What's new in Scala 2.13?

© 2019 Hermann Hueck

https://github.com/hermannhueck/new-in-scala213

Abstract

This presentation shows the feature updates from Scala 2.12 to 2.13. The list of
features is not comprehensive, but it is my personal selection of favorites. I
will focus on those which IMO impact/ease the programmers live most.

I will look at 5 feature areas: compiler, standard library, language changes,
Future and finally the most important change the redesigned collections
library.

I will not only show the new features of 2.13. In many cases I will show how
the new features of 2.13 can be backported to 2.12 und be used in mostly the
same way as in 2.13.

Finally I'll give some guide lines for the migration from 2.12 to 2.13 and for a
cross version project which compiles a code base with both compiler versions.

file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#release_summary
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#sbt_setup
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#standard_library
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#concurrency_future
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#language_changes
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#collections
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#architecture_collections
file:///Users/hermann/dev/projects/github-public/hermannhueck/new-in-scala213/slides/New-in-Scala-2.13.html#migration

1. Release Summary

Release Summary

Release 2.13 improves Scala in the following areas:

o Collections: Standard library collections have been overhauled for
simplicity, performance, and safety. This is the centerpiece of the release.

Release Summary

Release 2.13 improves Scala in the following areas:

o Collections: Standard library collections have been overhauled for
simplicity, performance, and safety. This is the centerpiece of the release.

e Future: is faster and more robust.

Release Summary

Release 2.13 improves Scala in the following areas:

o Collections: Standard library collections have been overhauled for
simplicity, performance, and safety. This is the centerpiece of the release.

e Future: is faster and more robust.

e Standard library: New classes have been added and new methods
enhance existing classes. But also some deprecations.

Release Summary

Release 2.13 improves Scala in the following areas:

Collections: Standard library collections have been overhauled for
simplicity, performance, and safety. This is the centerpiece of the release.

Future: is faster and more robust.

Standard library: New classes have been added and new methods
enhance existing classes. But also some deprecations.

Language: Literal types, partial unification is default, by-name implicits,
more.

Release Summary

Release 2.13 improves Scala in the following areas:

Collections: Standard library collections have been overhauled for
simplicity, performance, and safety. This is the centerpiece of the release.

Future: is faster and more robust.

Standard library: New classes have been added and new methods
enhance existing classes. But also some deprecations.

Language: Literal types, partial unification is default, by-name implicits,
more.

Compiler: 5-10% faster, deterministic output, improved optimizer.

Release Summary

Release 2.13 improves Scala in the following areas:

o Collections: Standard library collections have been overhauled for
simplicity, performance, and safety. This is the centerpiece of the release.

Future: is faster and more robust.

Standard library: New classes have been added and new methods
enhance existing classes. But also some deprecations.

Language: Literal types, partial unification is default, by-name implicits,
more.

Compiler: 5-10% faster, deterministic output, improved optimizer.

Scala 2.13.0:
Scala 2.13.1:

https://github.com/scala/scala/releases/tag/v2.13.0
https://github.com/scala/scala/releases/tag/v2.13.1

2. Compiler

Compiler

. Performance improved
. Some improvments already flew back into 2.12.8,2.12.9, 2.12.10.
. Deterministic, reproducible compilation

. Optimizer improvements (collections, arrays, inlining)

Macro Annotations

. There is no more "‘macro paradise” compiler plugin for 2.13.
. Instead, macro annotations are handled directly by the compiler.
. Macro annotations are enabled with the -Ymacro-annotations flag.

. Macro annotations remain experimental.

3. sbt SetuP for Cross

Compilation

Cross compile with sbt

// build.sbt

inThisBuild(

Seq(
scalaVersion := "2.13.1",

crossScalaVersions := List("2.12.10", "2.13.1"),

Cross compile with sbt

// build.sbt

inThisBuild(
Seq(
scalaVersion := "2.13.1",
crossScalaVersions := List("2.12.10", "2.13.1"),

scalacOptions ++= {
CrossVersion.partialVersion(scalaVersion.value) match {

case Some((2, minor)) if minor >= 13 =>
Seq.empty
case _ =>

Seq(
"-Ypartial-unification", // (removed in scala 2.13) allow the Compiler to

// unify type constructors of different arities

"-language:higherKinds", // (not required since scala 2.13.1) suppress
// warnings when using higher kinded types

3. Standard Library

Smaller Footprint

No longer included in the stdlib:
. scala-parallel-collections
o Scala-xml
. Stala-parser-combinators
o SCala-swing

These become libraries of their own.

Integrated Java Interop

e The old scala-java8-compat module is now part of the standard library.
o This provides converters for options, function types and Java streams.

e scala.collection.JavaConversions removed (already deprecated in 2.12).

Chaining: pipe and tap

import scala.util.chaining._
val x: Int = 5 tap println

val y: Int = 5 pipe (_ * x) tap println

List(1, 2, 3) pipe (ys => println("debug: + ys.toString))
val times6 = (_: Int) * 6
(" - AN
.tap(v => println(s"initial: Sv"))
.pipe(times6)
.tap(v => println(s"after times6: $v"))
.pipe(scala.math.abs)
.pipe(v => println(s"after scala.math.abs: $v"))

20 /125

Chaining: pipe and tap

import scala.util.chaining. _

val x: Int = 5 tap println

val y: Int = 5 pipe (_ * x) tap println

List(1, 2, 3) pipe (ys => println("debug: " + ys.toString))

val times6 = (_: Int) * 6
(" - AN
.tap(v => println(s"initial: Sv"))
.pipe(times6)
.tap(v => println(s"after times6: $v"))
.pipe(scala.math.abs)
.pipe(v => println(s"after scala.math.abs: $v"))

X pipe fis a replacement for f(x), where f is a Function1[A => B].

x tap fis a replacement for x => { f(x); X }, where f is a side-effecting
Function1[A => Unit]. tap performs the side effect in f(x) and returns x
unchanged.

Backport to 2.12: pipe and fap

e My 2.12 backport library uses the same package name as in 2.13 stdlib:
scala.util.chaining
package scala.util
package object chaining {
implicit class ChainingOps[A](private
@inline def pipe[B](f: A => B): B
@inline def tap[B](f: A => Unit): A

)
}

22 [125

Backport to 2.12: pipe and fap

e My 2.12 backport library uses the same package name as in 2.13 stdlib:
scala.util.chaining
package scala.util
package object chaining {
implicit class ChainingOps[A](private
@inline def pipe[B](f: A => B): B
@inline def tap[B](f: A => Unit): A

)
}

With this backport he same code runs without friction under 2.12 and 2.13.

23 /125

Either: Right.withLeft and Left. withRight

e Right.apply leaves the left type unspecified.
o Left.apply leaves the right type unspecified.
e Right.withLeft and Left.withRight let you specity the unspecified type.

Either: Right.withLeft and Left. withRight

e Right.apply leaves the left type unspecified.
o Left.apply leaves the right type unspecified.
e Right.withLeft and Left.withRight let you specity the unspecified type.

sbt:New in Scala 2.13> ++2.13.0 console

Welcome to Scala 2.13.0 ...

scala> Right(5)
res0: scala.util.Right[Nothing,Int] = Right(5)

scala> Right(5).withLeft[String]
resl: scala.util.Either[String,Int] = Right(5)

scala> Left("some error"
res2: scala.util.Left[String,Nothing] = Left(some error)

scala> Left("some error").withRight[Int]
res3: scala.util.Either[String,Int] = Left(some error)

Backport to 2.12: .
Right withlLeft and Left.withRight

package compat213
package object either {

implicit class RightOps[L, R](private val right: Right[L, R]) {
@inline def withLeft[LL >: L]: Either[LL, R] = right
}

implicit class LeftOps[L, R](private val left: Left[L, R]) {
@inline def withRight[RR >: R]: Either[L, RR] = left
)
}

26 /125

Either#flatten

e available since 2.13

o Either#flatten is equivalent to Either#flatMap(x => x)

Either#flatten

e available since 2.13

o Either#flatten is equivalent to Either#flatMap(x => x)

Scala 2.12 Scala 2.13
val rr = Right(Right(42)) val rr = Right(Right(42))
rr.flatMap(x => x) //=> Right(42) rr.flatten //=> Right(42)

val rl = Right(Left("Error RL")) val rl = Right(Left("Error RL"))
ri.flatMap(x => x) //=> Left("Error RL" rl.flatten //=> Left("Error RL")

val 1 = Left("Error L") val 1 = Left("Error L")
1.flatMap(x => x) //=> Left("Error L") 1.flatten //=> Left("Error L")

val 1l = Left(Left("Error LL")) val 1l = Left(Left("Error LL"))
11.flatMap(x => x) //=> Left(Left("Erro 11.flatten //=> Left(Left("Error LL"))

28 [125

https://www.scala-lang.org/api/current/scala/util/Either.html

Backport to 2.12: Either=flatten

package compat213
package object either {
implicit class EitherOps[+L, +R](private val either: Either[L, R]) {
@inline def flatten[L1 >: L, RR](
implicit ev: R <:< Either[L1, RR]

): ECEREFTLE1, RR] =
either.flatMap(x => x)

29 /125

String Operations: folnt0ption etc.

e convert String literals to Int, Double, Boolean without throwing exceptions
e return Some(value) if the conversion succeeds, None if it fails.

String Operations: folnt0ption etc.

e convert String literals to Int, Double, Boolean without throwing exceptions
e return Some(value) if the conversion succeeds, None if it fails.

sbt:New in Scala 2.13> ++2.13.0 console
Welcome to Scala 2.13.0 ...

scala> "42".toIntOption
res@: Option[Int] = Some(42)

scala> "42.0".toIntOption
resl: Option[Int] = None

scala> "42.0".toDoubleOption
res2: Option[Double] = Some(42.0)

scala> "true".toBooleanOption
res3: Option[Boolean] = Some(true)

Backport to 2.12: String Operations

package compat213
package object string {
implicit class StringOps(private val s: String) {
import scala.util.Try
@inline def toIntOption: Option[Int]

@inline def toDoubleOption: Option[Double]
@inline def toBooleanOption: Option[Boolean]

Try(s.toInt).toOption
Try(s.toDouble).toOption
Try(s.toBoolean).toOption

32 /125

scala.util Using.apply for resource management

Similar to try ... catch ... finally,
but guarantees to release/close the used resource.

scala.util Using.apply for resource management

Similar to try ... catch ... finally,
but guarantees to release/close the used resource.

def bufferedReader(fileName: String): BufferedReader =
new BufferedReader(new FileReader(fileName))

def readLines(reader: BufferedReader): Seq[String] =
22?2 /] some impl

def tryLines(fileName: String): Try[Seq[String]] =
Using(bufferedReader(fileName)) { reader => readlLines(reader) }

def catFile(fileName: String): Unit =
tryLines(fileName) match {
case Failure(exception) => exception.toString pipe println
case Success(lines) => lines foreach println

}

catFile("README.md")

34 /125

scala.util Using.resource

returns an A, not a Try[A]

scala.util Using.resource

returns an A, not a Try[A]

package scala.util

object Using { // simplified
def apply[R, A](resource: => R)(f: R => A): Try[A]
def resource[R, A](resource: => R)(f: R => A): A

T

scala.util Using.resource

returns an A, not a Try[A]

package scala.util

object Using { // simplified
def apply[R, A](resource: => R)(f: R => A): Try[A]
def resource[R, A](resource: => R)(f: R => A): A

def bufferedReader(fileName: String): BufferedReader = ???
def readlLines(reader: BufferedReader): Seq[String] = ???

def lines(fileName: String): Seq[String] =
Using.resource(bufferedReader(fileName))(readLines)

def catFile2(fileName: String): Unit = { // might throw an exception
lines(fileName) foreach println

}
catFile2("README.md")

37 /125

Backport to 2.12: Using

package compat213

import scala.util.Try
import scala.language.reflectiveCalls

object Using {
type Closable = { def close(): Unit }

def apply[A, R <: Closable](resrc: R)(use: R => A): Try[A] =
Try(resource(resrc)(use))

def resource[A, R <: Closable](resrc: R)(use: R => A): A =

try {
use(resrc)

} finally {
resrc.close()

}

Backport to 2.12: Using

package compat213

import scala.util.Try
import scala.language.reflectiveCalls

object Using {
type Closable = { def close(): Unit }

def apply[A, R <: Closable](resrc: R)(use: R => A): Try[A] =
Try(resource(resrc)(use))

def resource[A, R <: Closable](resrc: R)(use: R => A): A =

try {
use(resrc)

} finally {
resrc.close()

}

This impl is a bit simplistic, but should work for resources which provide a
method close.

s-Interpolator in Pattern matches

val dateString = "11-June-2019"
val s"$Sday-Smonth-Syear" = dateString
year pipe println

month pipe println
day pipe println

Named Product Elements

Products (i.e. case classes and Tuples) now have methods
producttlementNames and producttlementName.

Named Product Elements

Products (i.e. case classes and Tuples) now have methods
producttlementNames and producttlementName.

sealed trait Gender extends Product with Serializable
case object Male extends Gender
case object Female extends Gender

case class Person(name: String, age: Int, gender: Gender, email: String) {
def tupled: (String, Int, Gender, String) = Person.unapply(this).get

}

val johndoe = Person("John Doe", 42, Male, "john@doe.com")

42 /125

Named Product Elements

Products (i.e. case classes and Tuples) now have methods
producttlementNames and producttlementName.

sealed trait Gender extends Product with Serializable
case object Male extends Gender
case object Female extends Gender

case class Person(name: String, age: Int, gender: Gender, email: String) {
def tupled: (String, Int, Gender, String) = Person.unapply(this).get

}

val johndoe = Person("John Doe", 42, Male, "john@doe.com")

johndoe.productElementNames foreach println

johndoe.productElementName(0) pipe (name => print(s"$name: "))
johndoe.productElement(0) pipe println
johndoe.productElementName(1) pipe (name => print(s"$name: "))
johndoe.productElement(1) pipe println

43 /125

Named Product Elements

Naive JSON Serialization

def pairToJson(name: String, value: Any): String =
Sll n ll{ ”$name”: SVa-l_Ue }llllll

def productElementToJson(p: Product, index: Int): String =
pairToJson(p.productElementName(index), p.productElement(index))

def productToJlson(product: Product): String =
(0 until product.productArity)
.tolList
.map { index => productElementToJson(product, index) }
'mkstr_'l-ng(ll{ ll’ ll, ll, n }ll)

implicit class ProductOps(private val product: Product) {
def toJsonString: String = productToJson(product)
}

johndoe.toJsonString pipe println

[/ { { "name": John Doe }, { "age": 42 }, { "gender": Male }, { "email": john@doe.

johndoe.tupled.toJsonString pipe println

[/ { { "_1": John Doe }, { " 2": 42 }, { " 3": Male }, { "_4": john@doe.com } }

44 /125

4. Concurrency / Future

Future + ExecutionContext Changes Overview

API nearly unchanged

Massive performance improvements under the hood (Future, Promise,
ExecutionContext)

Improved handling of failures (InterruptedException,
RejectedExecutionException)

Made the global ExecutionContext “batched”

Added synchronous ("parasitic") ExecutionContext (releases you from
writing your own synchronous ExecutionContext)

For more details on the internals of the improved implementation see Viktor Klang's
talk at Scala Days 2019: Making Our Future Better

https://www.youtube.com/watch?v=5FTJUUoT6y4

Future: Minor APl Changes

e removed onSuccess and onFailure* (already deprecated in 2.12)

o Future.delegate - new factory method

Future.delegate

object Future {
def apply[T](body: => T)(implicit executor: ExecutionContext): Future[T]
def delegate[T](body: => Future[T])(implicit executor: ExecutionContext): Future

}

Future.delegate

object Future {
def apply[T](body: => T)(implicit executor: ExecutionContext): Future[T]
def delegate[T](body: => Future[T])(implicit executor: ExecutionContext): Future

}

The following expressions are semantically equivalent:

def expr[T]: Future[T] = 22?2

val f1 = Future.delegate(expr)
val f2 = Future.apply(expr).flatten
val f3 = Future.unit.flatMap(_ => expr)

Future.delegate - Example

import scala.concurrent._
import scala.concurrent.duration._
import scala.util.chaining._

implicit lazy val ec: ExecutionContext = ExecutionContext.global
def plus17(x: Int): Int = x + 17

def squaredAsync(value: Int) = Future { value * value }

val f1: Future[Int]

val f2: Future[Int]
val f3: Future[Int]

Future.apply { squaredAsync(5) }.flatten map plusi7
Future.unit.flatMap { _ => squaredAsync(5) } map plusi7
Future.delegate { squaredAsync(5) } map plusil7

Await.result(f1, 3.seconds) pipe println //=> 42
Await.result(f2, 3.seconds) pipe println //=> 42
Await.result(f3, 3.seconds) pipe println //=> 42

50/125

5. Language Changes

Language Changes Overview

Literal types: Literals (for strings, integers etc.) now have associated
literal types.

Partial unification: enabled by default

By-name implicit parameters: enable implicit search to construct
recursive values.

Underscores in numeric literals

Procedure syntax deprecated:
Deprecated: defm() {...} Use instead: def m(): Unit={... }

View bounds deprecated:
Deprecated: A <% B Use instead: (implicit ev: A => B)

Symbol literals deprecated:
Deprecated: 'foo Use instead: Symbol("foo")

New Tuple2 arrow syntax in pattern match:
2.12 and 2.13: case (x,y) => ...
2.13only : casex->y=>..

Underscores in Number Literals

val intO: Int
vl intl: Int
val int2: Int

1000000
1_000_000
17USUmUmo=0_0

// compile error: trailing separator is not allowed
val long: Long = 1_000_000 _000L

val float: Float = 1 _000.99f
val double: Double = 1_000_000.999 999

53 /125

Partial unification

o Partial unification is enabled by default in 2.13.
e The compiler no longer accepts -Ypartial-unification.
e The following code compiles in 2.12 only with -Ypartial-unification.

Partial unification

o Partial unification is enabled by default in 2.13.
e The compiler no longer accepts -Ypartial-unification.
e The following code compiles in 2.12 only with -Ypartial-unification.

// import scala.language.higherKinds // redundant since 2.13.1

def foo[F[], A](fa: F[A]): String =
fa.toString

val either: Either[String, Int] = Right(42).withLeft[String]
foo { either }

val intToInt: Functionl[Int, Int] = x => x * 2
foo { intToInt }

55/125

Partial unification

o Partial unification is enabled by default in 2.13.
e The compiler no longer accepts -Ypartial-unification.
e The following code compiles in 2.12 only with -Ypartial-unification.

// import scala.language.higherKinds // redundant since 2.13.1

def foo[F[], A](fa: F[A]): String =
fa.toString

val either: Either[String, Int] = Right(42).withLeft[String]
foo { either }

val intToInt: Functionl[Int, Int] = x => x * 2
foo { intToInt }

Detailed explanation of partial unification here:

56 /125

https://gist.github.com/djspiewak/7a81a395c461fd3a09a6941d4cd040f2

scalacOptionsin build.sbt for cross compilation

scalacOptions ++= {
CrossVersion.partialVersion(scalaVersion.value) match {

case Some((2, minor)) if minor >= 13 =>
Seq.empty
case _ =>

Seq(
"-Ypartial-unification", // (removed in scala 2.13) allow the Compiler to

// unify type constructors of different arities

"-language:higherKinds" // (not required since scala 2.13.1) suppress
// warnings when using higher kinded types

57 /125

Literal Types

o Literals (for strings, integers etc.) now have associated literal types.

e The compiler will provide instances of a new typeclass scala.ValueOf[T]
for all singleton types T.

e The value of a singleton type can be accessed by calling method
valueOf]T].

Literal Types

o Literals (for strings, integers etc.) now have associated literal types.

e The compiler will provide instances of a new typeclass scala.ValueOf[T]
for all singleton types T.

e The value of a singleton type can be accessed by calling method
valueOf]T].

val wahr:
val foo: "foo"
val one: 1 =1

val other_one: one.type = one
implicitly[other_one.type =:= 1]

val x1: Int = valueOf[42] // valueOf[42] yields an Int and is the same as ...
val x2: Int = new scala.ValueOf(42).value

59 /125

By-name Implicit Parameters

e were not allowed in 2.12.
e They enable implicit search to construct recursive values.
e The following code will not compile

if you remove the => in (implicit rec: => Foo) .

By-name Implicit Parameters

e were not allowed in 2.12.

e They enable implicit search to construct recursive values.

e The following code will not compile
if you remove the => in (implicit rec: => Foo)

trait Foo {
def next: Foo

}

object Foo {
// wouldn't compile, if rec were a call by value parameter
// remove the => and try to compile ...
implicit def foo(implicit rec: => Foo): Foo =
new Foo { def next = rec }
}

val foo = implicitly[Foo]
assert(foo eq foo.next)

61 /125

6. Collections

Principles of the Collections Redesign

simplicity

o better error messages
o easier to implement your own collection (but still complex)

performance

type safety, better type inference

smaller footprint: parallel collections moved to a module of it's own, etc.

source code compatibility - as much as possible
Most ordinary code that used the old collections will continue to work as-
is. But of course ... there are breaking changes.

Simpler Method Signatures

e No more CanBuildFrom

o Without CanBuildFrom method signatures became much simpler.

Simpler Method Signatures

e No more CanBuildFrom

o Without CanBuildFrom method signatures became much simpler.

List#zmap in 2.12

trait List[+A] extends ... {
def map[B, That](f: A => B)(implicit bf: CanBuildFrom[List[A], B, That]): That =
J;

List#map in 2.13

trait List[+A] extends ... {
def map[B](f: A => B): List[B] = ???

Simpler Type Hierarchy

e No more Traversable and TraversableOnce.

o They remain only as deprecated aliases for Iterable and IterableOnce.

e Parallel collections are now a separate module.

o As aresult, GenSeq, GenTraversableOnce, et al. are gone.

New, Faster HashMap/Set Implementations

e Both immutable and mutable versions were completely replaced.
e They substantially outperform the old implementations in most scenarios.

e The mutable versions now perform on par with the Java standard
library's implementations.

Immutable scala.Seq and scala.lndexedSeq

Seq is now an alias for collection.immutable.Seq.

o Before, it was an alias for the possibly-mutable collection.Seq.
IndexedSeq is now an alias for collection.immutable.IndexedSeq.

o Before, it was an alias for the possibly-mutable collection.IndexedSeq.
This also changes the type of varargs in methods and pattern matches.

Arrays passed as varargs are defensively copied.

Seq is immutable in 2.13 (not in 2.12)

trait Order
trait Food

def orderFood(order: Seq[Order]): Seq[Food] = {
Seq(new Food{})
}

Seq is immutable in 2.13 (not in 2.12)

trait Order
trait Food

def orderFood(order: Seq[Order]): Seq[Food] = {
Seq(new Food{})
}

Passing a mutable ArrayBuffer ...

// We can NOT pass a mutable ArrayBuffer where an immutable Seq is expected.
val foodl = orderFood(ArrayBuffer(new Order{})) // DOES NOT COMPILE!

// [error] found : scala.collection.mutable.ArrayBuffer[Order]

[/ [error] required: Seq[Order]

70 /125

Passing a mutable Array ...

We can pass a mutable Array where an immutable Seq is expected.
Array (unlike ArrayBuffer) is implicitly converted (and copied).
But the compiler spits out a warning.

val orderArray = Array(new Order {})

val food2 = orderFood(orderArray) // COMPILES WITH WARNING!

// [warn] Implicit conversions from Array to immutable.IndexedSeq

// [warn] are implemented by copying; Use the more efficient non-copying
// [warn] ArraySeq.unsafeWrapArray or an explicit toIndexedSeq call.

71 /125

Passing a mutable Array ...

We can pass a mutable Array where an immutable Seq is expected.
Array (unlike ArrayBuffer) is implicitly converted (and copied).
But the compiler spits out a warning.

val orderArray = Array(new Order {})

val food2 = orderFood(orderArray) // COMPILES WITH WARNING!

// [warn] Implicit conversions from Array to immutable.IndexedSeq

// [warn] are implemented by copying; Use the more efficient non-copying
// [warn] ArraySeq.unsafeWrapArray or an explicit toIndexedSeq call.

toSeq (or toIndexedSeq) wraps the mutable Array in an immutable Seq.

val food3
val food4

orderFood(orderArray.toSeq) // COMPILES!
orderFood(orderArray.toIndexedSeq) // COMPILES!

72 /125

Passing aimmutable ArraySeq...

ArraySeq is a new collection of Scala 2.13.

ArraySeq is an immutable array with efficient indexed access and a small
memory footprint.

mutable.ArraySeq is also available in the new collections library.

For Scala 2.12 an ArraySeq backport is provided in the scala-collection-
compat library.

ArraySeq.unsafeWrapArray wraps an Array in an ArraySeq.

val food5 = orderFood(ArraySeq(new Order{}))
val food6 = orderFood(ArraySeq.unsafeWrapArray(Array(new Order{})))

Cross-compiling Seq for 2.12 and 2.13

Seq Recap

e scala.collection.Seq is a base class for scala.collection.immutable.Seq and
scala.collection.mutable.Seq in Scala 2.12 and 2.13.

e scala.Seq is an alias for scala.collection.Seq in Scala 2.12.

e scala.Seq is an alias for scala.collection.immutable.Seq in Scala 2.13.

Cross-compiling Seq for 2.12 and 2.13

Seq Recap

e scala.collection.Seq is a base class for scala.collection.immutable.Seq and
scala.collection.mutable.Seq in Scala 2.12 and 2.13.

e scala.Seq is an alias for scala.collection.Seq in Scala 2.12.

e scala.Seq is an alias for scala.collection.immutable.Seq in Scala 2.13.

To make your 2.12 code cross-compilable for 2.12 and 2.13 you have

3 Options described below ...

Cross-compiling Seg (1st option)

Explicitly use scala.collection.Seq in method parameters and return types.

import scala.collection

def orderFood(order: collection.Seq[Order]): collection.Seq[Food] = ???

Cross-compiling Seg (1st option)

Explicitly use scala.collection.Seq in method parameters and return types.

import scala.collection

def orderFood(order: collection.Seq[Order]): collection.Seq[Food] = ???

You don't force your code into immutable semantics.

orderFood accepts mutable and immutable Segs.

mutability / immutability is unspecified for the return type.

Caller must call .toSeq if she only needs an immutable result. (.toSeq only
copies elements if the result is not yet immutable.)

Simplest migration strategy!

No changes at the call site!

Cross-compiling Seg (2nd option)

Explicitly use scala.collection.Seq in parameters and
scala.collection.immutable.Seq in return types.

import scala.collection
import scala.collection.immutable

def orderFood(order: collection.Seq[Order]): immutable.Seq[Food] = ???

Cross-compiling Seg (2nd option)

Explicitly use scala.collection.Seq in parameters and
scala.collection.immutable.Seq in return types.

import scala.collection
import scala.collection.immutable

def orderFood(order: collection.Seq[Order]): immutable.Seq[Food] = ???

e You force your code into immutable semantics only for return types.
e orderFood accepts mutable and immutable Segs.
e immutability is fixed for the return type.

Still simple migration strategy!

Mostly no changes at the call site!

Cross-compiling Seq (3rd option)

Use scala.immutable.collection.Seq in method parameters and return types.

import scala.collection.immutable

def orderFood(order: immutable.Seq[Order]): immutable.Seq[Food] = ?2?

Cross-compiling Seq (3rd option)

Use scala.immutable.collection.Seq in method parameters and return types.

import scala.collection.immutable

def orderFood(order: immutable.Seq[Order]): immutable.Seq[Food] = ?2?

e You force your code into immutable semantics.
e orderFood accepts only immutable Segs.
e immutability is also fixed for the return type.

Possibly many changes at the call site to make the arguments immutable!

Use Scalafix to automate this rewrite for a large code base.

Simplified Views that Work

e Views have been vastly simplified and should now work reliably.

e scala.collection.View has two sub classes: scala.collection.SeqView and
scala.collection.MapView

e Views are lazy. They record the operations (like filter, map etc.) and do not

execute them before invoking a terminal operation (foreach, toSeq, toMap
etc.).

Map#maplalues and Map=filterKeys

e Map#mapValues and Map#filterKeys in 2.13 return MapView, not Map.

e These methods are also deprecated.

e Prefer using MapView#mapValues and MapView#filterKeys

Map=maplalues and Map=filterKeys

e Map#mapValues and Map#filterKeys in 2.13 return MapView, not Map.

e These methods are also deprecated.

e Prefer using MapView#mapValues and MapView#filterKeys

val kvs = Map("one" -> 1, "two" -> 2, "three" -> 3)
def flip[A, B](t: (A, B)): (B, A) = t match { case (fst, snd) => (snd, fst) }
val kvsFlipped: Map[Int, String] = kvs.toList.map(flip).toMap

Scala 2.12

val mappedValues: Map[String, Int]
kvs.mapValues(_ + 10)

val keysFiltered: Map[Int, String]
kvsFlipped.filterKeys(_ %2 != 0)

Scala2.13

val mapView: MapView[String, Int] =
kvs.view.mapValues(_ + 10)

val mappedValues: Map[String, Int]
mapView. toMap

val mapView2: MapView[Int, String]
kvsFlipped.view.filterKeys(_ %2 !

val keysFiltered: Map[Int, String]
mapView2.toMap

84 /125

Lazylist replaces Stream

e Streamislazy in it's tail, but eager in it's head.
e LazyListislazy in it's head and tail.

e Stream is deprecated in 2.13.

Scala 2.12 Scala 2.13

val stream: Stream[(Int, Int)] = val 1l: LazyList[(Int, Int)] =
Stream LazylList
.continually(42) .continually(42)
.take(10) .take(10)
.zipWithIndex .zipWithIndex

.map { case (value, index) => .map { case value -> index =>
index -> value index -> value

} }

85 /125

New Abtract and Concrete Collections

immutable.LazyList replaces immutable.Stream.

immutable.ArraySeq is an immutable wrapper for an array; there is also a
mutable version.

mutable.CollisionProofHashMap guards against denial-of-service attacks.

mutable.ArrayDeque is a double-ended queue that internally uses a
resizable circular buffer.

mutable.Stack was reimplemented (and undeprecated), immutable.Stack
was removed.

immutable.SeqMap (abstract) provides immutable maps which maintain
insertion order.

Implementations: VectorMap and TreeSeqMap (in addition to the already
existing ListMap)

Coll#to converts one collection to another one.

e Coll#to in 2.12 received the target type in square brackets.
e Coll#to in 2.13 receives the target type's companion in parens.

e The scala-collection-compat library provides the new behaviour in 2.12.

valbumgp = HEp(tone" -> 1, "two" -> 2, "thiFee" -> 3)

Scala 2.12 Scala 2.13

val 11 = map.tolList map.tolList
val 12 = map.to[List] map.to(List)

import scala.collection.compat.
val 13 = map.to(List)

Added ./engthls / .sizels and .sizeCompare

o Allow fluent size comparisons without traversing the whole collection.

Added ./engthls / .sizels and .sizeCompare

o Allow fluent size comparisons without traversing the whole collection.

val xs = List.fill1(5000)(scala.util.Random.nextInt)

// lenghtIs or sizels traverse no more than 101 element
if (xs.lengthIs > 100) {

new IllegalArgumentException("Too many elements!") pipe println
} else {

s"The 1list has ${xs.length} elements." pipe println
i

New .fapfach method for side-effects

o Allows inserting side-effects in a chain of method calls on a collection or
view.

New .fapfach method for side-effects

o Allows inserting side-effects in a chain of method calls on a collection or
view.

val doubledAndSquared =
LisEsl, 2, 3)
.tapEach(x => println(s"value: $x"))
.map(x => x * 2)
.tapEach(x => println(s"doubled: $x"))
.map(x => x * x)
.tapEach(x => println(s"squared: $x"))

New method List.unfold or Iterator.unfold

e This allows constructing a collection or iterator from an initial element
and a repeated Option-returning operation, terminating on None.

e This was added to collection companion objects and to Iterator.

New method List.unfold or Iterator.unfold

e This allows constructing a collection or iterator from an initial element
and a repeated Option-returning operation, terminating on None.

e This was added to collection companion objects and to Iterator.

val unfoldFunction: Int => Option[(Int, Int)] = {
case 0 => None

case s => some(((s * s), (s - 1)))

}

List.unfold(10)(unfoldFunction) pipe println
//=> List(100, 81, 64, 49, 36, 25, 16, 9, 4, 1)

Read Lines with /terator.unfold

def bufferedReader(fileName: String) =
new BufferedReader(new FileReader(fileName))

def readlLines(reader: BufferedReader) =
Iterator.unfold(())(_ => Option(reader.readLine()).map(_ -> ())).tolList

def readlLines_dissected(reader: BufferedReader): List[String] = {
val initialState: Unit = ()
val iterator: Iterator[String] = Iterator.unfold(initialState) { _ =>
val maybelLine: Option[String] = Option(reader.readLine())
val maybelLineState: Option[(String, Unit)] = maybelLine.map(_ -> ())
maybeLineState

}

iterator.tolList

}

val lines: Seq[String] =
Using.resource(bufferedReader ("README.md"))(readLines)

lines foreach println

94 /125

Backport to 2.12: List.unfold

def unfoldToStream[A, B](init: A)(f: A => Option[(B, A)]): Stream[B] =
T (CIeC)
.map {
case (b, a) =>
b #:: unfoldToStream(a)(f)
}

.getOrElse(Stream.empty)

def unfoldToList[A, B](init: A)(f: A => Option[(B, A)]): List[B] =
unfoldToStream(init)(f).tolList

implicit class ListCompanionOps(private val self: List.type) extends AnyVal {

@inline def unfold[A, B](init: A)(f: A => Option[(B, A)]): List[B] =
unfoldToList(init)(f)

95 /125

Removed collection.breakOut

e collection.breakOut in 2.12 inferred the return type of a collection
operation from the expected result type.

e It was based on CanBuildFrom which is gone in 2.13.

e To avoid constructing intermediate collections, use .view and
.to(Collection) instead.

Removed collection.breakOut

e collection.breakOut in 2.12 inferred the return type of a collection
operation from the expected result type.

e It was based on CanBuildFrom which is gone in 2.13.

e To avoid constructing intermediate collections, use .view and
.to(Collection) instead.

val list = List(1, 2, 3) tap println
val toPair: Int => (Int, Int) = x => x -> X

// Scala 2.12 - type annotations required to infer the result type of list.map
val indexedSeq list.map(toPair)(collection.breakOut)
val array : Array[(Int, Int)] list.map(toPair)(collection.breakOut)
val seq : SEERCERt, Int)] list.map(toPair)(collection.breakOut)
val set : SEERCTRt, IRE)] list.map(toPair)(collection.breakOut)
val map : MEPPIRt, Int] list.map(toPair)(collection.breakOut)

// Scala 2.13 - type annotations not required

val list2 list.view.map(toPair).to(List)
val array list.view.map(toPair).to(Array)
val seq list.view.map(toPair).to(Seq)
val set list.view.map(toPair).to(Set)

Two overloaded Map#map operations! Why ???

def map[K2, V2](f: ((K, V)) => (K2, V2)): Map[K2, V2]

def map[B](f: ((K, V)) => B): Iterable[B]

Two overloaded Map#map operations! Why ???

def map[K2, V2](f: ((K, V)) => (K2, V2)): Map[K2, V2]

def map[B](f: ((K, V)) => B): Iterable[B]

If the mapping function f transforms a key value pair (K, V) into another
key value pair (K2, V2), map returns a Map[K2, V2].

OTOH if the mapping function f transforms a key value pair (K, V) into
some other value B, map returns a Iterable[B].

Roughly the same holds for the two Map#flatMap operations.

To understand this we have to take a glimpse into the collections'
architecture.

7. Architecture of Collections

https://docs.scala-lang.org/overviews/core/architecture-of-scala-213-collections.html

Problem to solve

Define the return type of a collection operation in a generic way?

e This is not a problem for operations, which do not return a collection, but
a single value like isEmpty, length, find, foldLeft, sum, exists, forall etc.

e This is difficult for operations that return a collection like filter, take, drop,
map, flatMap, flatten etc.

Problem to solve

Define the return type of a collection operation in a generic way?

e This is not a problem for operations, which do not return a collection, but
a single value like isEmpty, length, find, foldLeft, sum, exists, forall etc.

e This is difficult for operations that return a collection like filter, take, drop,
map, flatMap, flatten etc.

A Non-solution with simple inheritance:

trait Iterable[A] {
def filter(f: A => Boolean): Iterable[A]
def map[B](f: A => B): Iterable[B]

}

trait List[A] extends Iterable[A] { ... }
trait Vector[A] extends Iterable[A] { ... }

The inherited methods would return an Iterable, not a List or Vector.

What we need ...

List[A] extends MagicBaseTrait[???, 22?2, 22?] {
filter(f: A => Boolean): List[A]
map[B](f: A => B): List[B]

Vector[A] extends MagicBaseTrait[???, 2?77, ?2?2?] {
filter(f: A => Boolean): Vector[A]
map[B](f: A => B): Vector[B]

Map[K, V] extends MagicBaseTrait[???, 27?7, ?22?] {
filter(f: (K, V) => Boolean): List[A]

mEmEE?, V2](f: (K, V) => (K2, V2)): Map[K2, V2]
map[B](f: (K, V) => B): Iterable[B]

... without being forced to reimplement the operations in every collection.

103 /125

What we need ...

trait List[A] extends MagicBaseTrait[???, ???, 2??] {
def filter(f: A => Boolean): List[A]
def map[B](f: A => B): List[B]

trait Vector[A] extends MagicBaseTrait[???, ???, ?2??] {
def filter(f: A => Boolean): Vector[A]
def map[B](f: A => B): Vector[B]

trait Map[K, V] extends MagicBaseTrait[???, ???, 2?2?] {
def filter(f: (K, V) => Boolean): List[A]
def map[K2, V2](f: (K, V) => (K2, V2)): Map[K2, V2]
def map[B](f: (K, V) => B): Iterable[B]

}

... without being forced to reimplement the operations in every collection.

In the old collection implementation (up to 2.12) this problem has been
solved with CanBuildFrom.

104 /125

Selections and Transformations

e Selection operations (filter, take, drop etc.) do not change the elements.

o The target type of the operation is exactly the same as the source type,
e.g. filter on a List[A] returns a List[A].

o We must abstract over the source collection type (List[A]) in this case)
to generalize this.

o Transformation operations (map, flatMap etc.) do change the elements
and in some cases (Map and some others) also the collection type.

o The target type of the operation must be derived from the type
constructor of the required result collection type.

[terableOps

trait IterableOps[+A, +CC[_], +C] {
def filter(p: A => Boolean): C = ???
def map[B](f: A => B): CC[B] = ?2?

)

trait List[+A] extends Iterable[A] with IterableOps[A, List, List[A]] {...}
trait Vector[+A] extends Iterable[A] with IterableOps[A, Vector, Vector[A]] {...}

[terableOps

trait IterableOps[+A, +CC[_], +C] {
def filter(p: A => Boolean): C = ???
def map[B](f: A => B): CC[B] = ?2?

)

trait List[+A] extends Iterable[A] with IterableOps[A, List, List[A]] {...}
trait Vector[+A] extends Iterable[A] with IterableOps[A, Vector, Vector[A]] {...}

IterableOps is the MagicBaseTrait we are looking for.
IterableOps is called a template trait.

IterableOps has 3 type parameters, one for the element type (A), one for
the collection type (C) and one for the collection's type constructor type
(CO).

Leaf collection types with one type parameter (List, Vector) extend
IterableOps.

This does not work for collections like Map with two type parameters.

trait MapOps[K, +V, +CC[_,], +C] extends IterableOps[(K, V), Iterable, C] {
der mappR2, V2](f: ((K, V)) => (K2, V2Y)): CCI'K2, V2] = 222
)

trait Map[K, V] extends Iterable[(K, V)] with MapOps[K, V, Map, Map[K, V]]

trait MapOps[K, +V, +CC[_,], +C] extends IterableOps[(K, V), Iterable, C] {
der mappR2, V2](f: ((K, V)) => (K2, V2Y)): CCI'K2, V2] = 222
)

trait Map[K, V] extends Iterable[(K, V)] with MapOps[K, V, Map, Map[K, V]]

MapOps extends IterableOps and hence inherits all its operations.
MapOps instantiates the collection's type constructor CC with Iterable.
MapOps inherits a map operation from IterableOps returning Iterable[B].

MapOps defines another map operation overload returning Map[K2, V2].

Map inherits both map operations.

Which map is chosen ...

... when you invoke Map#map at the call site?

// from IterableOps
def map[B](f: ((K, V)) => B): Iterable[B]

// from MapOps
def map[K2, V2](f: ((K, V)) => (K2, V2)): Map[K2, V2]

e map from MapOps is more specific by the rules of overloading resolution.

e It will be chosen, if the map operation returns a pair of values.

e Otherwise the operation from IterableOps applies.

Which map is chosen ...

... when you invoke Map#map at the call site?

// from IterableOps
def map[B](f: ((K, V)) => B): Iterable[B]

// from MapOps
def map[K2, V2](f: ((K, V)) => (K2, V2)): Map[K2, V2]

e map from MapOps is more specific by the rules of overloading resolution.

e It will be chosen, if the map operation returns a pair of values.

e Otherwise the operation from IterableOps applies.

Wherever possible a transformation method on a collection
yields a collection of the same type.

3. Migration

https://docs.scala-lang.org/overviews/core/collections-migration-213.html

When to Migrate?

. when all /ibraryDependencies are availabe for 2.13.

. when all transitive dependencies are availabe for 2.13.

Scala 2.13 Library support (2019-09-19)

Library

Current

scalatest

3.0.8

scalacheck

1.14.1-RC1

specs2

4.71

akka-*

2.5.25

akka-http

10.1.9

play

2.7.3

slick

3.3.2

lagom

1.6.0-M5

kind-projector

0.10.3

shapeless

233

cats

2.0.0

cats-effect

2.0.0

fs2

2.0.0

http4s

0.21.0-M4

circe

0.12.1

scalaz

7.2.28

zio

1.0.0-RC12-1

apache-spark

2.4.4 (only for 2.13)

Before You Migrate ...

Upgrade your project to the latest 2.12.x version.

Remove all deprecation warnings. Turn warnings into errors:
scalacOptions += -Xfatal-warnings

Scalafix them if there are many. (Turn off -Xfatal-warnings while running
scalafix. This option let's scalafix fail.)

Upgrade your sbt libraryDependencies to versions which are available in
both binary versions: 2.12 and 2.13.

Migrate an Application to 2.13

(This project must not cross compile.)

Use scalafix to automate as much as possible!
Rewrite the rest by hand.
Use new features of 2.13.

You loose backward compatibility to 2.12.

Migrate a Library to a Cross Compatible Version

(This project must cross compile.)

Keep source compatibility as much as possible without using the new
features of 2.13.

Use version specific source folders: sr¢/main/scala-2.12 and
sr¢/main/scala-2.13

Use scala-collection-compat library which backports many parts of the
collection API to 2.12.

Use scalafix to automate as much as possible!

Rewrite the rest by hand.

Migration Automation with Scalafix (Setup)

Migration Automation with Scalafix (Setup)

Add scalafix plugin

// project/plugins.sbt
addSbtPlugin("ch.epfl.scala" % "sbt-scalafix" % "0.9.7")

Migration Automation with Scalafix (Setup)

Add scalafix plugin

// project/plugins.sbt
addSbtPlugin("ch.epfl.scala" % "sbt-scalafix" % "0.9.7")

Change build.sbt

// build.sbt
scalafixDependencies += "org.scala-lang.modules" %% "scala-collection-migrations"

// scala-collection-compat needed only for cross compilation
libraryDependencies += "org.scala-lang.modules" %% "scala-collection-compat" % "2.

scalacOptions -= "-Xfatal-warnings" // let's scalafix fail
scalacOptions ++= List("-Yrangepos", "-P:semanticdb:synthetics:on")

120 /125

Migration Automation with Scalafix (Run)

Run scalafix in sbt shell (for upgrade to 2.13)

> ;test:scalafix Collection213Upgrade ;scalafix Collection213Upgrade

Run scalafix in sbt shell (for cross compilation with 2.12 and 2.13)

> ;test:scalafix Collection213CrossCompat ;scalafix Collection213CrossCompat

Scala 2.13 Collection Compatibility Library and Migration Tool:

https://github.com/scala/scala-collection-compat

21. Resources

Resources

e Code and Slides of this Talk:

o Official Release Description

e Making Our Future Better
Viktor Klang's talk at Scala Days 2019

https://github.com/hermannhueck/new-in-scala213
https://github.com/scala/scala/releases/tag/v2.13.0
https://www.youtube.com/watch?v=5FTJUUoT6y4

Scala 2.13 Collection Related Links

e Implementing the Scala 2.13 collections
Stefan Zeiger's talk at Scala Days 2019 in Lausanne

The Architecture of Scala 2.13's Collections

Migrating a project to Scala 2.13's Collections

Scala 2.13 Collection Compatibility Library

Let them be Lazy
Julien Richard Foy's blog on the lazy collection (Views and LazyList)

Scala 2.13's Collections Rework
Stefan Zeiger's blog on the collections rework

https://www.youtube.com/watch?v=L1lxZ1LBuGI
https://docs.scala-lang.org/overviews/core/architecture-of-scala-213-collections.html
https://docs.scala-lang.org/overviews/core/collections-migration-213.html
https://github.com/scala/scala-collection-compat
https://www.scala-lang.org/blog/2017/11/28/view-based-collections.html
https://www.scala-lang.org/blog/2017/02/28/collections-rework.html

Thank You

Q&A

https://github.com/hermannhueck/new-in-scala213

