
*

Python JSON Emoji Crash Story

Sebastian Pipping <sebastian@pipping.org>

--
Berlin, 2020-02-18, v4
Licensed under CC-BY-SA 4.0

DISCLAIMER

Slides were done with (GNOME pinpoint and)
very tight time constraints.

My apology, better slides next time!

1.

Django in Berlin at ~170 companies

https://github.com/hartwork/django-berlin#companies

2.

Who has a friend running…
 - Django 3 <3.0.1
 - Django 2 <2.2.9
 - Django 1 <1.11.27
?

Please consider upgrading!

CVE-2019-19844

Potential account hijack
via password reset form

https://www.djangoproject.com/weblog/2019/dec/18/security-releases/

3.

Who has a friend running…

 settings.DEBUG == True

accessible by public internet?

4.

Actual talk

Python JSON Emoji Crash Story

Tell a story

Point out a problem

Questions + Discussion

Environment:

 - Django backend…
 with Django REST Framework

 - A JavaScript frontend
 POST'ing JSON

Flow of data

1. User input
2. Form / HTML DOM
3. JavaScript
4. JSON (= ECMA-404)
5. HTTP request with body
6. Django REST Framework
7. rest_framework.parsers.JSONParser
8. De-serialization
9. Some action (e.g. store into database)

Unicode

U+0000 — U+ffff
Basic Multilingual Plane

U+10000 — U+10ffff
16 "astral" planes

Emoji

beyond U+ffff

i.e. need more than 4 hex digits

Example:

Character 'GRINNING FACE'

Code point: U+1F600
Example glyph: 😀

Unicode characters in JSON

a) character itself as UTF-8
 (except U+0 to U+1f, U+22, U+5C)

b) escaped a la (regex:) \\u[0-9a-fA-F]{4}

Works, Python:

In [1]: import json

In [2]: json.loads('"😀"') # plain UTF-8
Out[2]: '😀'

In [3]: json.loads('"\\ud83d\\ude00"')
Out[3]: '😀'

1024 "high" surrogates (U+D800–U+DBFF)
1024 "low" surrogates (U+DC00–U+DFFF)

Pair of surrogates allows "addressing"
any of the astral characters.

This is the very idea behind UTF-16.

(2**20 + 2**16 == 2**16 * 17)

Length of a string

Python:
In : len('😀')
Out: 1

JavaScript:
>> '😀'.length
<- 2

JavaScript:
>> '😀'.split('')
<- Array ["\ud83d", "\ude00"]

What if buggy code italified like this?:

JavaScript:
>> input_text.replace(/./g, '$&')

We send single surrogates

to the backend

JavaScript:
>> '😀'.replace(/./g, '[$&]').split('')
<- Array(6) ["[", "\ud83d", "]", "[", "\ude00", "]"]

How does Python deal with this?

Python:
In : json.loads('"[\\ud83d][\\ude00]"')
Out: '[\ud83d][\ude00]'

Surrogates in isolation
 ==
invalid characters

Python:
In : json.loads('"[\\ud83d][\\ude00]"').encode('utf-8')
[..]
UnicodeEncodeError: 'utf-8' codec can't encode character
 '\ud83d' in position 1: surrogates not allowed

Fixed for CharField

in next release (3.12.0?) of

Django REST Framework

https://github.com/encode/django-rest-framework/pull/7067

https://github.com/encode/django-rest-framework/issues/7026

"Unfixed" in CPython's JSON decoder

Considered a feature upstream

Potentially for good reasons

https://docs.python.org/3/library/json.html#character-encodings

Playing with surrogate characters

pip3 install surrogates

https://github.com/hartwork/surrogates#usage

Consequences?
 - Produce error 500 on any(?) DRF deployed today
 - (Read secrets if DEBUG=True)
 - Catch early once 👍 or late everywhere 👎
 - ?

Coping strategies?

Thank you!

Sebastian Pipping <sebastian@pipping.org>

