
Composing an App with

Free Monads (using Cats)

© 2018 Hermann Hueck

https://github.com/hermannhueck/free-monad-app

1 / 88

https://github.com/hermannhueck/free-monad-app

1 / 88

Abstract

In this talk I will explain what Free Monads are and how to use them (using
the Cats implementation).

After having shown the basics I build a small app by composing several Free
Monads to a small program.

I discuss the pros and cons of this technique.

Finally I will demonstrate how to avoid some boilerplate with the FreeK

library.

2 / 88

2 / 88

Agenda

1. Free Monads - what they are.
2. Free Monad Recipe
3. Extending your DSL
4. FunctionK and Natural Transformation
5. More Interpreters
6. Partial Lifting with Free.inject

7. Composing two DSLs and two Interpreters
8. Composing three DSLs and three Interpreters
9. Routing the workflow through DSLs

10. Pros & Cons
11. The FreeK library
12. Resources

3 / 88

3 / 88

1. Free Monad - What is it?

4 / 88

4 / 88

Free Monad - What is it?

A free monad is a construction which allows you to build a monad from any
ADT with a type parameter. Like other monads, it is a pure way to represent
and manipulate computations.

In particular, free monads provide a practical way to:

represent stateful computations as data, and run them
run recursive computations in a stack-safe way
build an embedded DSL (domain-specific language)
retarget a computation to another interpreter using natural
transformations

(https://typelevel.org/cats/datatypes/freemonad.html)

5 / 88

https://typelevel.org/cats/datatypes/freemonad.html

5 / 88

2. Free Monad Recipe

 See: app1.MyApp

6 / 88

6 / 88

Recipe, how to proceed ...

1. Study your topic/domain/use case. Which operations do you need?
2. Create an ADT (algebraic data type) for the operations (computions as

data)
3. "Lift" your ADT into the Free Monad, i.e. use the Free Monad to

implement a smart constructor (lowercased function) for each element of
your ADT. This is your DSL.

4. Write one or more interpreters for your DSL (using natural
transformation)

5. Build a program using the DSL (typically a for comprehension). The
program is not executable.

6. Execute the program with one of your interpreters.

7 / 88

7 / 88

Step 1: Study your topic / domain / use case.

Which operations do you need?

In this very simple exmaple we want to interact with a user at a terminal. We
want to print an output string to the terminal or get a string of user input
from the terminal.

Operations:

PRINT LINE: displays an output string to the user and returns nothing
GET LINE: returns an input string entered by the user

8 / 88

8 / 88

Step 2: Create an ADT for the operations

// Algebra as an ADT - one type param for the return type
trait Inout[A]
final case class Printline(out: String) extends Inout[Unit]
case object Getline extends Inout[String]
`

Note: The trait's type parameter represents the return type of an operation.
The Printline operation returns nothing, hence it extends Inout[Unit].
The Getline operation returns a String, hence it extends Inout[String].

The ADT is just computations as data. You cannot use them for program
execution, you cannot invoke them.

9 / 88

9 / 88

Step 3: "Lift" your ADT into the Free Monad

// DSL
def printline(out: String): Free[Inout, Unit] = Free.liftF(Printline(out))
def getline: Free[Inout, String] = Free.liftF(Getline)

Implement a smart constructor (lowercased function) for each element of
your ADT. This is your DSL.

Later we will also use Free.inject instead of Free.liftF.

10 / 88

10 / 88

Step 4: Write an interpreter for the DSL

// interpreter
object ConsoleInterpreter extends (Inout ~> Id) {

 override def apply[A](fa: Inout[A]): Id[A] = fa match {
 case Printline(out) =>
 println(out)
 () : Id[Unit]
 case Getline =>
 val in = scala.io.StdIn.readLine()
 in : Id[String]
 }
}

Every interpreter is/extends a natural transformation from your DSL monad
(Inout) to a target monad (Id). The squiggly arrow is a shortcut for the natural
transformation FunctionK. (More on that later in this presentation)

An Interpreter must implement the apply method and is typically a pattern
match over the case classes of the ADT.

You can write more than one interpreter for the same ADT.

11 / 88

11 / 88

Step 5: Build a program using the DSL

// program definition (does nothing)
def prog: Free[Inout, (String, Int)] = for {
 _ <- printline("What's your name?")
 name <- getline
 _ <- printline("What's your age?")
 age <- getline
 _ <- printline(s"Hello $name! Your age is $age!")
} yield (name, age.toInt)
`

The program is not executable.

The program can be written with map and flatMap, but is typically a for
comprehension written in your DSL.

The programs return type is a Free[MyADT, RESULT].

12 / 88

12 / 88

Step 6: Execute the program

// Execute program with ConsoleInterpreter
val result: Id[(String, Int)] = prog.foldMap(ConsoleInterpreter)

println(s"result = $result")
`

Use Free.foldMap(...) to execute the program with a specific intrpreter.

Note: Free.foldMap internally uses a technique called Tranpolining.
Trampolining makes the Free Monads stack-safe. No StackOverflowError!

13 / 88

13 / 88

3. Extending your DSL

 See: app2.MyApp

14 / 88

14 / 88

Extending your DSL

Write a small function as a for comprehension or with map/flatMap.

def printline(out: String): Free[Inout, Unit] = Free.liftF(Printline(out))
def getline: Free[Inout, String] = Free.liftF(Getline)

def ask(prompt: String): Free[Inout, String] = for {
 _ <- printline(prompt)
 input <- getline
} yield input

def ask2(prompt: String): Free[Inout, String] = // same with flatMap
 printline(prompt).flatMap(_ => getline)

This allows you to simplify programs written in this DSL.

def prog: Free[Inout, (String, Int)] = for {
 name <- ask("What's your name?")
 age <- ask("What's your age?")
 _ <- printline(s"Hello $name! Your age is $age!")
} yield (name, age.toInt)

15 / 88

15 / 88

4. FunctionK and

Natural Transformation

16 / 88

16 / 88

FunctionK
See also: https://typelevel.org/cats/datatypes/functionk.html

Function1[-A, +B] takes an A and returns a B.
Shortcut: A => B

trait Function1[-A, +B] {

 def apply(a: A): B
}

FunctionK[F[_], G[_]] takes an F[A] and returns a G[A].
Shortcut: F ~> G

trait FunctionK[F[_], G[_]] {

 def apply[A](fa: F[A]): G[A]
}

17 / 88

https://typelevel.org/cats/datatypes/functionk.html

17 / 88

FunctionK

Function1: A --> [A => B] --> B

 "hello" --> _.length --> 5

 A Function1 changes a value.

FunctionK: F[A] --> [F ~> G] --> G[B]

 List(1, 2) --> _.headOption --> Some(1)

 A FunctionK changes the context.

18 / 88

18 / 88

Natural Transformation

If the contexts F and G are Functors, the context conversion is called

Natural Transformation or Functor Transformation.

19 / 88

19 / 88

FunctionK
In analogy to Function1 FunctionK also provides methods compose and
andThen. It also provides a method 'or' which allows to compose two
FunctionKs, i.e. two interpreters. (We will use them later.)

trait FunctionK[F[_], G[_]] { self =>

 // Applies this functor transformation from `F` to `G`
 def apply[A](fa: F[A]): G[A]

 // Composes two instances of FunctionK into a new FunctionK with this
 // transformation applied last.
 def compose[E[_]](f: FunctionK[E, F]): FunctionK[E, G] = ???

 // Composes two instances of FunctionK into a new FunctionK with this
 // transformation applied first.
 def andThen[H[_]](f: FunctionK[G, H]): FunctionK[F, H] = f.compose(self)

 // Composes two instances of FunctionK into a new FunctionK that transforms
 // a [[cats.data.EitherK]] to a single functor.
 // This transformation will be used to transform left `F` values while
 // `h` will be used to transform right `H` values.
 def or[H[_]](h: FunctionK[H, G]): FunctionK[EitherK[F, H, ?], G] = ???
}

See: Usage of FunctionK.or

20 / 88

file:///Users/hermann/dev/projects/github/free-monad-app/slides/composing-an-app-with-free-monads.html#ComposeDSLs_4

See: Usage of FunctionK.andThen

20 / 88

5. More Interpreters

 See: app3.MyApp

21 / 88

file:///Users/hermann/dev/projects/github/free-monad-app/slides/composing-an-app-with-free-monads.html#Routing_1

21 / 88

More Interpreters

We can provide several interpreters for the same ADT / DSL.

We can execute a programm written in a DSL with different interpreters for
that DSL.

22 / 88

22 / 88

More Interpreters

object ConsoleInterpreter extends (Inout ~> Id) {
 override def apply[A](fa: Inout[A]): Id[A] = ???
}
object AsyncInterpreter extends (Inout ~> Future) {
 override def apply[A](fa: Inout[A]): Future[A] = ???
}
class TestInterpreter(inputs: ListBuffer[String],
 outputs: ListBuffer[String]) extends (Inout ~> Id) {
 override def apply[A](fa: Inout[A]): Id[A] = ???
}

def prog: Free[Inout, (String, Int)] = for {
 name <- ask("What's your name?")
 age <- ask("What's your age?")
 _ <- printline(s"Hello $name! Your age is $age!")
} yield (name, age.toInt)

val result: Id[(String, Int)] = prog.foldMap(ConsoleInterpreter)

val futureResult: Future[(String, Int)] = prog.foldMap(AsyncInterpreter)

val testResult: Id[(String, Int)] =
 prog.foldMap(new TestInterpreter(inputs, outputs))

23 / 88

23 / 88

6. Partial Lifting

with Free.inject

 See: app3a.MyApp

24 / 88

24 / 88

Free.inject instead of Free.liftF (1/4)

DSL lifted with Free.liftF

def printline(out: String): Free[Inout, Unit] = Free.liftF(Printline(out))
def getline: Free[Inout, String] = Free.liftF(Getline)
def ask(prompt: String): Free[Inout, String] =
 printline(prompt).flatMap(_ => getline)

DSL partially lifted with Free.inject

class IoOps[F[_]](implicit IO: InjectK[Inout, F]) {
 def printline(out: String): Free[F, Unit] = Free.inject[Inout, F](Printline(out))
 def getline: Free[F, String] = Free.inject[Inout, F](Getline)
 def ask(prompt: String): Free[F, String] =
 printline(prompt).flatMap(_ => getline)
}

object IoOps {
 // provides an instance of IoOps in implicit scope
 implicit def ioOps[F[_]](
 implicit IO: InjectK[Inout, F]): IoOps[F] = new IoOps[F]
}

25 / 88

F[_] is a place holder for another DSL, into which Inout will be injected.

25 / 88

Free.inject instead of Free.liftF (2/4)

Instead of providing the DSL functions directly, pack them into a class.
In the class constructor provide an implicit InjectK[YourDSL, F]. (F[_] is a
place holder for some DSL that we provide later.)
Implement the DSL functions inside the class with Free.inject.
Implement the DSL extension function (ask) also inside the new class.
Provide an implicit instance of this class inside the companion object of
the class (= implicit scope).

This is a bit more boilerplate than before.
But it gives us more flexibility for DSL composition, as we will see later.

26 / 88

26 / 88

Free.inject instead of Free.liftF (3/4)

Program for DSL with Free.liftF:

def prog: Free[Inout, (String, Int)] = for {
 name <- ask("What's your name?")
 age <- ask("What's your age?")
 _ <- printline(s"Hello $name! Your age is $age!")
} yield (name, age.toInt)

Program for DSL with Free.inject:

def prog(implicit io: IoOps[Inout]): Free[Inout, (String, Int)] = for {
 name <- io.ask("What's your name?")
 age <- io.ask("What's your age?")
 _ <- io.printline(s"Hello $name! Your age is $age!")
} yield (name, age.toInt)

27 / 88

27 / 88

Free.inject instead of Free.liftF (4/4)

In the definition of IoOps we already defined an Inout as the first type
parameter of InjectK[Inout, F]. Here in the program definition we replace the
place holder DSL F with the higher kinded type of another DSL, which in this
case is also Inout. We have composed Inout with another Inout.

The benefit of this technique becomes obvious shortly.
We will create one composed DSL out of two different component DSLs.

28 / 88

28 / 88

7. Composing two DSLs

and two Interpreters

 See: app4.MyApp

29 / 88

29 / 88

Inout

trait Inout[A]
final case class Printline(out: String)
 extends Inout[Unit]
final case object Getline
 extends Inout[String]

class IoOps[F[_]](
 implicit IO: InjectK[Inout, F]) {
 def printline(out: String) =
 Free.inject(Printline(out))
 def getline = Free.inject(Getline)
 def ask(prompt: String) =
 printline(prompt)
 .flatMap(_ => getline)
}

object IoOps {
 implicit def ioOps[F[_]](
 implicit IO: InjectK[Inout, F]) =
 new IoOps[F]
}

KVStore

Two DSLs

trait KVStore[A]
final case class Put(key: String,
 value: Int) extends KVStore[Unit]
final case class Get(key: String
) extends KVStore[Option[Int]]
final case class Delete(key: String
) extends KVStore[Option[Int]]

class KVSOps[F[_]](
 implicit KV: InjectK[KVStore, F]) {
 def put(key: String, value: Int) =
 Free.inject(Put(key: String, value: Int
 def get(key: String) =
 Free.inject(Get(key: String))
 def delete(key: String) =
 Free.inject(Delete(key: String))
}

object KVSOps {
 implicit def kvsOps[F[_]](
 implicit IO: InjectK[KVStore, F]) =
 new KVSOps[F]
}

30 / 88

30 / 88

Inout KVStore

Two Interpreters

Note: Both interpreters have the same target type: Id

object ConsoleInterpreter
 extends (Inout ~> Id) {

 override def apply[A](fa: Inout[A]
): Id[A] = fa match {

 case Printline(out) =>
 println(out)
 (): Id[Unit]

 case Getline =>
 val in = scala.io.StdIn.readLine()
 in: Id[String]

 }
}

object KVSInterpreter
 extends (dsl.KVStore ~> Id) {

 var kvs: Map[String, Int] = Map.empty

 override def apply[A](fa: KVStore[A]
): Id[A] = fa match {

 case Put(key, value) =>
 kvs = kvs.updated(key, value)
 (): Id[Unit]

 case Get(key) =>
 kvs.get(key): Id[Option[Int]]

 case Delete(key) =>
 val value = kvs.get(key)
 kvs = kvs - key
 value: Id[Option[Int]]
 }
}

31 / 88

31 / 88

Composing DSLs and interpreters

type AppDSL[A] = EitherK[Inout, KVStore, A]

def prog(implicit io: IoOps[AppDSL],
 kvs: KVSOps[AppDSL]): Free[AppDSL, (String, Option[Int])] = {
 for {
 name <- io.ask("What's your name?")
 age <- io.ask("What's your age?")
 _ <- kvs.put(name, age.toInt)
 _ <- io.printline(s"Hello $name! Your age is $age!")
 optAge <- kvs.get(name)
 } yield (name, optAge)
}

val composedInterpreter: AppDSL ~> Id =
 (ConsoleInterpreter: Inout ~> Id) or (KVSInterpreter: KVStore ~> Id)
val result: Id[(String, Option[Int])] = prog.foldMap(composedInterpreter)

Define a type alias for an EitherK with two ADTs
Provide DSLs as implicit parameters to your program
The two component interpreters must have the same target type as the
composed interpreter (Id in our case).
The composition order of interpreters must be the same as the
composition order of the DSLS.

See: Definition of FunctionK

32 / 88

file:///Users/hermann/dev/projects/github/free-monad-app/slides/composing-an-app-with-free-monads.html#FunctionK_4

32 / 88

EitherK (= Coproduct)

Either is parameterized with two types A and B.
A is the type of the Left, B the type of the Right.

sealed abstract class Either[+A, +B] ... { ... }

EitherK is parameterized with two type constructors F[_] and G[_] and a
regular type A. It's a case class wrapping a value called run of type Either[F[A],

G[A]].

final case class EitherK[F[_], G[_], A](run: Either[F[A], G[A]]) {

 // ...
}

EitherK is used to define a composed DSL.

In our example we define AppDSL as an EitherK:

type AppDSL[A] = EitherK[Inout, KVStore, A]

33 / 88

33 / 88

Partial Lifting with InjectK (1/2)

InjectK is used for partial lifting into a Free Monad for the composed DSL.

In class IoOps Free.inject internally injects the Inout into InjectK[Inout, F],
where the place holder F will be replaced by AppDSL.

In class KVSOps Free.inject internally injects the KVStore into InjectK[KVStore,

F], where the place holder F will be replaced by AppDSL.

// simplified def of inject
object Free {
 def inject[F[_], G[_], A](fa: F[A])(implicit I: InjectK[F, G]): Free[G, A] =
 liftF(I.inj(fa))
}

34 / 88

34 / 88

Partial Lifting with InjectK (2/2)

class IoOps[F[_]](implicit IO: InjectK[Inout, F]) {
 def printline(out: String): Free[F, Unit] =
 Free.inject[Inout, F](Printline(out))
 // ...
}

class KVSOps[F[_]](implicit KV: InjectK[KVStore, F]) {
 def get(key: String): Free[F, Option[Int]] =
 Free.inject[KVStore, F](Get(key: String))
 // ...
}

type AppDSL[A] = EitherK[Inout, KVStore, A]

def prog(implicit io: IoOps[AppDSL],
 kvs: KVSOps[AppDSL]): Free[AppDSL, (String, Option[Int])] = ???

In the implicit parameters we fill the place holder F with the concrete type
AppDSL (= EitherK[Inout, KVStore, ?]).

For more details see: app4a.MyApp

35 / 88

35 / 88

8. Composing three DSLs

and three Interpreters

 See: app5.MyApp

36 / 88

36 / 88

Third DSL and Interpreter

Our 3rd DSL and corresponding interpreter(s) is for monotonic sequence
number generation.

sealed trait Sequence[A]
case object NextId extends Sequence[Long]

class SeqOps[F[_]](implicit KV: InjectK[Sequence, F]) {
 def nextId: Free[F, Long] = Free.inject[Sequence, F](NextId)
 def nextStringId: Free[F, String] = nextId.map(_.toString)
}

object SeqOps {
 implicit def seqOps[F[_]](implicit IO: InjectK[Sequence, F]): SeqOps[F] =
 new SeqOps[F]
}

37 / 88

37 / 88

Composing three DSLs and three Interpreters
Compose 3 DSLs with 2 type aliases.
Compose interpreters in the same order as the DSLs.
All component interpreters must have the same target type as the
composed interpreter (Id in our case).

type AppDSL0[A] = EitherK[Inout, KVStore, A]
type AppDSL[A] = EitherK[Sequence, AppDSL0, A]

def prog(implicit io: IoOps[AppDSL],
 kvs: KVSOps[AppDSL],
 seq: SeqOps[AppDSL]): Free[AppDSL, (String, Option[Cat])] = {
 for {
 name <- io.ask("What's your name?")
 age <- io.ask("What's your age?")
 id <- seq.nextId.map(_.toString)
 _ <- kvs.put(id, Cat(id, name, age.toInt))
 _ <- io.printline(s"Hello cat $name! Your age is $age!")
 optCat <- kvs.get(id)
 } yield (id, optCat)
}

// compose interpreters in the same order as DSLs
val appInterpreter: AppDSL ~> Id =
 SeqInterpreter or (ConsoleInterpreter or KVSInterpreter)
val result: Id[(String, Option[Cat])] = prog.foldMap(appInterpreter)

38 / 88

println(s"result = $result")

38 / 88

9. Routing the workflow

through DSLs

 See: app6.MyApp

39 / 88

Logging DSL

In the next evolution step of the program we create a new DSL for logging and
the corresponding interpreters(s). (interpreter code not shown here)

sealed trait Log[A] extends Product with Serializable
final case class Info(msg: String) extends Log[Unit]
final case class Warn(msg: String) extends Log[Unit]
final case class Error(msg: String) extends Log[Unit]

class LogOps[F[_]](implicit LG: InjectK[Log, F]) {
 def info(msg: String): Free[F, Unit] = Free.inject[Log, F](Info(msg))
 def warn(msg: String): Free[F, Unit] = Free.inject[Log, F](Warn(msg))
 def error(msg: String): Free[F, Unit] = Free.inject[Log, F](Error(msg))
}

object LogOps {
 implicit def logOps[F[_]](implicit LG: InjectK[Log, F]): LogOps[F] =
 new LogOps[F]
}

40 / 88

39 / 88

40 / 88

Routing the workflow through DSLs (1/2)

We create a composed DSL from KVStore, Sequence and Logging.
We create new DSL CatManagement (cats management business logic).
The CatManagement interpreter is implemented with the above composed
interpreter. It routes requests to the other interpreters.
The main program is implemented in a DSL composed of Inout and
CatManagement.

41 / 88

41 / 88

Routing the workflow through DSLs (2/2)

 | AppDSL |

 |
 ---------------------------- Composition
 | |
 ------------ -----------------------------
 | Inout | | CatManagement |
 ------------ -----------------------------
 | Routing

 | ComposedDSL |

 |
 -- Composition
 | | |
 ---------------- ---------------- ------------------
 | Logging | | KVStore | | Sequence |
 ---------------- ---------------- ------------------

42 / 88

42 / 88

Composing a DSL from KVStore, Sequence and
Logging

We compose DSLs and interpreters as we did before.

Component and composed interpreters again with same target type: Id

// component interpreters, all having target type Id
object LogInterpreter extends (Log ~> Id) { ... }
object SeqInterpreter extends (Sequence ~> Id) { ... }
object KvsInterpreter extends (KVStore ~> Id) { ... }

// compose DSLs
type ComposedDSL0[A] = EitherK[Sequence, KVStore, A]
type ComposedDSL[A] = EitherK[Log, ComposedDSL0, A]

// composed interpreter also with target type Id
val ComposedLogSeqKvsInterpreter: ComposedDSL ~> Id =
 LogInterpreter or (SeqInterpreter or KvsInterpreter)

43 / 88

43 / 88

Lifting the composed DSL into a Free Monad

We need a monad for the natural transformation from the composed DSL to
Id. By creating a type alias we lift ComposedDSL into the Free Monad. Then we
define a new interpreter that translates from FreeComposed ~> Id by
foldMapping the interpreter we composed before.

// type alias for the Free Monad of the composed DSL
type FreeComposed[A] = Free[ComposedDSL, A]

// interpreter that translated from the composed Free Monad to the Id Monad
object FreeComposedLogSeqKvsInterpreter extends (FreeComposed ~> Id) {
 override def apply[A](fa: FreeComposed[A]): Id[A] =
 fa.foldMap(ComposedLogSeqKvsInterpreter)
}

44 / 88

44 / 88

CatManagement DSL

sealed trait CatManagement[A] extends Product with Serializable
final case class Create(cat: Cat) extends CatManagement[Cat]
final case class UpdateById(cat: Cat) extends CatManagement[Cat]
final case class DeleteById(id: String) extends CatManagement[Boolean]
final case class FindById(id: String) extends CatManagement[Option[Cat]]
final case class FindByName(name: String) extends CatManagement[List[Cat]]
case object FindAll extends CatManagement[List[Cat]]

class CatOps[F[_]](implicit KV: InjectK[CatManagement, F]) {
 def create(cat: Cat): Free[F, Cat] = Free.inject[CatManagement, F](Create(cat))
 def updateById(cat: Cat): Free[F, Cat] = Free.inject[CatManagement, F](UpdateById(cat))
 def deleteById(id: String): Free[F, Boolean] = Free.inject[CatManagement, F](DeleteById
 def findById(id: String): Free[F, Option[Cat]] = Free.inject[CatManagement, F](FindById
 def findByName(name: String): Free[F, List[Cat]] = Free.inject[CatManagement, F](FindByName
 def findAll: Free[F, List[Cat]] = Free.inject[CatManagement, F](FindAll)
}

object CatOps {
 implicit def catOps[F[_]](implicit CM: InjectK[CatManagement, F]): CatOps[F] =
 new CatOps[F]
}

45 / 88

45 / 88

CatLogicInterpreter (1/2)

CatLogicInterpreter transforms from CatManagement ~> FreeComposed and is
implemented with the DSL composed from Logging, Sequence and KVStore.

class CatLogicInterpreter(implicit log: LogOps[ComposedDSL],
 seq: SeqOps[ComposedDSL],
 kvs: KVSOps[ComposedDSL])
 extends (CatManagement ~> FreeComposed) {

 override def apply[A](fa: CatManagement[A]): FreeComposed[A] = fa match {

 case Create(cat) =>
 kvsCreate(cat): FreeComposed[Cat]
 case UpdateById(cat) =>
 kvsUpdateById(cat): FreeComposed[Cat]
 case DeleteById(id) =>
 kvsDeleteById(id): FreeComposed[Boolean]
 case FindById(id) =>
 kvsFindById(id): FreeComposed[Option[Cat]]
 case FindByName(name) =>
 kvsFindByName(name): FreeComposed[List[Cat]]
 case FindAll =>
 kvsFindAll: FreeComposed[List[Cat]]
 }

 // ...

46 / 88

46 / 88

CatLogicInterpreter (2/2)

 // ...

 private def kvsFindAll[A]: FreeComposed[List[Cat]] =
 kvs.getAll

 private def kvsFindById[A](id: String): FreeComposed[Option[Cat]] =
 kvs.get(id)

 private def kvsFindByName[A](name: String): FreeComposed[List[Cat]] =
 kvs.getAll.map(_.filter(_.name == name))

 private def kvsCreate[A](cat: Cat): FreeComposed[Cat] =
 for {
 maybeCat <- kvs.get(cat.id)
 _ = if (maybeCat.isDefined) {
 val message = s"cat with id ${cat.id} already exists"
 log.error(message)
 throw new RuntimeException(message)
 }
 newId <- seq.nextStringId
 _ <- kvs.put(newId, cat.copy(id = newId))
 newMaybeCat <- kvs.get(newId)
 _ <- log.info(s"Created: $cat")
 } yield newMaybeCat.get

47 / 88

 // ...

47 / 88

Routing from one interpreter to the next

CatLogicInterpreter provides a natural transformation (CatManagement ~> Id).
It transforms (CatManagement ~> FreeComposed) andThenandThen propagates to
FreeComposedInterpreter which transforms (FreeComposed ~> Id).

// Routing with FunctionK.andThen
val CatLogicInterpreter: CatManagement ~> Id =
 new CatLogicInterpreter andThen FreeComposedLogSeqKvsInterpreter

See: Definition of FunctionK

48 / 88

file:///Users/hermann/dev/projects/github/free-monad-app/slides/composing-an-app-with-free-monads.html#FunctionK_4

48 / 88

Program definition and execution

Technically nothing new here (just DSL composition).

type AppDSL[A] = EitherK[CatManagement, Inout, A]

def prog(implicit io: Inouts[AppDSL],
 co: CatOps[AppDSL]): Free[AppDSL, Option[Cat]] = {
 for {
 name <- io.ask("Cat's name?")
 age <- io.ask("Cat's age?")
 cat <- co.create(Cat(name, age.toInt))
 newAge <- io.ask("That was a lie! Tell me the correct age!")
 _ <- co.updateById(cat.copy(age = newAge.toInt))
 _ <- io.printline(s"Hello cat ${cat.name}! Your age is ${cat.age}!")
 optCat <- co.findById(cat.id)
 } yield optCat
}

val result: Id[Option[Cat]] =
 prog1.foldMap(CatLogicInterpreter or ConsoleInterpreter)
println(s"result = $result")

49 / 88

49 / 88

10. Pros & Cons

See the following video presentations:

Rather on the Pro side:
Chris Myers' Talk on Free Monads at Typelevel Summit Oslo, 2016
Rather on the Cons side:
Kelly Robinson's Talk on Free Monads at Scala Days Berlin, 2016

50 / 88

file:///Users/hermann/dev/projects/github/free-monad-app/slides/composing-an-app-with-free-monads.html#Resources_2
file:///Users/hermann/dev/projects/github/free-monad-app/slides/composing-an-app-with-free-monads.html#Resources_2

50 / 88

Pros

51 / 88

51 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.

52 / 88

52 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.
FMs let us write programs in monadic style (for comprehensions)

53 / 88

53 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.
FMs let us write programs in monadic style (for comprehensions)
Decoupled program description and execution/interpretation

54 / 88

54 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.
FMs let us write programs in monadic style (for comprehensions)
Decoupled program description and execution/interpretation
It is easy to add new ADTs/DSLs.

55 / 88

55 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.
FMs let us write programs in monadic style (for comprehensions)
Decoupled program description and execution/interpretation
It is easy to add new ADTs/DSLs.
It is easy to add new interpreters for existing ADTs/DSLs.

56 / 88

56 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.
FMs let us write programs in monadic style (for comprehensions)
Decoupled program description and execution/interpretation
It is easy to add new ADTs/DSLs.
It is easy to add new interpreters for existing ADTs/DSLs.
E.g.: Implement different interpreters for prod and test.

57 / 88

57 / 88

Pros

FMs let us create a Monad from any (parameterized) ADT.
FMs let us write programs in monadic style (for comprehensions)
Decoupled program description and execution/interpretation
It is easy to add new ADTs/DSLs.
It is easy to add new interpreters for existing ADTs/DSLs.
E.g.: Implement different interpreters for prod and test.
FMs are stack-safe (due to an internally used technique: Trampolining).

58 / 88

58 / 88

Cons

59 / 88

59 / 88

Cons

Advanced technology not easily understood.

60 / 88

60 / 88

Cons

Advanced technology not easily understood.
Danger of over-enginieering

61 / 88

61 / 88

Cons

Advanced technology not easily understood.
Danger of over-enginieering
Possible performance cost

62 / 88

62 / 88

Cons

Advanced technology not easily understood.
Danger of over-enginieering
Possible performance cost

To minimize drawbacks:

63 / 88

63 / 88

Cons

Advanced technology not easily understood.
Danger of over-enginieering
Possible performance cost

To minimize drawbacks:

Be aware of the skill level of your team maintaining the code.

64 / 88

64 / 88

Cons

Advanced technology not easily understood.
Danger of over-enginieering
Possible performance cost

To minimize drawbacks:

Be aware of the skill level of your team maintaining the code.
Consider using FMs only in library code or in well encapsulated modules.

65 / 88

65 / 88

Principle of Least Power

Given a choice of solutions,
pick the least powerful solution
capable of solving your problem.

-- Li Haoyi

66 / 88

66 / 88

11. Easing Free Monads with
FreeK

 See: app5freek.MyApp

67 / 88

67 / 88

FreeK - What is it?

It is a library, implemented with Shapeless,
designed to remove some of the boilerplate from your Free Monad code.

Write only ADTs, no lifting, no injecting
Simplified composition of DSLs
Simplified composition of interpreters

68 / 88

68 / 88

FreeK Example: app5freek.MyApp (1/2)

// Algebra as an ADT
trait Inout[A]
final case class Printline(out: String) extends Inout[Unit]
final case object Getline extends Inout[String]

// DSL to be omitted. No lifting or injecting needed with Freek

// ask is a small subroutine written with FreeK
type PRG = Inout :|: NilDSL
val prg = DSL.Make[PRG]

def ask(prompt: String): Free[prg.Cop, String] = for {
 _ <- Printline(prompt).freek[PRG]
 input <- Getline.freek[PRG]
} yield input

def ask2(prompt: String): Free[prg.Cop, String] =
 Printline(prompt).freek[PRG].flatMap(_ => Getline.freek[PRG])

69 / 88

69 / 88

FreeK Example: app5freek.MyApp (2/2)

type AppDSL = Inout :|: KVStore :|: Sequence :|: NilDSL
val appDSL = DSL.Make[AppDSL] // infer the right coproduct for AppDSL

def prog: Free[appDSL.Cop, (String, Option[Cat])] = {
 for {
 name <- ask("What's your name?").expand[AppDSL] // ask must be expanded
 age <- ask("What's your age?").expand[AppDSL] // to Printline/Getline
 idLong <- NextId.freek[AppDSL] // freek performs the heavy lifting
 id = idLong.toString
 _ <- Put(id, Cat(id, name, age.toInt)).freek[AppDSL]
 _ <- Printline(s"Hello cat $name! Your age is $age!").freek[AppDSL]
 optCat <- Get(id).freek[AppDSL]
 } yield (id, optCat)
}

// program execution with foldMap or with interpret
val composedInterpreter = ConsoleInterpreter :&: KVSInterpreter :&: SeqInterpreter
// foldMap is order-sensitive
val result1: Id[(String, Option[Cat])] = prog.foldMap(composedInterpreter.nat)
println(s"result1 = $result1")
// interpret is order-agnostic
val result2: Id[(String, Option[Cat])] = prog.interpret(composedInterpreter)
println(s"result2 = $result2")

70 / 88

70 / 88

FreeK - Howto in a nutshell

71 / 88

71 / 88

FreeK - Howto in a nutshell

Write your ADTs as before

72 / 88

72 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.

73 / 88

73 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.

74 / 88

74 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.

75 / 88

75 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.

76 / 88

76 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).

77 / 88

77 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).
Append an invocation of freek[AppDSL] (for the "heavy lifting").

78 / 88

78 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).
Append an invocation of freek[AppDSL] (for the "heavy lifting").
Append expand[AppDSL] to your own subroutines (such as ask).

79 / 88

79 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).
Append an invocation of freek[AppDSL] (for the "heavy lifting").
Append expand[AppDSL] to your own subroutines (such as ask).
Compose interpreters with the :&: operator.

80 / 88

80 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).
Append an invocation of freek[AppDSL] (for the "heavy lifting").
Append expand[AppDSL] to your own subroutines (such as ask).
Compose interpreters with the :&: operator.
Program execution: use prog.foldMap(myInterpreter.nat). foldMap is
order-sensitive.

81 / 88

81 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).
Append an invocation of freek[AppDSL] (for the "heavy lifting").
Append expand[AppDSL] to your own subroutines (such as ask).
Compose interpreters with the :&: operator.
Program execution: use prog.foldMap(myInterpreter.nat). foldMap is
order-sensitive.
Or: Use prog.interpret(myInterpreter) and omit the appendix .nat.
interpret is order-agnostic.

82 / 88

82 / 88

FreeK - Howto in a nutshell

Write your ADTs as before
Remove all the DSL generation code using Free.liftF and Free.inject.
Write your interpreters as before.
Type alias composed AppDSL with the :|: operator with NilDSL at the end.
The program doesn't need implicit parameters.
"Invoke" the uppercase case class constructors (Getline instead of getline).
Append an invocation of freek[AppDSL] (for the "heavy lifting").
Append expand[AppDSL] to your own subroutines (such as ask).
Compose interpreters with the :&: operator.
Program execution: use prog.foldMap(myInterpreter.nat). foldMap is
order-sensitive.
Or: Use prog.interpret(myInterpreter) and omit the appendix .nat.
interpret is order-agnostic.

Detailed info about FreeK at: https://github.com/ProjectSeptemberInc/freek

83 / 88

https://github.com/ProjectSeptemberInc/freek

83 / 88

12. Resources

84 / 88

84 / 88

Resources (1/3) - basic

Code and Slides of this Talk:
https://github.com/hermannhueck/free-monad-app

Cats documentation on Free Monads:
https://typelevel.org/cats/datatypes/freemonad.html

Blog post on Free Monads by Pere Villega:
http://perevillega.com/understanding-free-monads

Blog post on FreeK by Pere Villega:
http://perevillega.com/freek-and-free-monads

The FreeK project on Github
https://github.com/ProjectSeptemberInc/freek

85 / 88

https://github.com/hermannhueck/free-monad-app
https://typelevel.org/cats/datatypes/freemonad.html
http://perevillega.com/understanding-free-monads
http://perevillega.com/freek-and-free-monads
https://github.com/ProjectSeptemberInc/freek

85 / 88

Resources (2/3) - basic

"A Year living Freely"
Chris Myers' Talk on Free Monads at Typelevel Summit Oslo, 2016
https://www.youtube.com/watch?v=rK53C-xyPWw

"Why the free Monad isn't free"
Kelly Robinson's Talk on Free Monads at Scala Days Berlin, 2016
https://www.youtube.com/watch?v=U0lK0hnbc4U

"Composable application architecture with reasonably priced monads"
Runar Bjarnason's Talk on Free Monads at Scala Days Berlin, 2014
https://www.youtube.com/watch?v=M258zVn4m2M

86 / 88

https://www.youtube.com/watch?v=rK53C-xyPWw
https://www.youtube.com/watch?v=U0lK0hnbc4U
https://www.youtube.com/watch?v=M258zVn4m2M

86 / 88

Resources (3/3) - advanced

Cats documentation on FunctionK:
https://typelevel.org/cats/datatypes/functionk.html

Cats documentation on Free Applicatives:
https://typelevel.org/cats/datatypes/freeapplicative.html

"Free as in Monads" - Daniel Spiewak implements Free Monads
Daniel Spiewak's live coding session at Northeast Scala Symposium, 2017
https://www.youtube.com/watch?v=H28QqxO7Ihc

"Move Over Free Monads: Make Way for Free Applicatives!"
John de Goes' Talk on Free Applicatives at Scala World, 2015
https://www.youtube.com/watch?v=H28QqxO7Ihc

87 / 88

https://typelevel.org/cats/datatypes/functionk.html
https://typelevel.org/cats/datatypes/freeapplicative.html
https://www.youtube.com/watch?v=H28QqxO7Ihc
https://www.youtube.com/watch?v=H28QqxO7Ihc

87 / 88

Thanks for Listening

Q & A

https://github.com/hermannhueck/free-monad-app

88 / 88

https://github.com/hermannhueck/free-monad-app

88 / 88

