or are not able to communicate with each other.

Version 62 - Model Syncing To spread the presence of one or more blocks to peers
that are not aware of them, the NewBlockHashes message type is used. Moreover, the
Transactions message type spreads transactions to peers who are not aware of them. It
is specified that in the same session a peer should not send twice the same transaction to
a recipient15. The GetBlockHeaders message type requests to the recipient a specified

14Since all the implementations should be interoperable, it means that all the implementations do not
use this field or they deal with the case in which it is not used.

15To this extent, the geth implementation (in the file eth/peer.go) keeps track for each peer of the set
of transactions hash (knowTxs) and the set of block hash (knownBlocks) known to be known by it.

12

amount of block headers descendant from the block with a given number or a given
hash. The recipient of the message should respond with a BlockHeaders message in
which it has the faculty to send a reply with less than the specified amount of headers.
Clearly, if the recipient of a message is not aware of any descendant of the given block, it
sends a valid empty reply. Furthermore, to request and receive the real content of the
blocks, the peers have the GetBlockBodies and Blockbodies messages. The requester
specifies the hashes of the blocks it wants and the recipient replies with the bodies (i.e.
the transactions and the uncles) of the required blocks. Finally, the NewBlock message
spreads a single new block.

Version 63 - Fast synchronization From version v1.3.1 of geth16, it is possible
to perform a fast synchronization. This synchronization type does not require that a
node performs all the computations happened during the history (i.e. the whole EVM
instructions Section 2.5.1). Indeed, the synchronizer downloads along the blockchain
the transaction receipts which encapsulate useful information about the execution result
of the transactions. This allows the synchronizer to deal only with the verification of the
proof-of-work Section 2.4.1. At least in geth, this synchronization is possible only by the
first synchronization for security reasons17. After the synchronizer reaches a pivot point
(i.e. last block minus 1024), it retrieves the whole current state from the other peers and
subsequently processes the blockchain normally. To perform this synchronization, the
clients have at their disposal the GetReceipts and Receipts messages, which are the
request for the receipts given the hash and the replies respectively. Besides these, there
are also the GetNodeData and NodeData message types which provide the mean to query
and send the required version of the state: the first one takes as input a variable number
of hashes and the second one replies with the content.

2.3. Data layer

In the previous layers, we formed the network and we defined how the data is dissemi-
nated on it. Now, we need to define which data to propagate. The Data layer consists of
the data structures and the data types that are present in the Ethereum system. With
the term data types, we mainly mean the abstract data types which identify the common
Ethereum objects, such as the state, the accounts, and the transactions.

2.3.1. State

TheWorld State, referred as the state, in its simplest definition, is a mapping between
account addresses and account states.

Figure 4 represents it. The block header contains 15 fields, among which the stateRoot,
the transactionsRoot and the receiptsRoot. All these three fields are a hash of the
root of a Merkle Patricia tree data structure:

16https://github.com/ethereum/go-ethereum/releases/tag/v1.3.1
17https://github.com/ethereum/go-ethereum/pull/1889

13

https://github.com/ethereum/go-ethereum/releases/tag/v1.3.1
https://github.com/ethereum/go-ethereum/pull/1889

Merkle Patricia TreeMerkle Patricia Tree

Header block n

stateRoot transactionsRoot receiptsRoot

beneficiaryparentHash ommersHash

logsBloom

difficulty

number gasLimit

gasUsed

timestamp

extraData mixHash nonce

Header block n+1

stateRoot transactionsRoot receiptsRoot

beneficiaryparentHash ommersHash

logsBloom

difficulty

number gasLimit

gasUsed

timestamp

extraData mixHash nonce

Account state

nonce balance

storageRootcodeHash

27

Account state

nonce balance

storageRootcodeHash

42

01101
01100
10100

Figure 4: Representation of the World State.
Source: Adapted from https://ethereum.stackexchange.com/a/757

• the stateRoot represents the state tree, after that all the transactions are executed
and the finalisations are applied (for a complete specification of the fields, refer to
[1]), storing the mapping between account state and account address

• the transactionsRoot represents the list of the transactions included in the block

• the receiptsRoot represents the receipts list of the transactions included in the
block, which shows the effect of each transaction. In [15], the Ethereum’s founder
Vitalik Buterin writes that with the receipt information someone can answer queries
like “Tell me all instances of an event of type X (e.g. a crowdfunding contract
reaching its goal) emitted by this address in the past 30 days”.

Some other block header fields are described in Section 3.7. For a complete fields list
and description, we refer to the Ethereum protocol specification [1].

Merkle Patricia tree A Merkle Patricia tree is a data structure which derives from a
radix tree reducing the space complexity [16]. It has a single root, each node is the hash
of its children and the leaves are the actual data, that is, for the case of the stateRoot,
the accounts states, which in turn include the storageRoot, a hash of another Merkle
Patricia tree representing the storage contents of the account state.

Since each node is the hash of its children, if any data in the tree changes, recursively
and correspondingly all the ancestors nodes have to change from the changed node to
the root node. This property allows to uniquely identify a tree having just the root node.

14

https://ethereum.stackexchange.com/a/757

This is worth to notice because it allows the nodes of the network to verify that big data
structures (like the World State) correspond to the one contained in the blocks’ header
by simply comparing a 256-bit long hash. Moreover, this feature can be exploited to
create the light nodes as described in Appendix A.

2.3.2. Accounts

The accounts are also called the state objects and are essential for the user to interact
with the Ethereum blockchain via transactions.

There are two types of accounts:

• Externally Owned Account (EOA) (also referred to as simply account or non-
contract account)

• contract account (also referred to as contract), which has EVM code associated
with it and is controlled by its contract code.

An EOA has no EVM code associated with it and is controlled by a private key. This
type of account can send a message to another EOA, that is a value transfer, or to a
contract account in order to trigger the execution of code. The state of an account is
essentially its balance.

A contract account has EVM code associated with it and is controlled by it. This type
of account cannot send messages or transactions on its own, but only as a response to a
trigger. The state of a contract is its balance and its contract storage. A contract code is
executed by the EVM, can manipulate its own persistent storage and can send internal
transactions (i.e. message calls) to other contracts.

Both the types of account have an associated nonce. In the case of an externally owned
account this value corresponds to the number of transactions sent by the account while
in the case of a contract account it corresponds to the number of contract creations
performed by the contract. Obviously, this value is always positive and can only be
increased.
When creating a transaction, the EOA should specify its nonce. This guarantees

that the order of transactions of a single account are processed in the order specified
by the sender. Without this expedient something unforeseen can happen, for example,
the balance of the account can get under a certain threshold and so other transactions
cannot be performed. Since contracts cannot perform transactions but can still create
other contracts once invoked, the nonce is used to guarantee that each different created
account have a different contract address. Indeed, the contract address is obtained as
function of the address of the creator and its nonce [1].

2.3.3. Messages and transactions

As we said in Section 2.3.2, the accounts can send messages or transactions to other
accounts depending on the account’s type.

15

A transaction is a single instruction constructed by an actor externally to the scope
of Ethereum [1] and it is serialized and included in the blockchain. It can be used to
transfer ether18 or to trigger contract code execution. A transaction represents a message
call or the creation of a new account with associated EVM code.

Transaction

Contract creation

represents

Message

Data Init

Account Account
Message Call

Figure 5: Representation of the relation between message and transaction.

A message is a virtual object that is not serialized and exists only in the Ethereum
execution environment. A message between two contract accounts is also called internal
transaction, because of its dual nature of being structured as a transaction and of being
managed internally of the Ethereum execution environment.
The relation between transactions, messages and contract creation is represented

in Figure 5. We notice that messages and contract creation have the same structure and
both contain an unlimited size byte array. The interpretation of this value depends on
the type of transaction: if the value is interpreted as data, it represents the input for the
message call, else if it is interpreted as init, it represents a piece of EVM code used to
initialize the storage of the smart contract and to return the EVM code that will persist
on the world state. We can distinguish the two types of transaction depending on the
receiver’s address: if it is empty, it is a contract creation, otherwise it is a message call.

Figure 6 shows the message call with regard to a contract account. If the destination
account is a contract, the message triggers the execution of its code (Figure 6a). Instead,
if the message sender is a contract, the message is the result of the code execution
(Figure 6b).

18The currency used within Ethereum.

16

Contract
Message call

trigger execution

(a) Message call to a contract account
which trigger the execution of code.

Contract
Message call

execution result

(b) Message call from a contract ac-
count which represents the result
of code execution.

Figure 6: Message call to and from a contract account.

2.4. Consensus layer

The ultimate aim of the blockchain technology is to provide a total order to transac-
tions in a distributed ledger [3] without relying on a trusted third party. This permits to
solve the double spending problem [2]. Moreover, in Ethereum the order of transactions
can also affect the execution of smart contracts by altering the content of their storage.
In order to describe how the nodes reaches the consensus, we briefly describe the

algorithm to agree on the transaction order (Section 2.4.1) and thereafter we describe
the common state transition procedure that describe how to move to a new valid state
given a transaction (Section 2.4.2), that can be either a contract creation (Section 2.4.3)
or a message call (Section 2.4.4).

2.4.1. Consensus Algorithm

Finding an agreement on the order of transaction (i.e. the actual blockchain) and the
world status is crucial, thus multiple consensus algorithms were proposed [3]. Ethereum
follows an idea very close to the consensus algorithm of Bitcoin, which is also known in
the literature as Nakamoto consensus [17].
The basic idea of this algorithm consists in: (1) accepting only valid blocks with

regards to some validation criterion, (2) create new valid blocks by using a proof-of-work
algorithm, (3) relying on a selection rule to choose between two different valid forks
depending on the amount of work performed in each fork.

Validation The validation criterion used to determine whether a block is valid or not
consists in:

• checking that the blocks and transactions are well-formed

• checking that the block header is valid

• re-performing all the transactions to verify whether the transaction receipts and the
state root contained in the propagated block (Figure 4) are valid, i.e., corresponds
to the values computed locally. This includes also re-executing all the EVM
computations.

17

Proof of Work Ethereum uses an improved version of the Dagger-Hashimoto algo-
rithm [18], known as Ethash [1, Appendix J] as PoW algorithm. The rationale to use of
this memory intensive algorithm is its ASIC-resistance. ASIC are specialized hardware
used massively in the Bitcoin ecosystem. This kind of hardware is a risk for centralization,
because to begin mining new blocks and maintaining the infrastructure a big initial
investment is needed and only few entities and definitely not small private parties can
afford this cost.
Essentially, to create a valid block the miner should find a mixHash and a nonce

(Figure 4) for the block. The PoW algorithm takes as input the block header without
nonce, the candidate nonce and a big dataset (initially 1 GiB) known as DAG, and
returns the mixHash and a number n. The puzzle is resolved if n is smaller than 2256

divided by the difficulty of the block. Clearly, the higher the difficulty the higher the
number of tries to find a suitable nonce and, consequently, the consumption of resources.
The DAG can be pre-computed and is fixed for each epoch, i.e., 30000 blocks, that

corresponds roughly to a number of hours in the range between 100 [19] and 141 [20]. To
verify that the mixHash and the nonce are valid only a cache for the DAG is needed. This
data-structure is required also to generate the DAG itself. At each epoch the DAG and
the cache change and their size increase of 8 mebibytes and 128 kibibytes, respectively.
We refer to the yellow paper [1, Appendix J] to get more details on how these data
structures are computed.

Selection Rule The selection rule is required to avoid the infamous double spending
problem. Indeed, in Bitcoin (and as well in Ethereum) the assumption is that the majority
of computing power belongs to good players who will follow the rules. Therefore, in order
to prevent bad agents to rewrite the transactions history with a high probability [2], the
issuer of new blocks should prove that she invested resources in its creation by solving a
computational heavy task. This mechanism is known as Proof-of-Work (PoW).
In Bitcoin the selection rule consists in accepting the longest chain that corresponds

roughly to the one with more work invested on it. The Ethereum community claims that
Ethereum implements a simplified version of the Greedy Heaviest-Observed Sub-Tree
(GHOST) selection rule [1]: briefly, the stale blocks contributes to the difficulty of a
fork. The aim is to allow an increase in the transaction throughput (by decreasing the
block issue interval) while preserving the same security guarantees of the original Bitcoin
consensus protocol. As noted in [21], Ethereum does not implement a simplified version
of the GHOST selection rule. Indeed, currently the Ethereum’s rule consists in choosing
the fork with the highest accumulated difficulty [1]. Each block in the chain has an
associated difficulty that determines how much effort is needed to mine a new block. This
parameter depends solely on the difficulty of the previous block and the time that elapsed
between the previous block’s timestamp and the new block’s timestamp, corrected with
some bounds to avoid sudden decreases or increases in this value. The claims to use the
GHOST rule are motivated by the fact that the headers of stale blocks (up to six blocks
before, the ommers) can be included in the blockchain and rewarded, but they do neither
contribute to the difficulty of the blocks nor the transactions are verified to be valid [21].

18

Thus, at the state of the art this rule resembles the Bitcoin one.

2.4.2. Transaction Execution

The transaction execution is the mechanism through which the world state is updated.
It represents a transition from one valid state to another valid state.
A transaction specifies a receiver and the value that must be transferred from the

sender to the receiver. Moreover, to avoid the abuse of the resources (CPU and storage)
of the full nodes forming the network and to ensure that all executions terminate, the
concept of gas is introduced. In this execution model each action that must be performed
by the members of the network has an associated cost expressed in gas. In particular,
each EVM byte-code instruction, increase in the storage space by a contract and the
transaction itself have a fixed associated cost. A transaction specifies its gas price and its
gas limit. The former is the price of a unit of gas and is bound to a particular execution.
The higher this price the higher the possibility that the miner will include this transaction
in the blockchain. Usually the miners advertise the minimum gas price they are willing
to accept. The latter is the maximum amount of gas the executor is ready to consume
for this particular execution.

j+1

No

1. Checks
Not Passed

Passed

Yes
2. Receiver

given?

j

Success?

j+3

j+2 j+1

j+4

4. Give unused gas back to
sender and used gas to

miner

4. Give refund balance and
unused gas back to sender

and used gas to miner

3a. Message Call 3b. Contract Creation

Failure

2. Increment sender's
Nonce and

Remove gas from its
balance

Yes No

Figure 7: The steps of the transaction execution algorithm.

19

Figure 7 summarizes the steps of the algorithm for the transaction execution:

1. The transaction has to pass some simple validity checks, e.g. the transaction should
be a well-formed RLP encoded string and the initiator of the transaction should
have a balance big enough to afford the transaction. Moreover, since a transaction
should be included in a block and the block has in turn its own gas limit, it should
be also true that the sum of the accumulated gas used by the already included
transactions and the gas limit of this transaction are smaller than the block’s gas
limit. If these checks fail, the transaction is simply not included in the block in
case of miner or it indicates that the block is invalid in case of verifier.

2. The nonce of the initiator of the transaction is incremented by one and its balance
is reduced by the product of the gas limit and the gas price. This modification to
the state is irreversible.

3. Now, depending on whether the receiver address is given or not we should make a
distinction between:

a. Message Calls (Section 2.4.4)

b. Contract Creation (Section 2.4.3).

During the execution of the message call or contract creation the system keeps track
of the transaction substate, i.e., some important information that are later used
to complete the state transition. The transaction substate includes the touched
accounts, the set of accounts that will be discarded following the completion (self-
destruct set) and the refund balance, that is an amount of gas that is incremented
by removing elements from the world state, e.g., by setting a non-zero value to a
zero value in the storage or by removing a contract from the state.

4. Once the message call or the contract creation are concluded, the sum of the
remaining gas and the refund balance are refunded to the initiator of the transaction
at the transaction’s gas price19. If the message call or contract creation did not
successfully complete, the state is reverted and the refund balance is zeroed, since
its modifications to the state are not considered. The gas used is given to the
beneficiary address (i.e. the miner) who built and finalized the block. Finally, the
self-destruct set and the touched accounts that became empty or dead after the
transaction should be deleted from the world state.

2.4.3. Contract Creation

The contract creation is the act by which a new contract is deployed on the system. It
can be triggered either by a transaction or during the execution of an existing contract.
In the remainder of this section, we use the neutral term sender to refer to the entity who
starts the contract creation. In the first case the sender corresponds to the transaction

19This sum cannot exceed the initial allocated price [1], in other words the refund balance can be used
to mitigate the transaction cost, but not to profit.

20

initiator and in the second case it corresponds to the address of the contract that is
executing.

Transfer Money from Sender to
receiver

Create Account with empty code

i

Execute init code on the EVM

Success?

Revert to initial state

Body small
enough?

Enough gas to
afford deposit?

No

No

Store the code in the state

NoYes

Yes

Yes

i+1

i+2

i+3 i

Figure 8: The steps of the contract creation algorithm.

The steps of the algorithm and the state transition are depicted in Figure 8. The
circles represent the different states. Firstly, the 160-bit identifier for the contract account
is determined as function of the sender’s address and its nonce. The value specified in
the contract creation is transferred from the sender to the brand new contract account.
Afterward, the init code (Figure 5) is executed on the Ethereum Virtual Machine. This
piece of code initiate the storage of the contract account and returns the body, i.e. the
contract code that will persist on the account state. If during the execution an out-of-gas
exception occurs, the state is reverted to the initial state as if the contract creation did
not take place. If the execution of the init code completes successfully, the creator must
pay an amount of gas proportional to the size of the body, because it must be stored by

21

all the full nodes. If the gas remained after the execution is not enough to afford this
cost or the body of the contract code is too big, the state is reverted [1]. If all the whole
procedure succeed, the hash of the body is saved on the contract account state. Usually,
the implementations use this hash as a key for the contract code as showed in Figure 4.

2.4.4. Message Call

The message call is the mean to invoke a contract code and can be either triggered by
a transaction or by the execution of a contract. A message call takes as input a state
and the message itself (the data field) and returns an output, that is from the point of
view of Ethereum only relevant if the message call is triggered by an execution.

Transfer Money from Sender to
receiver

i

Execute contract code on the
EVM

Success?

Revert to initial state

NoYes

i+1

i+2

i+2 i

Receiver has
associated
contract?

i+1

No

Yes

Figure 9: The steps of the message call execution algorithm.

The first step in the message call algorithm is the transfer of value from the sender

22

to the receiver account. If the recipient of the message is an externally owned account,
the message call terminates, otherwise the contract of the account is executed on the
EVM. If during this execution an error occurs (e.g. stack overflow/underflow, out of gas
exception), the used gas is not refunded and the state is reverted to the state prior to
the execution. This means that the sender looses the gas but recovers the sent value. If
the execution succeed, this state persists. The steps of the algorithm are illustrated in
Figure 9.

2.5. Application layer

So far we built the structure needed to communicate and agree on the state. Ethereum
proposes an execution environment where code can be executed. This enables the
implementation of arbitrary business logic opening possibilities towards a wide variety of
applications.
The application layer comprises the smart contract, a collection of functions able to

modify the state and executed on the Ethereum Virtual Machine (EVM).

2.5.1. Ethereum Virtual Machine

The EVM is an abstract computing machine that enables the nodes of the Ethereum
network to execute smart-contract codes.

Figure 10 shows the components of the Ethereum Virtual Machine. The dashed lines
represents the fact that there exists an EVM instruction that allows the transfer of data
from one component to another. Like the JVM, the EVM is a stack-based machine.
In this system the word size and the stack item size are both 256–bit20, and the stack
capacity is 1024. The EVM memory consists of a simple byte array and exists only
during the execution. The size of this array is allocated using an on-demand logic. The
storage is a key value hash table (stored as a merkle tree) that is persistent and is part of
the state of the contract account. The program is stored on the blockchain and therefore
cannot be modified21. In addition to the aforementioned structures, the EVM can read
the information provided in the transaction/message that initiated the execution. In
particular, the EVM can access the input field which contains the arguments for a peculiar
execution. Moreover, the EVM can access the balance of all addresses and write to the
logs that are stored in the blockchain. The logs are used both as a cheap output and
also to notify external applications that something worth mentioning has happened. We
provide more details about events in section 2.6 and Appendix B. For a full instruction
list and specification of the EVM we refer to the official specification [1, Appendix H].

Unlike the Bitcoin’s Script language [5] the Ethereum Virtual Machine can express and
supports the execution of loops. To avoid the abuse of the resources (CPU and storage)

20The motivation for this choice is to facilitate the Keccak-256 hash scheme and elliptic curve computation
that are pervasive in Ethereum.

21There exist techniques based on the strategy pattern to provide new smart-contract version up-
dates as explained here: https://ethereum.stackexchange.com/questions/2404/upgradeable-
smart-contracts

23

https://ethereum.stackexchange.com/questions/2404/upgradeable-smart-contracts
https://ethereum.stackexchange.com/questions/2404/upgradeable-smart-contracts

Stack

Code

Log

Gas

Memory

PC

Contract's
Storage

Machine State

Tx/Msg
Tx Sender

Data

Value

Msg Sender

Gas Limit

Gas Price

Owner

Block Header

Coinbase

Gas Limit

Difficulty

Number

Timestamp

0100010
1010101
1001001
101

Balance

Figure 10: Overview of the Ethereum Virtual Machine

of the full nodes forming the network, Ethereum introduces the concept of gas [1], which
was described in Section 2.4.2. In this execution model each instruction and each increase
in the size of the memory or storage are bound to a cost expressed in gas.
Before executing a smart contract, i.e. a program on the EVM, the initiator of the

transaction allocates a certain amount of gas that it is willing to spend for this execution.
If during the execution all the gas is consumed, an out of gas exception is raised.
The machine state represents the current configuration of the Ethereum Virtual

Machine interpreter. It consists of the remaining gas, the program counter, the memory
and the stack.

As already explained in Section 2.4.2, a transaction can trigger the execution of contract
creations and message calls. In turn, these can invoke the execution of other contract
creations and other message calls. To deal with this eventuality, the EVM has at its
disposal a call stack : when a new contract call or message call is executed, the current
machine state is stored on the call stack and a new machine state with the invoked code is
created. When the invoked code terminates, its activation record is popped from the call
stack and a return status flag is put on the activation record of the invoker: 1 indicates
that the code threw an exception and 0 indicates a successful termination. The call
stack’s depth is limited to 1024 [1]. Although the yellow paper does not define explicitly
the call stack, more details can be found in the literature [22] and in the go-ethereum
implementation22.

22An example of use of the call stack is the function opCallCode in the file core/vm/instructions.go:
it is clear that the implementation exploits the usual function call stack of the language to implement

24

EVM

Smart contract

A
B
I

5e9e70f0211
9f8dc2ad7cd
40aa757237
008972b8df1
0c6349e8d9
d48e98bca

Bytecode

Smart contract

A
B
I

15bc94b
e0b2554
399e7c3
6cfa7098

Bytecode

External
actor

Figure 11: ABI representation.

2.5.2. Smart contract

The smart contracts in Ethereum are part of the application layer. They can be referred
to as implementing the business logic of the applications that runs on the Ethereum
system. A smart contract implements functions and has a state which can be persisted
and accessed in a subsequent execution. They can implement almost any function which
can be implemented in any Turing-complete machine. The difference is due to the gas
needed for a transaction to be executed: since the gas can not be infinite, there will be
always an upper bound on the possible total amount of computation [1].

Usually, a smart contract is written in a high-level language, e.g. Solidity (Appendix B)
or Vyper23, then compiled in EVM bytecode. The contracts communicate with each other
and with external actors through their Application Binary Interface (ABI) represented
in Figure 11. This interface serves as a declaration of the functions implemented by the
contract and their arguments, thus another actor can trigger the execution of it and get
its result. The execution takes place in the EVM.

Although there is a common agreement on the ABI format [20], this abstraction is not
part of the core Ethereum protocol meaning that anyone can define and expose its own
ABI, but the caller have to comply to the format used by the callee.

2.6. External Interaction

So far we described how Ethereum internally works, but we did not provide a description
of how a user or an external application can interact with the system, e.g. how transactions
are sent by users or how an application can read the balance of a given address.
To this extent, the Ethereum community has developed a JSON RPC API [23]

compliant with the JSON RPC 2.0 specification [24]. JSON RPC is stateless and can

the EVM call stack.
23https://github.com/ethereum/vyper

25

https://github.com/ethereum/vyper

be used on top of diverse protocols (e.g. HTTP). It allows external actors to invoke the
exposed API methods by sending JSON encoded requests. These should specify the API
version, the API method, the parameters encoded as a list and a nonce that binds a
request to a reply. For the sake of clarity, we show an example that calls the method
eth_blockNumber, which returns the number of blocks:
curl -X POST -H "Content -Type:␣application/json" --data \
’{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id":1}’ \
http :// localhost :8545

The server replies with a JSON string that contains the result and the same nonce as
the request.
In addition to the JSON RPC API, a JavaScript API was developed. It is provided

as a JavaScript library, web324, that allows JavaScript code to communicate with a
running Ethereum client. It is simply a convenient JavaScript wrapper for the JSON
RPC calls [25]. For a complete list of the methods supported by the two APIs, we refer
to the respective documentations [23, 25].
The different Ethereum client implementations provide options to start JSON RPC

server on top of different protocols: for example, geth allows to start the server on top
of HTTP, WebSocket and IPC Socket, i.e. shared memory. Moreover, this client gives
the possibility to the users to start or to attach to a given running instance a JavaScript
Runtime Environment REPL console [26], which can execute JavaScript programs and
access the JavaScript API methods.

ÐApp A so-called decentralized Application (ÐApp) is essentially the union of a conve-
nient front-end (e.g., HTML, JavaScript) and a smart contract back-end. The front-end
communicates with the back-end through the JSON RPC API or the JavaScript API
(e.g. using web3).

3. Scalability

The aim of this section is to study the scalability of Ethereum. Although the scalability
of permission-less blockchain, and of Ethereum in particular, is a well-known problem
and a major concern in the respective communities as we present in Section 3.1, in the
literature there are a limited number of scientific papers that address this problem. We
give a little survey in Section 3.2. Next, we discuss the Ethereum scalability with regards
to the three axis of the Scale Cube [6]. For each axis, first we give a brief description,
then we provide a virtuous example of an architecture which scales on the axis, hence we
conclude with an analysis of the current status of Ethereum and some of the proposals
coming from the community to improve the scalability with respect to the inspected
axis.

24https://github.com/ethereum/web3.js

26

https://github.com/ethereum/web3.js

3.1. To scale or not to scale

Before start discussing about the scalability in Ethereum, it is worth clarifying whether
it is a real concern or not.
In [1], Gavin Wood defines Ethereum as “a project which attempts to build the

generalised technology; technology on which all transaction-based state machine concepts
may be built”, suggesting that, even systems for which is expected a high number of
transactions can be built with Ethereum. Following this aim, one typical example is
the case of Visa. Visa is capable of handling 56000 transactions per second25, while
Ethereum can roughly process 15 transactions per second26. This value is confirmed also
by our tests whose results are reported in Section 3.7. This comparison points out that
Ethereum is far away from possibly implementing all such systems, showing that the
scalability from this perspective seems crucial.

In January 2, 2018, the Ethereum Foundation announced two subsidy programs both
intended to fund projects on the scalability research and development27 recognizing that
“scalability as perhaps the single most important key technical challenge that needs to
be solved in order for blockchain applications to reach mass adoption”, followed by the
beneficiary announcement28.
This shows how all the Ethereum community founders included believes that the

scalability is a major concern and an actual bottleneck in the employment of the
technology.

The search for the scalability is not only a concern of Ethereum [3]. Other blockchain
proposals move towards this direction making the improved scalability with regards to
the mainstream blockchains their forte29.

3.2. Background

In this Section, we point out the usual concerns about the permissionless blockchain
system, in particular Bitcoin, and the related works regarding Ethereum.

Bitcoin One major concern about Bitcoin and all permission-less cryptocurrencies in
general is the limited maximum transaction throughput [27, 28, 29]. Thus, if the
usage of this payment system augments, not all transactions emitted can be processed in
a predictable and bounded time30. Moreover, the choice of the transactions to include in
the blockchain depends on the will of the miners. Therefore, it is more likely that the
more profitable transactions are included in the distributed ledger [27, 1].

25https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
26https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-

state-channels-plasma-and-truebit-22cb40dcc2f4
27https://blog.ethereum.org/2018/01/02/ethereum-scalability-research-development-

subsidy-programs/
28https://blog.ethereum.org/2018/03/07/announcing-beneficiaries-ethereum-foundation-

grants/
29https://eos.io/
30https://blockchain.info/charts/mempool-size

27

https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://blog.ethereum.org/2018/01/02/ethereum-scalability-research-development-subsidy-programs/
https://blog.ethereum.org/2018/01/02/ethereum-scalability-research-development-subsidy-programs/
https://blog.ethereum.org/2018/03/07/announcing-beneficiaries-ethereum-foundation-grants/
https://blog.ethereum.org/2018/03/07/announcing-beneficiaries-ethereum-foundation-grants/
https://eos.io/
https://blockchain.info/charts/mempool-size

The maximum limited transaction throughput is due on the one hand to the 1 MB
maximal block size and on the other hand to the 10 minutes block interval [30, 29].
Increasing the former would certainly augment the transaction throughput and decrease
the transaction fees, but it would also slow down the propagation time, thus increasing
the possibility of forks. Decreasing the latter would increase the transaction throughput
and increase also the possibility of forks. The increase in the number of forks reduces the
security of the whole system [30]. To address these bottlenecks multiple solutions were
proposed. The Blockchain systems Bitcoin Cash and Litecoin try to augment the maximal
transaction throughput by modifying the Bitcoin client to have a maximum block size of
8 MB and to have a block interval of 2.5 minutes respectively. The GHOST [30] protocol
consider also the stale blocks to permit to diminish the block interval while preserving
the same security guarantees of the original proof of work as we already described in
Section 2.4.1.
In addition to these considerations, a number of confirmation blocks are needed to

be sure that the transactions are really confirmed [28], i.e. it is unlikely that the block
in which they are included can be discarded in favor of other blocks. This uncertainty
in the acceptance of a block is also known as lack of Consensus Finality [3] and is
due to the probabilistic nature of the PoW consensus algorithm. Currently, in Bitcoin
the number of confirmation blocks is set to 6 [5]. This means that after the insertion
of a transaction in a block at least an hour must be waited to be sure that it would be
confirmed.

Another concern with this technology is the need to store an increasingly large amount
of data to keep the desired security guarantees. Currently, the minimum requirement to
run a Bitcoin full-node, that is a node that verifies all the transactions, is 145 GB31.
Other major concerns are related to the cost of the system, especially the cost per

confirmed transaction [29] which is due to the mining cost, the transaction validation,
the bandwidth and the storage.
Finally, the bootstrap time, that is the time needed for a new node to download and

process the whole transaction history, is another key factor that can contribute to the
scalability (scaling out) [29] and the ability of new nodes to join the network.

Ethereum The previous considerations about the scalability of Bitcoin apply also
to Ethereum. In addition, the introduction of smart-contracts in Ethereum makes the
problem very similar to database replication and in particular state machine replication [3].
Also Wood [1] argues that it is very difficult to reach a high degree of scalability by
parallelizing transactions in this system because it is essentially a state transaction
machine. Indeed, the state in Ethereum influences the smart contract execution and
therefore the majority of transactions are dependent from previous ones, thus making
Ethereum stateful.

31https://bitcoin.org/en/bitcoin-core/features/requirements

28

3.3. The Scale Cube

The Scale Cube, as shown in Figure 12, uses the representation of a cube drawn on a
3-dimensional Cartesian space to define three different scaling directions an architecture
can develop in order to growth and shrink along with the demand. Although in a
Cartesian space we could measure the cube size, the Scale Cube does not provide actual
metrics to quantify the scalability, but rather a way of think about scale; that is what
we mean with scaling directions.

Initial point

Near infinite scale

X

Y

Z

Horizontal duplication
and cloning

Functional decomposition
and segmentation

Horizontal data
partitioning

Figure 12: The Scale Cube.

The use of one or two axes does not preclude the possibility to scale on the third
axis. The initial point with coordinates (0, 0, 0) means least scalability. The prototypical
system at the initial point consists of a single monolithic application and storage retrieval
system likely running on a single physical machine [6]. Of course, it might scale up, that
is it could run on a more powerful machine, but it won’t scale out, hence it will not
take advantage of a distributed architecture. All of the three axes scales well from a
transaction perspective, that is, in our case, the transaction throughput.
In the Sections 3.4, 3.5 and 3.6 we describe the single axes with aid of examples, we

argue where Ethereum is placed with respect to the specific axis and we describe some
solutions proposed to augment the scalability of the system.

3.4. X-Axis: Horizontal Duplication

The x-axis of the cube of the scalability is concerned with the horizontal duplication
and cloning of services and data with absolutely no bias, running each identical copy of
the system on a different server. Usually, the work is distributed by a load balancer.

Reasoning on the x-axis is typically easy and the implementation can be fast, but the
data sets have to be replicated in their entirety which increases operational costs.

29

Web
serverDatabase

User

User

User

(a)

Web
server

Database

User

User

User

Web
server

Nginx

(b)

Figure 13: Web servers without (a) and with (b) load balancer.

3.4.1. An example: Web server replication

In order to better understand the concept, we bring an example of a common ar-
chitecture which scales on this axis. Let’s consider a small e-commerce business that
runs its website on a single server on top of a single machine. This scenario is depicted
in Figure 13a. This website is becoming increasingly popular and suddenly it has to
face the explosive growth of HTTP requests. If this trend continues, the website cannot
scale-up for a long time.
After a technical advice, the owner of the business decides to take the Web server

codebase and deploy an identical copy of it. To make the website working on two different
servers, she decides to use a load balancer and in particular nginx32, an HTTP and
reverse proxy server, mail proxy server and a generic TCP/UDP proxy server. Among the
HTTP server features, it serves as load balancer. The load balancing methods supported
by nginx are:

• round-robin, the requests are distributed in round-robin

• least-connected, the next request is assigned to the server with the least number of
active connections

• ip-hash, the request is assigned to a server based on the client’s IP address

The two Web servers now work in parallel and access the same database and, if they
are stateless, the owner can choose any of the load balancing methods offered by the
load balancer. The statelessness is an important property in this scenario, it avoids
dependency between requests, that is the server can process a request without needing
to access the information of another one. In the example, if the servers would not have
been stateless (i.e. stateful), one request arrived at one of the two servers could be the
ones on which another request being processing on the other server depends on, hence
without permitting to successfully fulfill the latter.

32http://nginx.org/

30

http://nginx.org/

3.4.2. State

Let’s clarify the concept of state in order to better understand the importance of it
for scaling on the x-axis. We said that, in other words, an application that uses state
chooses the next action to be performed evaluating the current execution condition [6].
This definition holds for the protocols as well. A common example of stateless protocol
is HTTP, since the receiver does not need to know anything about a previous request
having all the information needed to fulfill the current one. On the contrary, an example
of stateful application is a possible implementation of user session (which can be done
also with a stateless approach), in which a user is authorized to request some resources
only after an authentication request. In this setting, the result of the authentication
could be stored in the server making it stateful, i.e. some requests are dependent on the
authentication request. Referring at Figure 13b, in the stateful implementation, the user
sessions could be stored at Web server level. In our example, the only load balancing
method which supports session persistence is ip-hash thanks to its ability to always
redirect requests from a client to the same server except when this server is unavailable
or when the client’s IP address changes. Indeed, with round-robin and least-connected
each request is potentially distributed to a different server making it necessary to write
stateless servers.
It should be clear now the role of the state scaling on the x-axis. Once we scale by

cloning, we duplicate the data along with the service. If the state changes, these changes
should be reflected on the server which accesses that same part of the state. This can be
not a drawback at first, but it may become an issue increasing the data size.

3.4.3. Ethereum current state and proposals

In Section 2.4.1, we introduced the Ethereum consensus algorithm and the PoW
algorithm which is run by the miners in order to create the next valid block. The more
miners join the network (or improve the existents), thus incrementing the global hash rate,
the more difficult a state transition become. In section 3.7.2, we measure the maximal
transaction throughput in a private blockchain33. Our tests show that incrementing the
number of miners in the network does not increment the transaction throughput, once the
difficulty stabilizes. We notice that the results between different runs may vary probably
as a consequence of the short running time of our tests (10 minutes), which limit the
chance to reach a stable point. The turbulences in performance can be due to a variety
of factors like network overhead, “unluckiness” of the miners which affects the mining
difficulty, or perturbation in the performance of the nodes. Another significant test we
present is described in section 3.7.2. In this test we set a gas limit high enough to not
restrict the number of transactions which can be included in a block. The results show
a little increment in the transaction throughput with regards to the previous test, but
again the number of miners does not affect the overall performance. Hence, duplicating
the miners in the network does not increment the transaction throughput making the
scaling on the x-axis absent in the current implementation. When we are talking about

33See Section 3.7 for a detailed tests description.

31

duplicating, we are not assuming the nodes are running the same implementation. Indeed,
there are multiple implementations (e.g., geth, parity34, etc.), that adhere to the same
protocols, therefore they are functionally equivalent.

In Section 3.2, we already pointed out that Ethereum is stateful, thus making it difficult
to scale on the x-axis. Moreover, the implementation of the consensus layer requires that
everyone validates each block propagated in the network executing all the transactions and
the EVM computations which is in contrast with the concept of load distribution of the
x-axis. Thus, the system is limited by the performance of the single computer duplicated
in the network. Because of these issues, it is very difficult to individuate measures to
scale on this axis without loosing other fundamental characteristics, like decentralization
and trustlessness. Without these latter features, we would have a traditional system with
a central authority on which we could implement some well know scaling solutions such
as load balance among the different servers or simply scale up.

3.5. Y-Axis: Functional Decomposition

The y-axis scaling focuses on the separation based on the responsibility for an action
which can be determined by the type of data or the type of work performed for a
transaction. While scaling on the x-axis could means “everyone does everything”, scaling
on the y-axis specializes the workers splitting the whole service in small services and
assigning each service to a single worker. If we combine the x-axis with the y-axis, we
could have cluster of specialized workers such that each cluster covers a different service,
but workers in the same cluster do the same job.
With regards to the data, differently from what happens in the x-axis, each service

should have its own non-shared data, thus segmenting it based on what each service
needs to have access to. This allows to size and optimize the resources based on the
transactions demand for each service, and ultimately to reduce the operational costs.
As done before for the x-axis, we provide an example of an architectural approach

which corresponds on the y-axis.

3.5.1. An example: Microservice architecture

Recalling the e-commerce example presented above, instead of duplicating the mono-
lithic application and distribute the load equally between the clones, we can identify
logical components, that is different functional areas of the application, such as account
service, purchase service, product service.
The diagram in Figure 14 summarises the microservice architecture resulting from

such division. The user entity condenses different client concepts (e.g. browser or mobile
applications, bots, humans, or others), while the gateway represents what guides the
requests to the right service. In the case of a browser application, the gateway could
also exists only in it without needing a dedicated back end component, or it could not
exists at all, for example advertising the location of each service and delegating to the

34https://github.com/paritytech/parity

32

https://github.com/paritytech/parity

User

Account
service

Account
database

Purchase
service

Purchase
database

Product
service

Product
database

Gateway

User

User

Figure 14: Example of a microservice architecture.

users the responsibility to choose the right service. Each service has its own non-shared
database in order to be decoupled from other services, which represents a good solution
in the case of perfect isolated services. More often, there could be some logical relations
between data stored in different services making necessary to implement a mechanism to
maintain data consistency. Such database separation opens the possibility to the services
to choose the database type which fits better for the service they are providing. For
example, the purchase service could use a SQL database taking advantage of the different
isolation levels to concurrently and consistently handle the payments, while the product
service could use a NoSQL database to tackle the different properties of the products.
The services could be organized around the business capabilities (or “something that
a business does in order to generate value” [31]), or decomposed by responsibility for
particular actions or for all the operations on entities of a given type, but ideally each
service should have only a small set of responsibilities.
The main drawbacks of the Microservice Architecture Pattern [32] are the increased

complexity in development and deployment. On the other hand, it has a number of
advantages, among which:

• decoupling. The functional decomposition of services decouples the components
of the systems reflecting this behavior also in the database separation

• fault isolation and design for failure. Since the services implement different
functionality of the system, they can be run on different processes leading to two
consequences. The first one, as stated in [33], is that the application has to be
designed thinking about a possible failure of a supplier, thus the client has to
tolerate the failure of services responding as gracefully as possible. The second one
is improved fault isolation, indeed, if a service has an unintended behavior, it less
likely to affect the other components of the system

33

Node

Blockchain

Validators

(1) deposit transaction

(2) added to the
validators set

Consensus
algorithm New block

Figure 15: Overview of a block creation in the Proof of Stake.

• scalability. The services can be run on different more customized machines which
better fit the resources requirements, hence making the vertical scaling more efficient
wasting less resources. Moreover, if combined with the x-axis, it is possible to have
a more fine-grained control on the horizontal scaling.

3.5.2. Ethereum current state and proposals

Currently Ethereum does not scale on this axis. A separation of responsibilities based
on the type of work can be identified looking at the node type. A miner is responsible to
collect pending transactions and build a valid block, while every node is responsible to
verify the blocks generated by the miners, but, as we already discussed in Section 3.4.3,
the transactions throughput does not follow the trend of the number of miners.

Among the proposals coming from the Ethereum community to improve the scalability,
no one takes evidently this direction. The different node roles, although implementing
different functions, do not define a functional decomposition since they operate on the
global shared data. This is the case of Proof of Stake as well, whose we briefly introduce
in Section 3.5.3, where we can identify different node functions as we do in PoW.

3.5.3. Proof of Stake

Proof of Stake (PoS) is a class of algorithms through which a cryptocurrency blockchain
network achieves distributed consensus. As we have seen in Section 2.4.1, in PoW the
truth is determined by heavy computation done by the miners. In PoS, there are
validators instead of miners and the consensus depends on the stake confirmed by each
validator, which consists in an economic deposit in the network’s cryptocurrency (ether
in this case).
Figure 15 shows a creation of a new block at high level. If a node owns an amount

of the blockchain’s base cryptocurrency, it can become a validator sending a deposit
transaction which locks a given value. Once the transaction has successfully executed,
the node becomes one of the validators. The consensus algorithm determines how a
validator is chosen in the set of validators to propose the next block, and then how the
validators agree on which block is canonical. Different type of PoS can be obtained by
varying the consensus algorithm and how the rewards are assigned.

34

Shard 1

[L-O)
[S-W)
[W-$)

Shard 2

[L-O)
[S-W)
[W-$)

[L-O)
[S-W)
[W-$)

[D-G)
[O-S)

[D-G)
[O-S)

[D-G)
[O-S)

Shard 0

[A-D)
[G-L)

[A-D)
[G-L)

[A-D)
[G-L)

Config Server

Config Server Config Server

Mongos

App Server

Balancer

Users

Figure 16: A typical architecture of an application server with a sharded MongoDB
database.

3.6. Z-Axis: Horizontal Data Partitioning

The direction taken by scaling on the y-axis is to segment based on the service, i.e.
based on dissimilar things. Scaling on the z-axis means segment on similar things,
thus making the segmentation biased by the data or the actions that are unique to the
sender or the receiver of the request. In particular, to enhance significantly the system
a z-axis split should partition both transactions and the data necessary to perform the
transactions. An example of such scaling could be, in a client-server architecture, the
geographic distribution of the servers based on the clients requests, such that a request
performed in Europe is undertaken by a server located in Europe instead of one located
on the other side of the globe. One similar example of successful z-axis split is sharding.

3.6.1. An example: Sharding

Sharding is commonly used in distributed databases to scale horizontally by splitting
the data of a single database in several servers. This way, it is possible to augment the
transaction throughput by adding more machines, instead of requiring a more powerful
machine, as in the case of vertical scaling. Indeed, when the number of requests grows,
the resources of a single server could be insufficient to grant acceptable response times.
The drawback of using multiple servers is the management overhead.

One emblematic example of implementation of (auto-)sharding is MongoDB35 [34].
This kind of open-source NoSQL database stores documents without a fixed schema.

35https://www.mongodb.com/

35

https://www.mongodb.com/

MongoDB gives the possibility to split a collection of documents into different shards
according to a selected shard key and a sharding strategy. Each shard consists of one or
more replicated servers36 and it is accountable to store the documents in a partition of
the key space. These partitions are composed of one or more chunks. These are minimal
piece of data (default 64MB) that contain the documents, whose shard key values are
included within a contiguous range of the key space. To have a unique correspondence
between documents and chunk, and transitively of documents and shard, no overlapping
chunks are permitted. If after inserting new documents in a given chunk, it exceeds a
configured size, the chunk is split. Furthermore, if a shard contains too many chunks,
some of them may be migrated to other shards.
Since the users and the applications should be able to access the data transparently,

that is without knowing where the documents are really stored, an entity called mongos
is introduced. Essentially, it is a broker between the application and the database, that
forwards the requests to the right shard(s), collects the responses and returns them to the
requester. Usually each application has its own mongos instance, but other configurations
are also possible [34].
In order to know where the data are stored, the config servers are used. They

contain metadata and the configuration settings for the cluster, such as the list of chunks
that are stored in each shard and the ranges covered by the chunks. Each time a chunk
is split or migrated these settings should be updated.

To automatically balance the load between the different shards, a background process
in the principal config server called sharded cluster balancer is employed37. It monitors
constantly the number of chunks on each shard and whenever one shard contains more
chunks than a given threshold, it tries to migrate chunks to balance the amount of chunks
in each shards. In addition, it attempts to minimize the amount of data that should
be migrated to reduce the performance impact due to the bandwidth and workload
consumption caused by migration. For example, one shard cannot be involved in more
than one migration at the same time. Moreover, if additional servers are available, the
balancer may also create new shards or it may simply rearrange the partitions.

These concepts are summarized in Figure 16, in which the replicas are bounded with
dashed lines whereas the solid lines represents which component communicates with
which one. The chunks are shown with the ranges of the shard key space they cover.
Whenever the application server must query the database to collect information, it
demands the mongos instance to do so. If the query contains the shard-key, the broker
can forward the request to the right shard(s). When this information is not available,
mongos should broadcast the request to all the shards.
We clarify this by means of an example. Let’s take into consideration Figure 16 and

suppose that the sharded database contains the collections of users of the system of the
application server, which needs the data related to a user to perform authentication.
Furthermore, suppose that the shard key is the username and that the chunks are split

36In MongoDB jargon it is known as replica set.
37In version prior to 3.4 (the current version is 4.0) the role balancer was played by the different mongos

instances on turn [35]

36

according to the initial letter of the username. Now, if the application server needs
the data belonging to a certain user, let’s say JohnDoe, it has to create a query and
send it to the mongos instance. This searches in the config server which chunk should
contain the searched key and discover that shard-0 contains the chunk ranging from G
to L and therefore forwards the request to shard-0 and obtains the awaited response.
mongos elaborates it and send the reply to the application server, that can now use the
information. However, if the query does not contain the shard key, the broker has no
way to know in which shard the information is stored and has to broadcast the request.
It is worth to notice that the choice of the shard key is fundamental to grant a certain
level of performance. If the server is sharded according to, let’s say, the age of the users,
the search by username would require a broadcast, because in the config server there
would be no information to forward the request to the shard containing the required
document.

3.6.2. Ethereum current state and proposals

We argue that currently Ethereum is not developed in the z-axis, because each node
of the network should have information about the whole blockchain and the status of
all accounts in the network (Section 2.3.1) to process the transactions. For this reason
Ethereum cannot be more efficient than a single machine, as already pointed out by
Vitalik Buterin in the muave paper [36].

Furthermore, a z-axis split similar in nature with the one of MongoDB, i.e. by letting
different nodes store different part of the state would surely diminish the amount of data
to store on each node, but (A) it would require a lot of data to be sent across the network
to perform the computations, and (B) it would not augment the transaction throughput,
but rather diminish it. To justify point (A) we consider that many computations require
the ability to access a fair amount of addresses and their storage as the following example
clarifies. Let’s consider the process of a transaction that requires some computations on
the EVM. To complete this action we need several information, such as the balance of
the sender of the transaction and the code of the contract invoked. In turn, the contract
invoked may call other contracts and so on. In addition, these may modify the balance
of other accounts as a side effect, e.g. through the SELFDESTRUCT38 opcode. Thus, to
process a transaction we need the account states of the sender and the called contracts
and all account state that are affected by the computations. The point (A) implies
points (B), indeed the overhead due to the communication would surely slow down the
transaction processing action.

With these considerations in mind and by recalling that to be significant a z-axis split
should partition both the transactions and the data necessary to perform the transactions,
more clever approaches were proposed.

To tackle a z-axis split, we can identify different proposals, among which Plasma and
Sharding. The Plasma proposal is categorized as an off-chain solution because it executes
some transactions outside the main chain. At the opposite, in which the sharding belongs,
38This opcode causes the deletion of the executing contract from the world state and sends the balance

of the contract to a selected account [1].

37

Figure 17: Plasma hierarchical tree structure representation.
Source: https://plasma.io/plasma.pdf

the on-chain solutions execute every transaction on the main chain. Typically, in order
to apply an off-chain solution, one or more smart contracts are sufficient (for example,
Vitalik proposed a specification for a minimal implementation called Minimum Viable
Plasma39), while an on-chain solution requires an hard-fork, because it requires a radical
change in the Ethereum protocol.

3.6.3. Plasma

The idea of Plasma is to create a tree hierarchy of blockchains. Each chain refers to
a parent chain, except the root (i.e. the main chain, Ethereum in our case). Plasma
consists of a series of smart contracts which allows for many blockchains within a root
blockchain [37] as represented in Figure 17. The Plasma blockchains co-exist with their
own business logic and all the computations are enforced at root level only in the event
of proof of fraud, and only the block header hashes are submitted. During non-faulty
states, only merkleized commitments are periodically broadcast to the root blockchain.
The efficiency mainly comes from this last feature since multiple state updates can be
condensed in a single state update in the root chain. This system design implies that
39https://ethresear.ch/t/minimal-viable-plasma/426

38

https://plasma.io/plasma.pdf
https://ethresear.ch/t/minimal-viable-plasma/426

most of the computation can be done off-chain (i.e. outside the root chain) and the
state is enforced on-chain (i.e. in the root chain). Significant scalability for the users
is achieved through chain split: when a Plasma blockchain grows too large, it can be
split in child chains allowing the users to observe only Plasma blockchains in which their
funds resides.

3.6.4. Sharding in Ethereum

The Ethereum foundation [36, 38] and the scientific community [29] have proposed
sharding combined with Proof-of-Stake (shasper 40) as an effective measure to dramatically
increase the transaction throughput. Although the details about this proposal are
constantly updating41 and there is no reference implementation42, we will report here
the basic ideas [36, 38] about sharding and explain why this approach could improve the
scalability of the system.

The Ethereum sharding proposal consists in splitting the world state and transaction
history into different partitions called shards. Each shard is a distinct universe, i.e. is
itself a PoS chain, in which the transactions affect only the accounts in the same shard.
The transactions affecting one shard are collected in so-called collations by members of
the network known as proposers. Collations are the analogous of blocks at the shard
level and like blocks (Figure 4) are chained and contain several fields, among which the
list of transactions and the address of the proposer. Once per epoch, a block in the main
PoS chain (main block) is created, where cross-links (e.g. the hash of the collations) to
the accepted shard collations are inserted. The collations are accepted or refused by a
committee of attesters. To become an attester or a proposer the members of the network
should deposit an amount of ether. After this operation, they can be randomly assigned
to different shards. This is done in order to grant a certain level of decentralization and
security.

This sharding proposal allows to process the transactions of different shards in parallel
and therefore significantly increase the transaction throughput. Another major benefit
of this approach is that the nodes in one shard should verify only the transactions in
their shard rather than verifying all the transactions.

This simplified description of sharding do not take into consideration the communication
between different shards, but obviously it is a desirable characteristics. Thus, cross-
sharding communication mechanisms were proposed [38].

Moreover, one important feature that is desirable and planned is the transparency of
sharding to smart contract developers [38].

40This name is obtained by the contraction of the words sharding and Casper, the Ethereum’s Proof of
Stake proposal [39].

41https://notes.ethereum.org/SCIg8AH5SA-O4C1G1LYZHQ
42The Prysmatic Labs company is modifying the geth implementation to implement both PoS and

sharding (https://github.com/prysmaticlabs/prysm), but it is far from being production ready.

39

https://notes.ethereum.org/SCIg8AH5SA-O4C1G1LYZHQ
https://github.com/prysmaticlabs/prysm

3.7. Tests

To measure the scalability of Ethereum, we executed some tests to study the maximal
throughput and the size of the blockchain with different configurations. To study the
scalability of a permission-less blockchain system such as Ethereum, one should either
rely on simulation [21] or run tests using thousand of nodes [21, 40]. We do not have
neither a simulation of an Ethereum system nor so many resources. Therefore, we took
inspiration from Blockbench [41], which compares the performance and scalability of
Hyperledger43 and Ethereum in a private (permissioned) scenario, that is, when we
consider a limited number of authenticated nodes.
We tried to use the public available Blockbench repository44 but we did not manage

to configure it due to a lot of hard-coded configuration variables and the lack of a
well-written documentation. Thus, we wrote our own test and benchmark system45.

3.7.1. Test Configuration

To keep the configuration easy, we opted for a classic master-slave logic. The master,
i.e. the initiator and coordinator of the tests, uses the ssh protocol to run commands
on the remote machines. Similarly to [41], we distinguish between the miner and client
roles. The nodes of the former type are accountable to generate new blocks while the
nodes of the latter type create and propagate transactions, and both verify the blocks46.
We can assign multiple roles to a single machine. In this case we run one distinct geth
instance for each different role. The coordinator copies the right genesis file in the test
machines.

In each run of test, we distinguish two main phases: 1. the setup and 2. the test itself.

Setup phase The setup consists in iterating on the test machines twice:

1. the required ethash data structures are generated

2. the genesis file is used to create the genesis block and initialize the ethereum World
State.

Ethash data structures During the setup phase, the miners generate the DAG and
the cache for the first two epochs, while the clients generate only the caches because
they are required only to validate blocks. We generate the DAGs for the first two epochs,
because ethash uses double buffer of DAGs to grant a smooth switch between epochs [18].

43https://www.hyperledger.org/
44https://github.com/ooibc88/blockbench
45https://github.com/gfornari/ethereum-test/tree/benchmark
46To reduce the number of test variables we consider only full nodes. For a list of node types we refer

to Appendix A.

40

https://www.hyperledger.org/
https://github.com/ooibc88/blockbench
https://github.com/gfornari/ethereum-test/tree/benchmark

Genesis file The genesis file contains useful information to create (deterministically)
the genesis block and the initial state. We report an extract of the genesis file we used
in Listing 1. It is simply a JSON file, which specifies several parameters. Most of them
directly specify the attributes of the block number 0, which are shown in Figure 4. Here,
we describe only the fields that are not directly a parameter specification:

• config: it describes the network id, and the number and hash of blocks that marks
the entry into force of the Ethereum Improvement Proposals (EIP), which indicates
incompatible changes in the protocol or simply a new version of Ethereum

• alloc: it specifies an initial allocation of Ether for the accounts47 we use in the
tests.

{
"config ": {

"chainId ": 11691524842890 ,
"homesteadBlock ": 0,
"eip155Block ": 0,
"eip158Block ": 0

},
"coinbase ": "0x00..00" ,
"difficulty ": "159268" ,
"extraData ": "",
"gasLimit ": "0 x2fefd8",
"nonce": "0 x37a2f64534",
"mixhash ": "0x00 ...00" ,
"parentHash ": "0x00..00" ,
"timestamp ": "1528621597" ,
"alloc": {

"0 xe505c82291141cea6c2d371e522caf2197740a78 ": {
"balance ": "100000000000000000000"

},
...
"0 x1cd50bd930bd9d2474c671173e4ad283c0ac204f ": {

"balance ": "100000000000000000000"
}

}
}

Listing 1: An extract of the genesis file used in the tests.

Obviously, each node of the network should be initialized with the same genesis file,
otherwise the hash of the genesis block differs and the peers cannot establish a connection
with the Ethereum Wire Protocol as described in Section 2.2.3. Thus, the genesis file
for the main network and the official Ethereum test networks are hard-coded. To create
a new private Ethereum network it is sufficient to use a new genesis file in which some
47This possibility has been exploited for the so-called Initial Coin Offering (ICO) used by the Ethereum

Foundation to obtain fiat currency to finance the project.

41

parameters are changed. Therefore, in our genesis file we use an arbitrary network id
and nonce, so that packets of different networks are simply dropped.

Apart from the arbitrary values, that is the id and the nonce, and the data that perhaps
are required by the system which do not have influence on the transaction throughput,
the values of some parameters require some justification.
The timestamp of the genesis file, that corresponds to the one of the genesis block,

influences the difficulty of the first blocks, and transitively of all the blocks. Since, for
time constraints, we want to run each test for few minutes, we want to avoid sudden
decreases in the difficulty due to a too old timestamp. Therefore, to prevent these
unwanted changes in the difficulty value, during the second loop of the setup phase, the
initiator reads its timestamp and gives it as parameter to the peers48.
As already described in Section 2.4.1, the difficulty is an adaptive parameter that

determines how much effort should be invested in the creation of a new block. In our
tests we used the same hardware and same operating system in all nodes and for all
miners (we deliberately used only one thread for mining). Therefore, to find a suitable
starting value for the difficulty for the different configurations, we ran a simulation with
one, two, four and eight miners for 24 hours. Figure 18 shows how the difficulty changed
with the different number of miners. We can notice that in our homogeneous system,
the final values of difficulties have a quasi linear dependency with the number of miners.
For the test we took as initial value the median of the last 100 blocks. These values are
represented in Table 2. We reported also the coefficient of variation to show that the
values of the last 100 blocks are pretty stable.

Figure 18: The growth of the difficulty in the 24 hour run.

48Before starting the test all the peers should be configured, therefore using the timestamp of the
coordinator does not assume fine-grained coordinated clocks.

42

Number of Miners Difficulty Coefficient of variation
1 404559 0.0073%
2 821994 0.2330%
4 1711150 0.1458%
8 3409299 0.1742%

Table 2: The median of the last 100 blocks, value used in the tests as start difficulty, and
the coefficient of variations.

The gas limit in the genesis block determines the gas limit of the first block. The
gas limit of the subsequent blocks can be determined freely by the miners but must be
contained in a range obtained by summing and subtracting to the gas limit a portion of
itself [1]. Thus, in a relative brief simulation the initial value is fundamental.

Test Phase After the setup phase, the real test begins by starting the execution of the
geth instances on the different machines. The clients emit transactions that cause simple
transfers of values that do not require the intervention of the EVM, with a predefined
release time (50 ms), while the miners starts collecting transactions and creating blocks.
The tests are stopped after a configurable time (10 minutes). For each configuration the
tests are repeated a configurable number of times (5) because the probabilistic nature
of the Proof-of-Work algorithm and the interaction of many systems do not guarantee
deterministic results.

Concrete Parameters We measure the throughput with different number of miners
(1, 2, 4 and 8), fixing the number of clients at 16 with two different gas limits. The
miner machine executes only one geth instance in miner mode, while the client machines
execute two instances in client mode. For our tests we used the Scaleway platform49. We
rent 17 (one master and 16 slaves) START1-S servers, which are provided with 2 X86 64
bit Cores and 2 GB of RAM, a 50 GB SSD and an internal bandwidth of 1 Gbit/s, so
that the network would not be a bottleneck. Each server runs Ubuntu 16.04 LTS with
geth version 1.8.11-stable. During the tests, the master acts also as bootstrap node. We
described the role of bootstrap nodes in Section 2.1.

The two tests we conducted differs only for the gas limit in the genesis block, we wanted
to confirm that this value influence the number of transaction processed as described in
Section 3.2.

3.7.2. Results

In this section we report interesting results obtained from the two tests we conducted.

49https://www.scaleway.com/

43

https://www.scaleway.com/

Maximal throughput - Low Gas Limit For this test we used a gas limit of 3141592,
which corresponds to approximately 150 · 21000. The results are reported in Table 3. We
notice that in this case we could not exceed the 10 transactions per second and that the
number of transaction in each block do not exceed 135, although there would be enough
space to add other transactions.

1 miner 2 miners 4 miners 8 miners
Avg throughput 5.37 7.17 6.73 6.65
Avg blocks 24.00 37.80 30.02 30.00
Avg txs per block 133.77 114.69 133.61 133.15
Max throughput 7.18 7.76 8.17 8.67
Min throughput 3.68 6.83 5.91 4.91

Table 3: Average throughput and number of mined blocks on 5 runs.

Maximal throughput - High gas limit For this test we use a very large gas limit
10500000 which corresponds to 500·21000. To give a term of reference, we can consider that
currently (August 2018) the gas limit for the main Ethereum network is approximately 8
million, that corresponds roughly to 381 · 21000. The results are summarized in Table 4.
In this case with two configuration we could exceed the 15 transactions per second.

1 miner 2 miners 4 miners 8 miners
Avg throughput 8.17 11.55 9.02 11.07
Avg blocks 33.60 27.20 37.20 29.80
Avg txs per block 145.25 262.98 157.15 226.32
Max throughput 12.55 17.50 17.77 12.525
Min throughput 6.82 6.83 6.83 7.14

Table 4: Average throughput and number of mined blocks on 5 runs with high gas limit.

4. Conclusions

The Blockchain technology provides a way to find a total order of transactions in
a distributed system without relying on a trusted third party. This permits to have
an exact copy of the state in each node of the network, because each node starts from
the same state and changes the state according to the transactions, whose execution
is deterministic. The main advantage of this technology with respect to traditional
transition systems is its decentralized nature.

In this report we took into consideration Ethereum, a representative of the permission-
less blockchain technology. This system is particularly interesting because it supports a
general-purpose execution environment, the EVM.

44

In the first part of this work we proposed a decomposition of the Ethereum’s architecture
in logical layers. The five stacked layers abstract from the implementation details and
offer a conceptual organization useful to compare different blockchain proposals, although
permitting flexibility as the case of the EVM which is a cross layer. Moreover, this
decomposition allows a component-oriented development which helps reasoning on the
system.
The focus of the second part is the analysis of the scalability of Ethereum. To do

so, we analyzed the existing literature (Section 3.2) and confirmed empirically that the
current version of Ethereum reaches a maximal transaction throughput of approximately
15 transactions per second, even if the transactions do not require computations. This
value is not influenced by the number of miners, but rather by the block size and the
block interval. Furthermore, we analyzed the motivation of this reduced transaction
throughput with the aid of the cube of scalability [6]. We argue that the current version
of Ethereum is not developed in any direction of the cube by analyzing the current
specification. Thereafter, we categorize the scalability improvement proposals based
on the axes they will affect. From this analysis, it is clear that the most efforts of
the community are concentrated on the z-axis of the cube Section 3.6 with proposals
like Plasma and sharding. Sharding is a scaling strategy already seen in the database
systems, that is, systems which have to manage persistent data. Maybe, this common
duty between Ethereum and the database systems leads the z-axis of the Scale Cube.

45

A. Node types

Currently, in Ethereum there are mainly three types of nodes: full nodes, archive nodes
and light nodes. Hereafter, we describe each type of node and explain how to start nodes
of this type with geth v1.8.11.

Full nodes The full nodes are the nodes we describe throughout our work. They store
the whole blockchain (comprising of block headers and bodies), they have full copy of
the most recent states, and they verify and process every transaction. A full node can be
a miner.

When running a full node the user has the possibility to decide whether to use:

• the normal synchronization mechanism, i.e. the protocol version 62 section 2.2.3:

geth --syncmode full [other-options]

• the fast synchronization, i.e. the protocol version 63 section 2.2.3

geth --syncmode fast [other-options]

The default option is “fast”, because it require significantly less time, as explained
in Section 2.2.

Archive nodes Archive nodes are full nodes that store also the state tree for each
block, hence they are the most storage-bound nodes. They are used by block explorers,
like Etherscan50 or enterprises that needs to have at their disposal historical information.
To run an archive node, it is sufficient to overwrite the garbage collection mode

(gcmode) for the state, so that all the intermediate states are stored:

geth --syncmode full --gcmode archive [other-options]

Light nodes Light nodes store only the headers of the blocks of the blockchain. They
do neither store the blocks’ bodies nor the state. The idea behind light nodes, is to use
the other peers in the network as a distributed hash table (DHT). In essence, they know
the hash of the information and request the desired information from the peers they
know with an on-demand logic.
For example, a light node can retrieve the state of an account at a desired block by

recursively requesting the content of the World State, starting from its hash which is
contained in the block’s header (Figure 4). We refer to [42] for further details about how
and what type of other information a light node can retrieve.

This type of clients assume that there are full-nodes in the network supporting the Light
Ethereum Subprotocol (LES) [43] which have message types to retrieve data on-demand.

To run a light node it is sufficient to overwrite the default synchronization method:

geth --syncmode light [other-options]

50https://etherscan.io/

46

https://etherscan.io/

B. Solidity

Solidity [20] is the most popular high-level language used in the Ethereum ecosystem.
It is a high-level statically typed language that is compiled to EVM bytecode. It takes
inspiration from various languages, such as JavaScript, Python and C++.
In addition to the usual mathematical and logical operations, Solidity has several

peculiar variables and functions that resides on the global scope and allow the programs
to access the data shown in Figure 10. One of this specially crafted global variables is the
msg variable, that allows the programs to access the message call data, such as the code
invoker’s address (msg.sender) and the amount of money sent along with the invocation
(msg.value).

In order to provide an intuitive insight about Solidity, we provide a little example in
Listing 2, that shows some key features of Solidity.

As it is easy to see, the contracts are the building blocks of the language and resemble
objects. Indeed, in Solidity one contract can also inherit from other contracts. The
fields of the contract are stored in the contract’s storage. In the example there are
two persistent variables x and owner. While the former is marked as public the latter
is marked as private. Thus, the compiler creates a getter x() for variable x but not
for variable owner. It should be noticed that the owner variable can still be read from
outside the EVM51, but it cannot be read from other contracts that run on the EVM.
After the definition of the field variables we can see the constructor method. It

is run only once upon creation and returns the code of the contract as we described
in Section 2.4.3. If it is not defined, an empty constructor is assumed.
The events are a high-level interface for the EVM’s logging facilities. Events are

emitted by smart contracts to notify external applications, that can listen to them to
perform some application-specific operations. Logs are visible from the outside because
they are stored in the blockchain as part of the receipt of the transaction which emitted
them.
After the definition of the events, the modifier onlyOwner is defined. A modifier is

a piece of code that is executed before or after the call of a function decorated with it.
They can be used to implement final state machines [20] and pre and post-conditions
checks for functions.
The functions are an abstraction of the language. They can be invoked either

internally, that is inside the same call stack activation record with a JUMP or JUMPI
instruction or externally, that is by creating a new message call. In the former case the
machine state is the same of the invoker, while in the latter the code is executed in a new
machine state, that is, by creating a new activation record on the call stack, as discussed
in Section 2.5.1. The first 4 bytes of the hash of the signature of external function
(function name and parameter types) is used as unique identifier (selector) of a function.
When an actor wants to invoke a function externally it should provide the function’s
selector in the message data and follow the ABI format [20]. Essentially, the Solidity

51It is part of the contract’s storage, which in turn is part of the world state that is replicated in each
node.

47

pragma solidity ^0.4.24;

contract Example {
uint8 public x; // Compiler creates getter
address private owner; // Only this contract can see variable owner

constructor () public {
x = 0;
owner = msg.sender; // The creator of the contract is the owner

}

event XHasChanged(uint8 oldValue , uint8 newValue);
event FallBackCalled ();

modifier onlyOwner () {
// Pre -conditions
require(msg.sender == owner ,

"only␣the␣owner␣can␣modify␣x"
);
_; // Placeholder for the body of the function
// Put additional post -conditions here

}

function modifyX(uint8 newValue)
public onlyOwner returns (uint8 oldValue) {

oldValue = x;
x = newValue;
emit XHasChanged(oldValue , newValue);

}

function () public{
emit FallBackCalled ();

}

}

Listing 2: An example of a contract written in Solidity

compiler puts at the start of the compiled code a switch-statement that checks if the first
four bytes of the message call data match a known function’s selector. If it is the case, the
program jumps to the definition of the matched function otherwise a so-called fallback
function is invoked. The programmer may specify the fallback function by writing an
unnamed function that does not take parameters. Since the signature depends on the
number and the type of arguments, function overloading is easily implemented by using
the new obtained selector.
Moreover, we distinguish also between public and private functions. The formers

can be called either externally or internally, while the latters can be called only internally
and are not visible to the contracts that are below in the inheritance hierarchy.

48

In addition to the visibility, the function header may contain a state mutability flag:
we distinguish between pure, view and payable. The first indicates that the function
will not access the state, the second promises to access the state in a read-only fashion,
while the latter indicates that the function is capable of receiving money. pure and
view functions can be invoked also from outside the EVM, i.e. without a transaction
and without paying fees. After all, these functions read only the local state without the
intervention of the other peers. Obviously, if these types of functions are called with a
transaction or during the execution of another contract, the normal gas consumption
applies, because all the full nodes should execute the code.

49

References

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, 2018.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[3] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs. bft replica-
tion,” in International Workshop on Open Problems in Network Security. Springer,
2015, pp. 112–125.

[4] V. Buterin. (2018-04-12) A next-generation smart contract and decentralized
application platform. [Online]. Available: https://github.com/ethereum/wiki/wiki/
White-Paper

[5] A. M. Antonopoulos, Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly Media, Inc., 2017.

[6] M. L. Abbott and M. T. Fisher, The art of scalability: Scalable web architecture,
processes, and organizations for the modern enterprise. Pearson Education, 2009.

[7] M. van Steen and A. Tanenbaum, Distributed Systems. CreateSpace Independent
Publishing Platform, 2017.

[8] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system
based on the xor metric,” in International Workshop on Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

[9] Ethereum Foundation. (2018-05-15) Node discovery protocol. [Online]. Available:
https://github.com/ethereum/devp2p/blob/master/discv4.md

[10] Ethereum Foundation. (2018-05-05) Design rationale. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Design-Rationale

[11] Ethereum Foundation. (2018-04-13) Recursive length prefix official documentation.
[Online]. Available: https://github.com/ethereum/wiki/wiki/RLP

[12] Ethereum Foundation. (2018-03-27) Rlpx: Cryptographic network & transport
protocol. [Online]. Available: https://github.com/ethereum/devp2p/blob/master/
rlpx.md

[13] Ethereum Foundation. (2015-11-18) ÐΞVp2p wire protocol. [Online]. Available:
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol

[14] Ethereum Foundation. (2018-04-12) Official ethereum wire protocol specification.
[Online]. Available: https://github.com/ethereum/wiki/wiki/Ethereum-Wire-
Protocol

50

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/devp2p/blob/master/discv4.md
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol

[15] V. Buterin. (2015-11-15) Merkling in ethereum. [Online]. Available: https:
//blog.ethereum.org/2015/11/15/merkling-in-ethereum/

[16] Ethereum Foundation. (2018-04-19) Patricia tree. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/Patricia-Tree

[17] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A scalable
blockchain protocol.” in NSDI, 2016, pp. 45–59.

[18] Ethereum Foundation. (2018-05-31) Dagger hashimoto. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto

[19] Ethereum Foundation. (2018-08-22) Mining. [Online]. Available: https://github.
com/ethereum/wiki/wiki/Mining

[20] Ethereum Foundation. (2018) Solidity 0.4.25 documentation. [Online]. Available:
https://media.readthedocs.org/pdf/solidity/latest/solidity.pdf

[21] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun,
“On the security and performance of proof of work blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 3–16.

[22] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic framework for the
security analysis of ethereum smart contracts,” in International Conference on
Principles of Security and Trust. Springer, 2018, pp. 243–269.

[23] Ethereum Foundation. (2018-05-25) JSON RPC API. [Online]. Available:
https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-api

[24] JSON-RPC Working Group and others. (2012) JSON-RPC 2.0 specification.
[Online]. Available: http://www.jsonrpc.org/specification

[25] Ethereum Foundation. (2018-06-01) JavaScript API. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/JavaScript-API

[26] Ethereum Foundation. (2017-12-21) Javascript console. [Online]. Available:
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console

[27] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges and opportunities:
A survey,” Work Pap.–2016, 2016.

[28] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba,
“A taxonomy of blockchain-based systems for architecture design,” in Software
Architecture (ICSA), 2017 IEEE International Conference on. IEEE, 2017, pp.
243–252.

51

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto
https://github.com/ethereum/wiki/wiki/Mining
https://github.com/ethereum/wiki/wiki/Mining
https://media.readthedocs.org/pdf/solidity/latest/solidity.pdf
https://github.com/ethereum/wiki/wiki/JSON-RPC#json-rpc-api
http://www.jsonrpc.org/specification
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console

[29] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, E. G. Sirer et al., “On scaling decentralized blockchains,” in International
Conference on Financial Cryptography and Data Security. Springer, 2016, pp.
106–125.

[30] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,”
in International Conference on Financial Cryptography and Data Security. Springer,
2015, pp. 507–527.

[31] C. Richardson. (2018-08-17) Pattern: Decompose by business capability. [Online].
Available: https://microservices.io/patterns/decomposition/decompose-by-business-
capability.html

[32] C. Richardson. (2018-08-17) Pattern: Microservice architecture. [Online]. Available:
https://microservices.io/patterns/microservices.html

[33] J. Lewis and M. Fowler. (2018-08-17) Microservices, a definition of this
new architectural term. [Online]. Available: https://martinfowler.com/articles/
microservices.html

[34] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable Data Storage.
O’Reilly Media, Inc., 2013.

[35] MongoDB Inc. (2018-08-01) MongoDB Manual. [Online]. Available: https:
//docs.mongodb.com/manual/

[36] V. Buterin, “Ethereum 2.0 mauve paper,” in Ethereum Developer Conference, vol. 2,
2016. [Online]. Available: https://cdn.hackaday.io/files/10879465447136/Mauve%
20Paper%20Vitalik.pdf

[37] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,” White
paper, 2017.

[38] Ethereum Foundation. (2018-08-03) Sharding faq. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/Sharding-FAQs

[39] Ethereum Foundation. (2018-08-09) Cbc casper faq. [Online]. Available:
https://github.com/ethereum/cbc-casper/wiki/FAQ

[40] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling
byzantine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017,
pp. 51–68. [Online]. Available: http://doi.acm.org/10.1145/3132747.3132757

[41] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, “Blockbench:
A framework for analyzing private blockchains,” in Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 2017, pp. 1085–1100.

52

https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://cdn.hackaday.io/files/10879465447136/Mauve%20Paper%20Vitalik.pdf
https://cdn.hackaday.io/files/10879465447136/Mauve%20Paper%20Vitalik.pdf
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/cbc-casper/wiki/FAQ
http://doi.acm.org/10.1145/3132747.3132757

[42] Ethereum Foundation. (2018-08-23) Light client protocol. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Light-client-protocol

[43] Ethereum Foundation. (2017-10-16) Light ethereum subprotocol (les). [On-
line]. Available: https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-
Subprotocol-%28LES%29

53

https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29

	Introduction
	Architecture
	Network layer
	Kademlia protocol

	Propagation Layer
	Serialization Algorithm
	RLPx Transport Protocol
	Ethereum Wire Protocol

	Data layer
	State
	Accounts
	Messages and transactions

	Consensus layer
	Consensus Algorithm
	Transaction Execution
	Contract Creation
	Message Call

	Application layer
	Ethereum Virtual Machine
	Smart contract

	External Interaction

	Scalability
	To scale or not to scale
	Background
	The Scale Cube
	X-Axis: Horizontal Duplication
	An example: Web server replication
	State
	Ethereum current state and proposals

	Y-Axis: Functional Decomposition
	An example: Microservice architecture
	Ethereum current state and proposals
	Proof of Stake

	Z-Axis: Horizontal Data Partitioning
	An example: Sharding
	Ethereum current state and proposals
	Plasma
	Sharding in Ethereum

	Tests
	Test Configuration
	Results

	Conclusions
	Node types
	Solidity

