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0. Preface

The early dra� of this document was composed mostly by Artem Dergachev during his work for the Sam-
sungResearch&Development institute inMoscow. This document is licensed under the Creative Commons
Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The author is greatful to everybody who contributed to this guide by finding mistakes and omissions and
givingvaluable suggestions—and this listwouldprobablygrowasnewrevisionsof this guideare released—
in particular, to Alexey Sidorin, Julia Trofimovich, and Kirill Romanenkov.

The guide is still incomplete at parts, and it would need updates in case of changes in the analyzer core,
whichwould inevitably occur at times. Additionally, because the authorwas not a native speaker of English,
any suggestions on improving the grammar aspect of the guide are warmly welcome.

Below is a rough to-do list of stu� that is not yet properly explained in the guide, but would be considered
useful to have, in no particular order:

1. Direct and default bindings in the region store.

2. Recent changes in work with live and dead
symbols.

3. The WasInlined attribute of the checker con-
text.

4. The newly introduced CodeSpaceRegion
memory space.

5. The syntax for adding bug reporter visitors to
the report.

6. How to read the stderr dump of the program
state.

7. The loc::GotoLabel value class.

8. How to use the AST parent map.

9. Use check::ASTDecl<>, probably for
the whole translation unit, instead of
check::EndOfTranslationUnit for syntax-
only checks.

10. Symbols of structural type.

11. A picture of how super-regions of anymemory
region usually look.

12. Add a picture of how path-sensitive bug re-
ports look, eg. the HTML ones.

13. Describe more Objective-C-related stu�.

14. Using the SVal visitor.

15. Writing tests.

16. Coding style needs updating — outdated con-
structs are used.

The author welcomes suggestions, bug reports, pull-requests, forks, and whatever may come out of it, on
github at https://github.com/haonoq/clang-analyzer-guide!

On the other hand, please do not send analyzer-related questions in private messages or on e-mail! The
best place to ask questions is the cfe-dev mailing list — http://lists.llvm.org/pipermail/cfe-dev/,
because other people would see the question and the answer, and probably even be able to find the dis-
cussion later through web search.
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0.1. FAQ: a quick guide through the guide

Q: Okay, so how do I write CSA checkers?

A: For a step-by-step quick start guide on coding checkers, see subsection 1.2.

Q: Reference guides are boring. I prefer learning by example. Should I keep reading?

A: That’s not really a reference guide, but rather a free-hand introduction to Clang Static Analyzer. You’d
encounter code samples and useful snippets on almost every page. We did not try to copy the o�icial
Clang doxygen, which you would definitely refer to during your work on CSA checkers. However, we
also strongly advise you to search through the o�icial checker source code for finding how di�erent
classes andmethods are used in practice.

Q: This guide is quite big. My checker only needs to find calls to a certain function, and it shouldn’t be hard.
Do I really need to read the whole guide to implement it?

A: For finding simple code patterns, an AST matcher would easily do the job. Probably the example in
subsection 3.3 is all you need to know.

Q: Now I have a real problem. My program crashes, due to double-close of FlyingElephantDescriptor,
once in a few weeks, and I badly want to catch and debug it. Please help!

A: You came to the right place! If you want a checker that finds a program execution paths on which a
certain sequence of events, such as double-free, occurs, then you need to implement a path-sensitive
checker. Youwould probably need to read section 4,most importantly subsections 4.1 and 4.2, paying
a lot of attention in 4.2.5, and probably look through subsection 4.3 to find the right callback to hook
into.

Q: So, how do I know if I need a path-sensitive or path-insensitive checker?

A: It depends on what information you need the analyzer core to provide. If you want to understand
this matter in-depth, see section 2. Most of the time, you’d pick a path-sensitive checker. Only if your
check is really simple, would you want to rely on AST-based checkers.

Q: My path-sensitive bug report is too short, I cannot figure out what’s going on!

A: By default, the analyzer doesn’t draw path through sub-functions that returned before the bug was
found. They only show the event of the bug, and decisions that lead to it in the same function or in its
direct callers. If you need to highlight other events, probably inside sub-functions, then you need to
implement a bug report visitor, as described in subsection 4.4.

Q: Wait a minute, section 2 also mentions CFG-based analysis. When do I use this one?

A: Almost never, unless you really know what you’re doing, and in this case you almost certainly don’t
need this guide. Even though it’d be great to have a rough idea of what CFG is and how it looks, most
of the time path-sensitive checkers turn out to do the same jobmuch easier.
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Q: I’m reading the guide randomly, and I’ve no idea what youmean by “GDM”.

A: You can always refer to the alphabetical index at the end of the guide. In fact, because the index is
quite short, youmayalso read through it to find things youmissed. The indexof classes alsohighlights
most usefulmethods in CSA classes andpoints to usage examples for each class ormethod across the
guide.

Q: Your path-sensitive engine is fantastic! How does it work?

A: Theeasiestway toexplainhow itworks is probably say “it constructs anexplodedgraph”. Even though
the whole section 4 is about how the path-sensitive engine works, youmay also refer to the explana-
tion of the exploded graph in subsection 2.3 for clearer understanding.
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1. Introduction to the Clang Static Analyzer

TheClangcompiler, basedon theLLVM infrastructure, providesmuchmore thanaway to turnyourC,C++, or
Objective-C code into a binary executable file. Clang allows reliably hooking onto the compilation process
and obtaining exhaustive information of the data structures the compiler generates on each phase of the
compilation. In other words, if youwant to knowmore about your program, the compiler is the best person
to ask — and Clang is open to answer your questions. Assuming you ask the right questions, that is.

One of the applications for Clang tools is automatically finding defects in programs, providing much more
warnings than your compiler would. For instance, the clang-tidy tool finds style issues and unsafe or
potentially unportable constructs by observing the syntax used in the program.

Clang Static Analyzer is another tool that finds defects in programs. By exploring the program source code,
this particular tool tries to execute parts of the program without compiling them or running the program
— as if reading the source code and imagining what would happen if it runs — and reports run-time errors
that would occur in such imaginary run-time. Because actual behavior of any real-world program depends
on external factors, such as input values, random numbers, and behavior of library components (for which
source code is not always available!), the analyzer engine denotes unknown values with algebraic symbols,
and performs symbolic computations based on these symbols. It also discovers conditions on the symbolic
values that lead the program towards the error.

As a result, Clang Static Analyzer is capable of finding deep bugs that occur only on rare program paths.
These paths might have been missed by the manual testers or the automated test suites. Upon finding
a bug, the analyzer draws the whole path that lead to the bug, with jump directions on each conditional
statement.

However, the analyzer can only find bugs that it has been specifically engineered to find. Otherwise, upon
encountering the problem, the analysis runs further and doesn’t notice anything. For every particular kind
of defects the analyzer finds, such as dereference of a null pointer or bu�er overflow, there is a specialmod-
ule — a checker, that reacts on such defects during analysis.

So, essentially, the analyzer core is responsible for executing the program in a symbolicmanner, and check-
ers subscribeonevents they’re interested in, check variousassumptionson symbolic values at theseevents,
and throw warnings if these assumptions are found to fail on the given path.

It means that youmaywant to not only use the analyzer to finds defects, but also adapt it to your particular
project. For instance, you may want to enforce rules specific to your project, or find misuses of a specific
library API you are using. In order to do that, youmay find yourself wanting to write a new checker module
for the analyzer. And no matter how easy it may be — because Clang Static Analyzer is a very easy tool —
this guide should be able to help you.

1.1. MainCallChecker — a simple tutorial checker

For a quick start, we shall write a simple, though probably not very useful, static analyzer checker. The
checker would find violations of the following rule defined by the C++ standard:

basic.start.main.3: The function main shall not be used within a program.

In other words, the main() function cannot be recursive; the program should never call main(), otherwise
behavior is undefined. Finding such defect sounds easy at a glance: just see if there’s a function call in the
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program, and the functionhasname“main”. Well, not in real life. Theprogrammermayputapointer tomain
into a variable, pass this pointer around, and then accidentally call a function by pointer, which accidentally
turns out to point to main:

typedef int (* main_t )(int , char **);
int main(int argc , char **argv) {

main_t foo = main;
int exit_code = foo(argc , argv); // actually calls main ()!
return exit_code;

}

Example_Test.c

So even in this simple case, the analyzer’s path-sensitive engine has an advantage over a simple syntax-
based check. Let’s see if we can detect the error in Example_Test.cwith the help of the static analyzer.

All right, you got me: even putting the pointer to main into a variable actually alreadymeans that mainwas
“used” within the program. But for educational purposes, we shall find out that in fact it is actually called.

First, let us provide a definition of the checker in the list of checkers. Open up
lib/StaticAnalyzer/Checkers/Checkers.td in the clang source tree, and add a simple descrip-
tion of the checker somewhere too, say, alpha.core package of checkers:

...
HelpText <"Check for assignment of a fixed address to a pointer">,
DescFile <" FixedAddressChecker.cpp">;

def MainCallChecker : Checker <" MainCall">,
HelpText <"Check for calls to main">,
DescFile <" MainCallChecker.cpp">;

def PointerArithChecker : Checker <" PointerArithm">,
HelpText <"Check for pointer arithmetic on locations other than array elements">,
DescFile <" PointerArithChecker ">;

...

Checkers.td

A�er re-compiling Clang, this would make the checker appear in the list of checkers:

~ $ clang -cc1 -analyzer -checker -help
OVERVIEW: Clang Static Analyzer Checkers List

USAGE: -analyzer -checker <CHECKER or PACKAGE ,...>

CHECKERS:
...

alpha.core.FixedAddr Check for assignment of a fixed address to a p
ointer

alpha.core.IdenticalExpr Warn about unintended use of identical express
ions in operators

alpha.core.MainCall Check for calls to main
alpha.core.PointerArithm Check for pointer arithmetic on locations othe

r than array elements
alpha.core.PointerSub Check for pointer subtractions on two pointers

pointing to different memory chunks
...
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In this example, “alpha.core.MainCallChecker” is the name of the checker in the registry. Once the
checker is registered, it can be enabled via CSA command-line options by the given name, and also the
relevant short description line appears in the analyzer checker help. “alpha.core” is the category of the
checker. For example, -analyzer-checker alpha.corewould enable all checkers in the alpha.core cat-
egory.

Then, add the checker code to the lib/StaticAnalyzer/Checkers/CMakeLists.txt file, so that its
source code got eventually compiled on the next rebuild of Clang:

...
LocalizationChecker.cpp
MacOSKeychainAPIChecker.cpp
MacOSXAPIChecker.cpp
MainCallChecker.cpp
MallocChecker.cpp
MallocOverflowSecurityChecker.cpp

...

CMakeLists.txt

Finally, write some code in lib/StaticAnalyzer/Checkers/MainCallChecker.cpp that we will soon ex-
plain:

1 #include "ClangSACheckers.h"
2 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
3 #include "clang/StaticAnalyzer/Core/Checker.h"
4 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
5 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
6
7 using namespace clang;
8 using namespace clang::ento;
9
10 namespace {
11 class MainCallChecker : public Checker <check::PreCall > {
12 mutable std::unique_ptr <BugType > BT;
13
14 public:
15 void checkPreCall(const CallEvent &Call , CheckerContext &C) const;
16 };
17 }
18
19 void MainCallChecker :: checkPreCall(const CallEvent &Call ,
20 CheckerContext &C) const {
21 if (const IdentifierInfo *II = Call.getCalleeIdentifier ())
22 if (II->isStr("main")) {
23 if (!BT)
24 BT.reset(new BugType(this , "Call to main", "Example checker"));
25 ExplodedNode *N = C.generateErrorNode ();
26 auto Report = llvm:: make_unique <BugReport >(*BT, BT ->getName(), N);
27 C.emitReport(std::move(Report ));
28 }
29 }
30
31 void ento:: registerMainCallChecker(CheckerManager &Mgr) {
32 Mgr.registerChecker <MainCallChecker >();
33 }

MainCallChecker.cpp
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A�er compiling clang, you shouldbeable to run the static analyzer, enable the checker, and see thewarning:

~ $ clang -cc1 -analyze -analyzer -checker=alpha.core Example_Test.c
Example_Test.c:4:19: warning: Call to main

int exit_code = foo(argc , argv); // actually calls main ()!
^~~~~~~~~~~~~~~

1 warning generated.

1.2. Checker example code explained

Now let us figure out how MainCallCheckerworks internally. MainCallChecker is a path-sensitive check-
er: it can detect how values flow through variables on di�erent program paths, and understand which ex-
ecution paths are taken based on these values. We have already demonstrated this in Example_Test.c,
where we call a function a�er storing a pointer to this function in a variable foo.

1.2.1. Declaring a checker class

A CSA checker is implemented by inheriting from a class template Checker<...>, in which template pa-
rameters indicate the list of callbacks on which the checker subscribes:

10 namespace {
11 class MainCallChecker : public Checker <check::PreCall > {
12 mutable std::unique_ptr <BugType > BT;
13
14 public:
15 void checkPreCall(const CallEvent &Call , CheckerContext &C) const;
16 };
17 }

Checker class definitions are usually put into anonymous namespaces to avoid name collisions upon load-
ing multiple checkers into the analyzer.

MainCallChecker subscribes to the check::PreCall event. The checkPreCall(...) callback defined
inside the checker will be called every time the path-sensitive engine of the analyzer encounters a function
call and is about to analyze it.

1.2.2. Implementing checker callbacks

Now let us look at the implementation of the checkPreCall(...) callback:

19 void MainCallChecker :: checkPreCall(const CallEvent &Call ,
20 CheckerContext &C) const {
21 if (const IdentifierInfo *II = Call.getCalleeIdentifier ())
22 if (II->isStr("main")) {
23 if (!BT)
24 BT.reset(new BugType(this , "Call to main", "Example checker"));
25 ExplodedNode *N = C.generateErrorNode ();
26 auto Report = llvm:: make_unique <BugReport >(*BT, BT ->getName(), N);
27 C.emitReport(std::move(Report ));
28 }
29 }
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The CallEvent structure available at the callback contains all the data on the function call event the an-
alyzer core managed to gather for us. In particular, it contains information about the callee function, and
values of the arguments.

Because our checker is path-sensitive, this information is a lot more than youmay obtain by looking at the
syntax tree. In particular, it may know the callee identifier even if a function is called by function pointer,
because the analyzer core have predicted the value of this pointer on this execution path. On line 21, we
use this to obtain the identifier (IdentifierInfo structure) for the callee function from the CallEvent
structure. In case we cannot obtain such info, that is, if getCalleeIdentifier() returns a NULL pointer,
we return from our callback and continue the analysis.

Now, on line 22, we see if the identifier we encountered has the name “main”. We are only interested in
functions with the name “main”, so all further checks are made under this assumption.

1.2.3. Throwing bug reports

That’s it for the checker logic. What remains is to produce a bug report for the user. For this, we use another
object available in our callback, the CheckerContext structure. This structure is a Swiss Army knife that
contains various functions checkers can use to obtain information on the analysis and a�ect the analysis
flow.

There’s a variable BT in the checker, which stores a “bug type” for the checker — a common way to identify
bugs belonging to di�erent checkers. A checker may have multiple bug types; they are traditionally stored
and re-used inside the checker for performance. On line 24, the checker initializes its bug type structure BT
as a bug called “Call to main”, within category “Example checker”, unless it is already initialized.

On line 25, we use CheckerContext to generate a sink node, which means that the program would most
likely crash a�er encountering this defect, and it is pointless to continue the analysis beyond this point. The
node itself represents a point in the execution path. It is not necessary for the checker to stop the analysis
once it finds a defect, if the defect is not critical.

Finally, on line 26, the checker creates a new BugReport object. The report is thrown against the sink node
we generated before. BugReport also contains the warning message, which in our case coincides with the
bug type name.

Thenwe pass the report back to the CheckerContext using the emitReport(...)method. Reports would
be gathered together, de-duplicated, and displayed to the user in the preferred manner.

1.2.4. Registering the checker

Finally, there is a small piece ofmagic code to actually create the checker instancewhen the analysis starts.
You may use this section to disable certain checkers for the whole translation units (eg. checkers for C++-
only defects in plain C files), introduce dependencies between checkers, or to set checker options. The code
below creates exactly one instance of the MainCallChecker to feed upon the events yet to unfold:

31 void ento:: registerMainCallChecker(CheckerManager &Mgr) {
32 Mgr.registerChecker <MainCallChecker >();
33 }
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1.3. Compiling the checker as a standalonemodule

We have been compiling the checker inside the Clang source tree. However, it is possible to compile
the checker as a shared plugin library instead. In this case, you don’t need to modify Checkers.td or
CMakeLists.txt in order to run the checker; instead, you compile the checker as a standalone library, and
load it in run-time.

The syntax for registering the checker changes in the caseof compiling as aplugin. Youdon’t need to include
the ClangSACheckers.h header, but instead you include the CheckerRegistry.h header:

#include "clang/StaticAnalyzer/Core/CheckerRegistry.h"

Then we define an externally visible function in our library that would register the checker dynamically in
the analyzer’s CheckerRegistry:

extern "C"
void clang_registerCheckers (CheckerRegistry &registry) {

registry.addChecker <MainCallChecker >("alpha.core.MainCallChecker",
"Checks for calls to main");

}

The clang API version needs to match the plugin API version. Hence, the checker needs to store its version
string in theexternally visibleclang_analyzerAPIVersionStringvariable for thepurposeof compatibility
checking:

extern "C" const char clang_analyzerAPIVersionString [] =
CLANG_ANALYZER_API_VERSION_STRING;

Once you load the checker via the usual clang plugin syntax— clang -cc1 -load Checker.so— it would
appear as a normal checker in the -analyzer-checker-help list, and you should be able to enable it via
-analyzer-checker.

1.4. Further reading

Thequick introduction in this sectioncoversonly a very littlepart ofClangStatic Analyzer capabilities. There
are various ways of learning how to develop CSA checkers e�iciently.

Further sectionsof this guide shouldgiveyouan ideaofhowtheanalyzerworksandwhat sortof information
is available for the checkers to use, and cover various technologies and tricks involved in creating a checker.

However, while developing CSA checkers, you would also inevitably consult the o�icial LLVM1 and Clang2

documentation, whichcontainsexhaustive informationonclasses, functions, anddata structuresyouwould
regularly encounter.

CSA website contains a quick-start checker development manual3. We also cannot avoid mentioning a
highly recommended presentation video by CSA developers “Building a Checker in 24 hours”4, which de-
scribes how a slightly more complicated path-sensitive checker works.

1http://llvm.org/doxygen
2http://clang.llvm.org/doxygen
3http://clang-analyzer.llvm.org/checker_dev_manual.html
4http://llvm.org/devmtg/2012-11/videos/Zaks-Rose-Checker24Hours.mp4

12

http://llvm.org/doxygen
http://clang.llvm.org/doxygen
http://clang-analyzer.llvm.org/checker_dev_manual.html
http://llvm.org/devmtg/2012-11/videos/Zaks-Rose-Checker24Hours.mp4


2. Kinds of analyses and program representations

The first decision you usually need tomakewhen you create a checker is whether you need path-sensitivity
to implement the desired check. Alternatively, you may implement your check by exploring the of the pro-
gram on syntax level.

Path-sensitive analysis is usually many times slower than compilation. However, most of the time is taken
by the analyzer core to construct the necessary data structures; the checkers are usually lightweight, unless
some extremely heavy calculations were explicitly required. So if you are already running at least one path-
sensitive checker, then adding another path-sensitive checker would not make the analysis significantly
slower.

On the contrary, syntax-only analysis is usually as fast as compilation, or even faster, because code gen-
eration doesn’t take place. However, syntax-level analysis does not gather enough information for most
checks.

The easiestway to understand howdi�erent kinds of analyses compare to each other is to see howprogram
is represented from the point of view of each kind of analysis.

Asanexample, letusconstruct itsabstract syntax tree, control flowgraph, andpath-sensitiveexplodedgraph
for a simple function foo(...), which we put into a file called test.c for further reference:

1 void foo(int x) {
2 int y, z;
3 if (x == 0)
4 y = 5;
5 if (!x)
6 z = 6;
7 }

test.c

2.1. Abstract syntax tree

Clang abstract syntax tree (AST) is the structure produced by the compiler frontend and serves as the inter-
mediate representation of the program used by Clang. Binary code generation takes place based on AST.
Unlike AST of the GCC C/C++ compiler, Clang AST contains not only the minimal information necessary to
compile the program correctly, but also complete information about the program source code: each ele-
ment of the tree remembers its source locations and how exactly it was written in the source, even before
preprocessing took place. This makes the AST itself usable as the easiest framework for source-level analy-
sis.

Below is a command-line dump of the abstract syntax tree for test.c:
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~ $ clang -cc1 -ast -dump test.c
TranslationUnitDecl <<invalid sloc >> <invalid sloc >
‘-FunctionDecl <test.c:1:1, line :7:1> line :1:6 foo ’void (int)’

|-ParmVarDecl 0x3625c60 <col:10, col:14> col :14 used x ’int’
‘-CompoundStmt <col:17, line :7:1>

|-DeclStmt <line :2:3, col:11>
| |-VarDecl 0x3625de0 <col:3, col:7> col:7 used y ’int’
| ‘-VarDecl 0x3625e50 <col:3, col:10> col :10 used z ’int’
|-IfStmt <line :3:3, line :4:9>
| |-<<<NULL >>>
| |-BinaryOperator <line :3:7, col:12> ’int’ ’==’
| | |-ImplicitCastExpr <col:7> ’int’ <LValueToRValue >
| | | ‘-DeclRefExpr <col:7> ’int’ lvalue ParmVar 0x3625c60 ’x’ ’int’
| | ‘-IntegerLiteral <col:12> ’int’ 0
| |-BinaryOperator <line :4:5, col:9> ’int’ ’=’
| | |-DeclRefExpr <col:5> ’int’ lvalue Var 0x3625de0 ’y’ ’int’
| | ‘-IntegerLiteral <col:9> ’int’ 5
| ‘-<<<NULL >>>
‘-IfStmt <line :5:3, line :6:9>

|-<<<NULL >>>
|-UnaryOperator <line :5:7, col:8> ’int’ prefix ’!’
| ‘-ImplicitCastExpr <col:8> ’int’ <LValueToRValue >
| ‘-DeclRefExpr <col:8> ’int’ lvalue ParmVar 0x3625c60 ’x’ ’int ’
|-BinaryOperator <line :6:5, col:9> ’int’ ’=’
| |-DeclRefExpr <col:5> ’int’ lvalue Var 0x3625e50 ’z’ ’int’
| ‘-IntegerLiteral <col:9> ’int’ 6
‘-<<<NULL >>>

Reading the AST is similar to reading the original program, annotated to display the semantics that weren’t
necessarily instantly obvious from the raw source code. For instance, youmayunderstand that variablexon
line 3, on which the if statement argument depends, is actually a parameter of foo(...), while variable y
referenced on line 4 is a local variable declared on line 2 together with z.

However, while constructing the AST, the compiler does not try to understand and model what exactly is
going on in the program. It does not construct di�erent execution paths through the branch statements, or
try to predict how di�erent branches interact.

Thebest thing youcandowithAST is todetect unwanted codepatterns. For example, youmaywant toavoid
C-style casts in your C++ project, you can easily create an AST-based checker that warns on all C-style casts.
A bit more complicated example would be ensuring that return value of some function is always checked
for error.

The security.InsecureAPI family of checkersmay serve as a good example of AST-based checkers in the
default distribution of CSA.

However, if you try to catch, say, divisions by zerowith an AST-based checker, even if itmight be easy to find
codepatterns like “y = x / 0”, but it would bemuchharder to find code like “z = 0; ...; y = x / z;”.
For such checks, a more powerful approach is necessary.

2.2. Control flow graph

Clang control flow graph (CFG) is a representation, using graph notation, of all paths that may seem to be
possibly traversed through a programduring its execution. CFG is constructed separately for every function
body. Each node of the CFG represents a basic block of statements that do not contain any branch state-
ments, and are therefore executed sequentially. Each basic block ends with a terminator statement, which
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is a branch statement or a return from the function. Outgoing edges connect the basic block to other blocks
that may be reached depending on the run-time value of the terminator branch condition.

CSA provides an easy way of dumping the control flow graph:

~ $ clang -cc1 -analyze -analyzer -checker=debug.ViewCFG test.c
Writing ’/tmp/CFG -02 fc89.dot ’... done.
Running ’xdot.py ’ program ... done.

Figure 1 shows the control flow graph for test.c, simplified for easier reading.

[B5] (ENTRY) 

[B4] 
int y, z; 
if (x == 0) 

[B3] 
y = 5 

[B2] 
if (!x) 

[B1] 
z = 6 

[B0] (EXIT) 

Figure 1: Simplified control flow graph for test.c.

CFG-based analysis is useful for creating safe checks, for which it is necessary to consider all possible pro-
gram paths. For example, if you want to ensure that a certain branch condition always evaluates to false,
and thus the code below it is “dead”, then you’d probably have no choice but to reach definitions of all vari-
ables referenced inside the condition expression, and CFG would be the right tool for such analysis.

The CFG is constructed relatively easily from the AST. However, CFG-based analysis is o�en di�icult to im-
plement, because CFG does not instantly provide the data flow analysis; additional coding is required to
achieve that. Clang framework provides some ready-made CFG-based solutions for checkers “out of the
box”, such as LivenessAnalysis.

The deadcode.DeadStores checker is a good example of a CFG-based checker in the default distribution
of CSA.

Sometimes CFG-based analysis is used in combination with path-sensitive analysis, when path-sensitive
part of the checker is used to find a potential defect location, and later a CFG-based heuristic is imple-
mented in order to improve true positive rate by inspecting other paths to or from the defect. The o�icial
deadcode.UnreachableCode checker is an example of combining path-sensitive and CFG-based analysis.

However, an attentive reader would instantly find a flaw on Figure 1 that makes CFG-based analysis less
useful. By simply looking at the CFG, you would not be able to figure out that once true branch is taken in
basicblock[B4],truebranch is also inevitably taken inbasicblock[B2], andvice versa, becausebranching
conditions before these blocks are related. In fact, depending on the initial value of x, there are only two
ways of reaching the exit block [B0] from the entry block [B5]: the program either goes through both [B3]
and [B1], as soon as x == 0, or goes through none of themotherwise. This limitation significantly reduces
the e�iciency of CFG-based analysis.
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2.3. Exploded graph

CSA exploded graph is the basic data structure of the path-sensitive static analyzer engine. Analyzer core
tries to “interpret” the program code, and treats di�erent paths through the CFG, even if they pass through
same statements or basic blocks, separately, hence the term “exploded”. Exploded graph consists of all
paths through the CFG that were explored by the analyzer engine, and carries information regarding the
program state on each path in every statement. Nodes of the graph, referred to as exploded nodes, are pairs
composed of the state of the program and the program point currently being analyzed.

Youcandisplay thecompleteexplodedgraph for everyanalysispassby turningon the special checker called
debug.ViewExplodedGraph:

~ $ clang -cc1 -analyze -analyzer -checker=debug.ViewExplodedGraph test.c
Writing ’/tmp/ExprEngine -0528 e9.dot ’... done.
Running ’xdot.py ’ program ... done.

Exploded graphs are o�en very large. Exploded graph of test.c generated by CSA has over 50 nodes, and
is too large to include into this document. Still, figure 2 should give you a rough idea of how it essentially
looks.

Edge: (B5, B4) BinaryOperator: x == 0 
x: reg_$0<x> 

Edge: (B4, B3) 
Terminator condition: true 
x: reg_$0<x> 
reg_$0<x>: { [0, 0] } 

Edge: (B4, B2) 
Terminator condition: false 
x: reg_$0<x> 
reg_$0<x>: { [-2147483648, -1], [1, 2147483647] } 

BinaryOperator: y = 5 
x: reg_$0<x> 
y: 5 
reg_$0<x>: { [0, 0] } 

Edge: (B3, B2) Edge: (B2, B1) 

Edge: (B2, B0) 

BinaryOperator: z = 6 
x: reg_$0<x> 
z: 6 
reg_$0<x>: { [0, 0] } 

Edge: (B1, B0) 

Figure 2: Extremely simplified exploded graph for test.c.

Let us see how path-sensitive analysis goes on inside test.c. The analyzer starts with emulating the first
operation, namely the comparison operator x == 0. Because value of x is unknown at this point of the
analysis (and, in fact, will never be known), this value is represented as a symbol reg_$0<x>. This symbol is
to be understood as “the value stored at thememory region of parameter variable x at the beginning of the
analysis”.

Once the comparison statement is emulated, we reach the terminator of our CFG, namely, the if statement.
Dependingon the terminator condition,we jump to another CFGblock, either[B3]or[B2]. Becauseweare
unsurewhatbranchwe take,we split the explodedgraph into the twopossible paths. Oneachpath, thenew
node is created by assuming that symbol reg_$0<x> takes values from a certain range: on the true branch,
it is assumed to be an integer in range [0, 0] (actually, equal to 0), and on the false branch, it is assumed to
belong to [−21417483648,−1] ∪ [1, 21417483647]. The range assumed on the symbols would stay inside all
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nodes branching o� the current node unless the symbol itself is no longer referenced anywhere in the node
and gets garbage-collected.

On [B3], we execute an assignment operator y = 5. This is instantly represented in the node as a binding:
the value of variable y is a concrete (non-symbolic) value 5. Thenwe jump to [B2] anyway. However, we are
reaching [B2] in a di�erent state, hence it is represented by a di�erent node in the exploded graph.

Now, upon reaching [B2], note how we no longer assume anything or try to guess what branch we take
from there. Because range of symbol reg_$0<x> is still stored inside the node, we already know the truth
value of !x.

On the true branch, assignment z = 6 is executed. Note how the binding y = 5 is no longer present in the
program state: it was garbage-collected because variable y is no longer referenced in further code. Finally,
all branches reach the end block [B0], and the analysis stops.

Information stored in the exploded graph is exhaustive, and contains the best assumptions the analyzer
core canmake about the program execution. Moreover, unlike AST- and CFG-based analysis, path-sensitive
CSA checkers rarely read the exploded graph passively, but instead actively participate in its construction,
adding their own nodes, bindings, assumptions, leaving checker-specific marks, and splitting paths in the
exploded graph at their own will.

2.4. Further reading

Coding AST- or CFG-based checkers is discussed in detail in section 3. If you are interested in coding path-
sensitive checkers, jump directly to chapter 4; however, some knowledge of the Clang ASTmay still be use-
ful. There is a highly recommended introduction to Clang AST available at the o�icial Clang website5.

5http://clang.llvm.org/docs/IntroductionToTheClangAST.html
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3. AST-based checkers

Many simple checks can be implemented by looking at the syntax tree of the program and catching un-
wanted code patterns. Checkers that do not make use of the CSA path-sensitive engine are fast and o�en
have good true positive rate, but are capable of catching only a very limited set of defects.

In this section we proceed to discuss two common technologies for creating syntax-only checkers: AST vis-
itors and AST matchers. Usually having a good command of one of these technologies is su�icient, but
sometimes youmay want to use both matchers and visitors in the same checker.

AST-based checks are not “the” strength of the Clang Static Analyzer — if you are using only AST-based in-
formation, then you could have done this check with any other Clang-based tool. In the o�icial Clang Static
Analyzer, there are a few AST-based checks, but normally AST-based checks go to the clang-tidy tool.

On the other hand, it is not uncommon to use AST-based checks from within the path-sensitive engine, so
that to have a better idea of the syntax behind the path-sensitive analysis events. So, even though in this
section we shall deliberately learn how towrite AST-only checks, exactly same techniquesmaymake it into
a path-sensitive checker, and it is useful to have a good command of them.

3.1. Path-insensitive checker callbacks

Path-sensitive engine of CSA starts working only as soon as at least one checker subscribes to a checker
callback that requires path-sensitive analysis to fire. If you are interested only in AST-based checkers, and
disable all path-sensitive checkers, the analysis would run significantly faster.

Because AST-based checkers do not participate in construction of the data structures they analyze, only a
fewAST-only callbacksaredefined. Themostuseful callbacks thatdonot instantly trigger thepath-sensitive
engine are check::EndOfTranslationUnit and check::ASTCodeBody.

3.1.1. check::EndOfTranslationUnit

void checkEndOfTranslationUnit(const TranslationUnitDecl *TU,
AnalysisManager &AM, BugReporter &BR) const;

In this callback, the complete AST of the program is available for analysis.

The entry point for visiting the AST— the declaration of the whole translation unit — is provided as the first
argument, TU. This callback is commonly usedwhen not only executable code, but also declarations needs
to be checked.

3.1.2. check::ASTCodeBody

void checkASTCodeBody(const Decl *D,
AnalysisManager &AM, BugReporter &BR) const;

In this callback, a declaration of a function, code body ofwhich the analyzerwould normally analyze, would
be provided on every call.
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Thebodyof the function thatneeds tobeanalyzed is availableasD->getBody(). This callback is convenient
when only executable code needs to be analyzed.

3.1.3. check::ASTDecl<T>

void checkASTDecl(const T *D, AnalysisManager &Mgr , BugReporter &BR) const;

This callback is called for all AST declarations of type T (for example, for all variables if T is VarDecl or for
all class fields if T is FieldDecl). This is o�en a convenient simple alternative for declaration visitors.

3.2. AST visitors

The AST visitor mechanism is the most flexible tool for exploring the Clang AST. Clang provides numerous
visitors for the AST, with similar syntax. For implementing checkers, two kinds of visitors are mostly useful:

— ConstStmtVisitor is widely used for checking code bodies, which is most o�en exactly what you
need,

— ConstDeclVisitor is sometimes used for checking declarations outside code bodies (such as global
variables).

In order to use a visitor, you need to inherit a class from it and implement visitor callbacks for di�erent
kinds of AST nodes. Whenever a callback is not implemented for a particular node, a callback for a more
generic node would be called anyway: so, for example, a CXXOperatorCallExprwould be visited in one of
the following callbacks:

— VisitCXXOperatorCallExpr(...),

— VisitCallExpr(...),

— VisitExpr(...),

— VisitStmt(...),

whichever turns out to be the first one to be defined.

3.2.1. Implementing a simple statement visitor

As an example, let us see if we can rewrite alpha.core.MainCallChecker described in section 1 as an AST
visitor. This checker would also serve as an example of using the check::ASTCodeBody callback.

First, let us declare an AST visitor. The visitor stores references to the BugReporter object in order to throw
path-insensitive reports, and also the current AnalysisDeclContext, which is required for producing di-
agnostic locations for bug reports. The latter also wraps the original function we are analyzing.
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namespace {
class WalkAST : public ConstStmtVisitor <WalkAST > {

BugReporter &BR;
AnalysisDeclContext *ADC;

void VisitChildren(const Stmt *S);

public:
WalkAST(BugReporter &Reporter , AnalysisDeclContext *Context)

: BR(Reporter), ADC(Context) {}
void VisitStmt(const Stmt *S);
void VisitCallExpr(const CallExpr *CE);

};
}

The visitor defines two public callbacks: VisitCallExpr(...) for special handling of function call expres-
sions, and VisitStmt(...) for visiting all other kinds of statements.

These callbacks have one thing in common: they need to visit sub-statements whenever they’re done visit-
ing their statement. This operation is o�en separated into a sub-function called VisitChildren(...):

void WalkAST :: VisitChildren(const Stmt *S) {
for (Stmt:: const_child_iterator I = S->child_begin (), E = S->child_end ();

I != E; ++I)
if (const Stmt *Child = *I)

Visit(Child);
}

Now, VisitStmt(...) doesn’t really need to do anything else:

void WalkAST :: VisitStmt(const Stmt *S) {
VisitChildren(S);

}

Most of the checker logic is stored in written out in VisitCallExpr(...). We obtain the function dec-
laration for the current call expression, take its identifier, and see if this identifier coincides with "main".
If it does, we throw a path-insensitive (“basic”) report. Note that unlike path-sensitive checkers, syntax-
only checkers do not have the convenient CheckerContext wrapper available, so they need to access the
BugReporter object directly, and also put some e�ort in obtaining the necessary source locations.

void WalkAST :: VisitCallExpr(const CallExpr *CE) {
if (const FunctionDecl *FD = CE ->getDirectCallee ())

if (const IdentifierInfo *II = FD ->getIdentifier ())
if (II->isStr("main")) {

SourceRange R = CE->getSourceRange ();
PathDiagnosticLocation ELoc =

PathDiagnosticLocation :: createBegin(CE, BR.getSourceManager (), ADC);
BR.EmitBasicReport(ADC ->getDecl(), "Call to main", "Example checker",

"Call to main", ELoc , R);
}

VisitChildren(CE);
}
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That’s it for the implementation of the visitor. Now we simply need to create it and give it some code to
visit. Since “all code” is a declaration rather than a statement, we subscribe on the check::ASTCodeBody
callback:

namespace {
class MainCallCheckerAST : public Checker <check:: ASTCodeBody > {
public:

void checkASTCodeBody(const Decl *D, AnalysisManager &AM,
BugReporter &B) const;

};
}

And implement the callback as follows:

void MainCallCheckerAST :: checkASTCodeBody(const Decl *D, AnalysisManager &AM ,
BugReporter &BR) const {

WalkAST Walker(BR , AM.getAnalysisDeclContext(D));
Walker.Visit(D->getBody ());

}

This way the visitor starts from the compound statement that represents the function body, and descends
into sub-statements.

Checker is now ready. However, on the example code from chapter 1 it is silent—we’re only detecting direct
calls now, not calls through function pointers, because only thatmuch is present in the AST.Wewouldwarn
on a simpler code though:

void foo() {
main(0, 0); // Call to main!

}

3.2.2. Merging statement and declaration visitors

Sometimes you’d like to intermix the two visitors together, in order to visit both statements and declara-
tions. In this case, you can inherit your visitor from both visitors:

class WalkAST : public ConstStmtVisitor <WalkAST >,
public ConstDeclVisitor <WalkAST > {

/* ... */

public:
using ConstStmtVisitor <WalkAST >:: Visit;
using ConstDeclVisitor <WalkAST >:: Visit;

/* ... */
};

3.3. ASTmatchers

ASTmatchers are thenewAPI for finding simple codepatterns in theClangAST. Theyallowwritingextremely
concise declarative definitions of such patterns — almost as short as describing them in words in a natural
language— and provide an interface for taking actions on every pattern found. Being preferable for simple
code patterns, for their simplicity and code readability, ASTmatchers are not as omnipotent as AST visitors.
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3.3.1. Implementing a simple ASTmatcher

As an example, let us see if we can rewrite alpha.core.MainCallChecker described in section 1 with the
help of ASTmatchers.

Recall that the checker needs to find calls to functions with the name "main". Knowing just that, we can
instantly write a matcher that finds such calls:

callExpr(callee(functionDecl(hasName("main")))). bind("call")

Whichmeans that complete checker logic now suits into a single line of code! All that remains is towrite out
the checker bureaucracy and throw the bug report. Note how the bind(...)matcher command assigns a
name to the AST node it is applied to, for future reference.

The first thing we need to define is the matcher callback. This callback would fire whenever the matcher
finds something. Matcher callbacks need to inherit from MatchFinder::MatchCallback and implement
the method called run(...):

namespace {
class Callback : public MatchFinder :: MatchCallback {

BugReporter &BR;
AnalysisDeclContext *ADC;

public:
void run(const MatchFinder :: MatchResult &Result );
Callback(BugReporter &Reporter , AnalysisDeclContext *Context)

: BR(Reporter), ADC(Context) {}
};
}

Ideally, the only thingmatch callback needs to do is throw the basic bug report. This is the case here. How-
ever, sometimesmatchers cannot cover thewhole checker logic, and it is natural to leave some final checks
to the callback.

void Callback ::run(const MatchFinder :: MatchResult &Result) {
const CallExpr *CE = Result.Nodes.getStmtAs <CallExpr >("call");
assert(CE);
SourceRange R = CE->getSourceRange ();
PathDiagnosticLocation ELoc =

PathDiagnosticLocation :: createBegin(CE, BR.getSourceManager (), ADC);
BR.EmitBasicReport(ADC ->getDecl(), "Call to main", "Example checker",

"Call to main", ELoc , R);
}

In the callback, we obtain the call expression by its name, "call", defined via bind(...). Looking at the
matcher, we are sure that such call expression is present, so we can assert that we have successfully ob-
tained the statement by name.
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Now it is time to define the checker. This time, let us try out the whole-translation-unit matching:

namespace {
class MainCallCheckerMatchers : public Checker <check :: EndOfTranslationUnit > {
public:

void checkEndOfTranslationUnit(const TranslationUnitDecl *TU,
AnalysisManager &AM, BugReporter &B) const;

};
}

Finally, in the checker callback, we need to construct our matcher and use it to find bugs:

void MainCallCheckerMatchers :: checkEndOfTranslationUnit(
const TranslationUnitDecl *TU, AnalysisManager &AM, BugReporter &B) const {

MatchFinder F;
Callback CB(B, AM.getAnalysisDeclContext(TU));
F.addMatcher(

stmt(hasDescendant(
callExpr(callee(functionDecl(hasName("main")))). bind("call"))),

&CB);
F.matchAST(AM.getASTContext ());

}

The matchAST(...)methodof MatchFinder lets itmatch thewhole AST of the translation unit. The check-
er is now done. The output is similar to the visitor version of the checker.

The ASTContext structure, which we obtained from the AnalysisManager, contains the whole AST of the
program, and also various meta-information regarding the AST, such as implementation-specific traits im-
posed during compilation.

3.3.2. Re-usingmatchers

If a certain sub-pattern repeats multiple times in your matcher, you can store and re-use it. In the example
below, matcher TypeM is stored and then re-used twice in two other matchers, which are in turn stored for
later use:

1 TypeMatcher TypeM = templateSpecializationType (). bind("type");
2 DeclarationMatcher VarDeclM = varDecl(hasType(TypeM )). bind("decl");
3 StatementMatcher TempObjM = temporaryObjectExpr(hasType(TypeM )). bind("stmt");
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3.3.3. Defining custommatchers

Sometimes combining the predefinedmatchers is not enough to implement the desired check. In this case,
it is o�en convenient to implement a custom AST matcher. Implementing AST matchers is a matter of a
few lines of code, andmany examples can be found in ASTMatchers.h. When implementing a custom AST
matcher inside the checker, you need to put it into clang::ast_matchers namespace. The example be-
low defines a customdeclarationmatcher thatmatches RecordDecl nodes that declare unions rather than
structures:

1 namespace clang {
2 namespace ast_matchers {
3
4 AST_MATCHER(RecordDecl , isUnion) {
5 return Node.isUnion ();
6 }
7
8 } // end namespace clang
9 } // end namespace ast_matchers

3.3.4. Matching particular statements

Aswementioned before, the matchAST(...)method of MatchFindermatches thewhole AST of the trans-
lation unit. Sometimes you want to match only a particular section of the AST. In this case, you can use the
match(...)method.

For instance, let us try to implement MainCallChecker using check::ASTCodeBody. Then we need to
match D->getBody()with the MatchFinder.

However, the semantics of match(...) is di�erent from semantics of matchAST(...): the former tries to
match the statement itself, the latter tries to match its sub-statements as well. So we need to modify our
matcher to make it look for sub-statements manually:

1 void MainCallCheckerMatchers :: checkASTCodeBody(const Decl *D,
2 AnalysisManager &AM,
3 BugReporter &BR) const {
4 MatchFinder F;
5 Callback CB(BR, AM.getAnalysisDeclContext(D));
6 F.addMatcher(
7 stmt(hasDescendant(
8 callExpr(callee(functionDecl(hasName("main")))). bind("call"))),
9 &CB);
10 F.matchAST (*(D->getBody ()), AM.getASTContext ());
11 }
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3.4. Constant folding

It is o�en not obvious from the AST of an expression that this expression actually represents a constant
value. This expression may contain casts and references to constant variables, and folding it to the actual
value is o�en non-trivial. There is a ready-made solution in Clang for this problem — just use the Expr’s
EvaluateAsInt(...)method:

const Expr *E = /* some AST expression you are interested in */
llvm:: APSInt Result;
if (E->EvaluateAsInt(Result , ACtx , Expr:: SE_AllowSideEffects )) {

/* we managed to obtain the value of the expression */
uint64_t IntResult = Result.getLimitedValue ();
/* ... */

} else {
/* the expression doesn ’t fold to into a constant value */

}

3.5. Further reading

An introduction to the Clang AST was given on LLVM developer meeting by Manuel Klimek; a video is avail-
able!6

A comprehensive ASTmatcher reference is available on the o�icial Clang website 7.

While writing AST-based checkers, youwouldmost likely want to consult the o�icial documentation for the
various AST nodes: statement nodes inheriting from Stmt8, declaration nodes inheriting from Decl9, and
type nodes inheriting from Type10.

6http://llvm.org/devmtg/2013-04/videos/klimek-vhres.mov
7http://clang.llvm.org/docs/LibASTMatchersReference.html
8http://clang.llvm.org/doxygen/classclang_1_1Stmt.html
9http://clang.llvm.org/doxygen/classclang_1_1Decl.html
10http://clang.llvm.org/doxygen/classclang_1_1Type.html
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4. Path-sensitive analysis

Clang Static Analyzer, by design, implements a static analysis method known as symbolic execution. This
method is based on abstract interpretation of the program, and assumes assigning symbolic values to pro-
gram variables, and splitting all possible states of the program into classes of states leading the program
across the same paths.

Classes of such programstates are o�endefined by range constraints imposed on symbolic values involved.
However, they may also be di�erent in other ways, or even contain checker-specific di�erences.

The analyzer also implements a memory model that allows remembering concrete and symbolic values of
particularmemory regions and accessing them at any time during analysis.

The path-sensitive engine of CSA supports interprocedural analysis. Thismeans that whenever the analyzer
encounters a function call, it tries to model the call and descend into sub-function to continue analysis.

4.1. Obtaining information from the program state

The ProgramState is one of the basic structures in path-sensitive analysis. It holds complete information
on a momentary state of the program under analysis. By looking into the program state, you can obtain
symbolic values of variables stored inmemory regions and expressions defined in the current location con-
text.

ProgramState is immutable. Once a ProgramState object was created, you cannotmodify it; you can only
create a new ProgramState object that di�ers from the original ProgramState in a certain sense. Also, you
never have to access ProgramState objects directly, or manage their lifetime manually; they are always
wrapped into reference-counting smart pointers called ProgramStateRef.

Inmost path-sensitive checker callbacks, you have a CheckerContext object available. One thing it carries
is the current program state, which you can easily obtain, for example:

void checkEndFunction(CheckerContext &C) const {
ProgramStateRef State = C.getState ();
/* ... */

}

Program state consists of the following traits of the program:

— “Environment”: symbolic values of active expressions;

— “Region Store”: symbolic values of memory regions;

— “Range Constraints”: ranges that symbolic values may take;

— “Taint”: a registry of symbolic values obtained from insecure sources;

— “Generic Data Map”: checker-specific information.
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4.1.1. Obtaining values of expressions

The analyzer remembers symbolic values for all expressions it currently needs. Whenever an expression
leaves the current context, it is garbage-collected and no longer available. The mapping from expressions
to their symbolic values is called the environment. You can always obtain the value of an expression if it is
available in the environment:

const Expr *E = /* some AST expression you are interested in */;
const LocationContext *LC = C.getLocationContext ();
SVal Val = State ->getSVal(E, LC);

If expression E is available in the environment, Val would be its symbolic value. If E is not in the current
environment, an UnknownValwould be returned. The environment would not try to compute the value for
any AST expression; itwould only return the value if it is already there. A few things you can surely find in the
environment include values of sub-expressions before analyzing the whole expression, and also the value
of any expression right a�er it was analyzed, which is enough for most practical purposes.

4.1.2. A brief introduction tomemory regions

Memory regions are symbolic l-values. They may appear during analysis by obtaining symbolic values of
pointers:

const Expr *E = /* an pointer expression */;
const MemRegion *Reg = State ->getSVal(E, LC). getAsRegion ();

Memory regions can also be obtained directly with declarations of variables:

const VarDecl *D = /* a declaration of a variable */;
const MemRegion *Reg = State ->getLValue(D, LC). getAsRegion ();

In both cases, getAsRegion() would return a null pointer if the value obtained does not represent any
memory region.

Memory regions can contain symbolic values inside them; obtaining such valuesmay be though of as deref-
erencing memory regions as pointers. The mechanism for dereferencing memory regions is called the re-
gion store. Each ProgramState contains an instance of the store, which carries known bindings of symbolic
values to memory regions.

Obtaining the region binding from the program state is as simple as:

SVal Val = State ->getSVal(Reg);

Unlike the environment, the region store tries toproduce a sensible binding even if there is nodirect binding
already available in the current store. In such cases, it would construct and return a symbol representing
the unknown value of the region. This means that you can always rely on getSVal(const MemRegion *)
to produce a sensible symbolic value.
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4.1.3. Iterating over region store bindings

Themost common operation you usually use the region store for is obtaining bindings for particular mem-
ory regions. However, sometimes youmaywant to list (or, generally speaking, iterate over) all explicit bind-
ings in the store. In the StoreManager class, whichmaintains ownership of the region store instances, there
is a mechanism for iterating over bindings in a particular program state, known as the BindingsHandler.

In order to use BindingsHandler, you need to inherit from it:

class Callback : public StoreManager :: BindingsHandler {
public:

bool HandleBinding(StoreManager &SM , Store St,
const MemRegion *Region , SVal Val) {

/* ... */
}

};

The callback should return falsewhenever it needs to stop iterating. Once the callback is defined, you can
start iterating:

Callback CB;
StoreManager &SM = C.getStoreManager ();
SM.iterBindings(State ->getStore(), CB);

4.1.4. Assumptions on symbolic values

With a program state, you can take any symbolic value and assume a boolean condition on it: whether this
value would represent a boolean true or a boolean false. In order to test an assumption, the value needs
to be either defined or unknown; undefined values cannot be tested. Once you are sure that the value is not
undefined, you can use the assume(...)method of the program state:

SVal Val = /* a certain symbolic value */;
Optional <DefinedOrUnknownSVal > DVal = Val.getAs <DefinedOrUnknownSVal >();
if (!DVal)

return;
if (State ->assume (*DVal , true)) {

/* things to do if Val can possibly be true */
}
if (State ->assume (*DVal , false)) {

/* things to do if Val can possibly be false */
}

Note that both statements can actually fire, if the value is not known to be certainly true or certainly false.
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4.1.5. Operations on symbolic values

Suppose you have symbolic values A and B, and you want to assume that A is greater than B. In order to
do that, you need to represent “A > B” as a new symbolic value C (of boolean type). You can create new
symbolic values with a special class called SValBuilder:

SVal A = /* a certain symbolic value */;
SVal B = /* the other symbolic value */;
ASTContext &ACtx = C.getASTContext ();
SValBuilder &SVB = C.getSValBuilder ();
SVal C = SVB.evalBinOp(State , BO_GT , A, B, ACtx.BoolTy );

4.1.6. Using the taint analysis

A symbolic value is said to be tainted if it is known to have been obtained from an untrusted source, such
as by reading standard input or file descriptor, or from environment variables. Taint analysis is an e�icient
method for finding security defects, such as SQL injections, based on detecting usage of tainted values in
sensitive function calls.

You can always find out if a certain symbolic value is tainted in a certain program state:

ProgramStateRef State = C.getState ();
SVal Val = /* a certain symbolic value */;
if (State ->isTainted(Val)) {

/* ... */
}

Most of the taint information originates from default built-in CSA checkers, most notably from the checker
called alpha.security.taint.TaintPropagation. On defining your own sources of taint for your check-
er and otherwise expanding taint analysis, see 4.2.4.

4.2. Mutating and splitting the program state

Path-sensitive checkers not only observe the symbolic execution of the program by the analyzer core, but
also actively participate inmodeling the programbehavior. A checkermay add its own traits to the program
state, modify region store bindings or range constraints, or split the state, implying that a certain operation
may havemultiple distinct results that would eventually make the program take di�erent execution paths.

Note that splittingprogramstates shouldbedonewith care. Eachprogramstate split e�ectively doubles the
amount of work the analyzer needs to perform for the rest of the current ExplodedGraph sub-tree. A large
enough amount of splits can quickly degrade the analysis speed.

4.2.1. Adding transitions to the exploded graph

As explained in subsection 2.3, the path-sensitive analyzer engine represents the flow of the analysis in the
formofagraph, called theexplodedgraphof theanalysis. Nodesof this graph, knownas theexplodednodes,
are defined as ordered pairs that consist of a programpoint (a single element of the CFG is representedwith
one program point, or more than one if technically necessary), and a program state. Each statement of the
program brings us from one existing node to another newly created node, or probably into multiple other
nodes, if there are multiple things that may happen in this statement.
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In fact, the exploded graph is not necessarily a tree; it may contain cycles, whenever the program reaches
the same program point with the same program state; in this case the analysis of the branch e�ectively
stops, most likely indicating an infinite loop (or, more likely, a bug in one of the checkers).

You cannot modify existing nodes, program points, or program states; they are immutable. What you can
do, however, is produce a new program state or a new auxiliary program point (or both), and make use of
the CheckerContext object to add a transition to this new state or new point.

Code that changes a single aspect of a program state usually looks as:

ProgramStateRef State = C.getState ();
State = modifyState(State); // do stuff
C.addTransition(State );

If youwant to add parallel transitions tomultiple alternative nodes, youwould probably do something like:

ProgramStateRef State = C.getState ();
ProgramStateRef State1 = modifyState1(State); // do stuff
ProgramStateRef State2 = modifyState2(State); // do other stuff
C.addTransition(State1 );
C.addTransition(State2 );

Sometimes you want to make a single sequence of transitions, rather than multiple parallel independent
branches. In this case, you can use the overriddenmethod that accepts a predecessor node:

ProgramStateRef State = C.getState ();
State = modifyState1(State); // do stuff
ExplodedNode *N = C.addTransition(State);
State = modifyState2(State , N); // do other stuff
C.addTransition(State2 , N);

Transitions added in these three code snippets are visualized as the respective graphs on figure 3.

Original exploded node: 
C.getPredecessor() 

Exploded node 
after modifyState1() 

Exploded node 
after modifyState2() 

Original exploded node: 
C.getPredecessor() 

Exploded node 
after modifyState1() 

Exploded node 
after modifyState2() 

Original exploded node: 
C.getPredecessor() 

Exploded node 
after modifyState() 

Figure 3: Adding transitions to the exploded graph.

Now let us discuss di�erent mechanisms of mutating the program state available for use in the checkers.

4.2.2. Splitting the state on range constraint assumptions

The assume(...)method of ProgramState discussed in 4.1.4 operates by returning a new program state
with the assumption imposed, or a null ProgramStateRef if the assumption cannot be satisfied (because
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it contradicts other assumptions already imposed). Thus, what you can do is not only cast it to bool to see
if the assumption can be satisfied, but also transition to the newly created state.

For example, if your checker needs to inform the analyzer that a certain function cannot return 0, you can
assume its symbolic return value to be non-zero, and add a transition to the assumed state on post-call of
this function:

SVal Val = Call.getReturnValue ();
Optional <DefinedOrUnknownSVal > DVal = Val.getAs <DefinedOrUnknownSVal ();
if (!DVal)

return;
ProgramStateRef State = C.getState ();
State = State ->assume (*DVal , true);
C.addTransition(State );

A�er such transition, the analyzerwould know that this value is non-zero on thewhole remaining execution
path.

Sometimes you may want to add parallel transitions to both true and false branches. What is it good
for? In fact. the whole idea of symbolic execution is about splitting states. This way you do the same thing
that an analyzer does on encountering an if statement: instead of considering a single branch on which
nothing is known about the symbol, you consider two branches, on each of which something is known. It
means that if a checker, in order to report its defect, needs to know exactly that, say, the value is zero, the
checker would be able to find such defect on one of the branches. Without a state split, such checker would
stay silent, being unable to find a program path on which the defect is certain to exist.

4.2.3. Creating region store bindings

Sometimes you may want to modify the program state by binding a symbolic value to a location. A typical
use case would be to manually emulate a function call that the analyzer is unable to model; for example,
source codeof a certain function is not available, but you can still put your understanding of its specification
into the checker and try to emulate its behavior. And then, if you know that the function would write a
certain symbolic value into a certain location, you can tell the checker to model it:

ProgramStateRef State = C.getState ();
SVal Loc = /* Obtain a location */;
SVal Val = /* Obtain a value */;
State = State ->bindLoc(Loc , Val);
C.addTransition(State );

4.2.4. Expanding the taint analysis

In order to make taint analysis e�icient, the analyzer needs to know which events produce tainted values,
and how taint propagates through di�erent events to other symbolic values. Both of these tasks can be
extended with the help of checkers.

In order to add sources of taint, subscribe to any checker callback suitable for catching the desired event,
and use the addTaint(...) method of the ProgramState. This method has three overrides, that allow
adding taint to di�erent kind of symbolic values.
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Adding taint on expressions in the current environment:

LocationContext *LC = C.getLocationContext ();
ProgramStateRef State = C.getState ();
const Expr *E = /* Obtain an expression value of which is untrusted */;
ProgramStateRef NewState = State ->addTaint(E, LC);
if (NewState != State) // avoid loops in the exploded graph

C.addTransition(NewState );

Tainting a numeric value:

ProgramStateRef State = C.getState ();
SVal V = /* Obtain a numeric symbol from an untrusted source */;
if (SymbolRef Sym = V.getAsSymbol ()) {

ProgramStateRef NewState = State ->addTaint(Sym);
if (NewState != State)

C.addTransition(NewState );
}

Adding taint to a pointer to an untrusted data:

ProgramStateRef State = C.getState ();
SVal V = /* Obtain a symbolic location from an untrusted source */;
ProgramStateRef NewState = State ->addTaint(V.getAsRegion ());
if (NewState != State)

C.addTransition(NewState );

Note that you cannotmark concrete values as tainted. For example, a symbolic value that represents 32-bit
signed integer “0”, cannot be marked as tainted; in fact, the analyzer doesn’t even discriminate between
di�erent instances of “0”.

By default, the if a certain symbolic value is marked as tainted, then results of arithmetic operations over it
are also marked as tainted. If a region is tainted, then all values derived from it are also tainted; however, if
anunrelated value iswritten into a tainted region, such value is of courseno longer considered tobe tainted.
Also, a region of an element of an array with a tainted symbolic element index is automatically tainted.

However, more complex things may happen to the tainted values. For example, it may be passed into a
function that returns another symbolic value, andprobably the function cannot bemodeledby the analyzer
core. In such cases, you need to implement taint propagation: catch the event through which you want the
taint to propagate, see if the relevant value is tainted, and then add the taint to the values youwant the taint
to propagate to.

As mentioned in 4.1.6, most common sources of taint and propagation methods are already defined in the
alpha.security.taint.TaintPropagation checker,whichalso containsmanyexamplesofworkingwith
taint. It is natural, however, for your checker toaddyourowndomain-specific taint sourcesandpropagation
methods.

See subsection 5.6 for which exactly kinds of symbolic values can carry taint, and why.

4.2.5. Using program state traits

Checkers are allowed to add their own custom traits to theprogramstate. These traits are stored in a special
structure inside the program state, known as the generic data map (GDM).
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One of the primary use cases for custom program traits is detecting errors that are defined as sequences of
events rather than one-time events. One of the very obvious examples of such errors is “double-free” kind
of errors, which arises when object is destroyed twice, but every single destruction of an object is not yet an
defect. In order to create a checker that handles such cases, the common practice is to create a map from
symbolic identifiers of objects to their state as seen by the checker (unknown, live, deleted), and store such
mapwithin the GDM. Then, the check that would ultimately report the error would be defined as “an object
is being destroyed in a program state in which it is marked as deleted”.

A typical mistake made by inexperienced authors of CSA checkers is to store such map as a field inside the
checker class. This is the very reasonwhy all checker callbacks are const-qualified functions: there are very
few cases when you need to store anything in the checker state, most of the time checkers are stateless.
Along the analysis, it is natural for the engine to jump from one branch to another. However, for example, if
an object is marked as deleted on one of the program execution branches, it doesn’t mean it is deleted on
other branches. Which means that member variables of the checker, which are the same for all branches,
are not the suitable place for storing information related to the program state; only the program state itself
is.

Like the program state itself, GDM is immutable. Which is why, in order to store di�erent data structures in-
side theGDM, youneed to use LLVM immutable containers: llvm::ImmutableList, llvm::ImmutableSet,
llvm::ImmutableMap, otherwise performance would su�er significantly, as the program state is copied
many times during the analysis.

In order to inject a new trait into the programstate, youneed to use oneof the four predefinedmacros in the
global scope of your checker code (not inside the namespace, and not in a place accessible from multiple
Clang translation units).

REGISTER_TRAIT_WITH_PROGRAMSTATE(TraitName , Type)

Makes theprogramstate carry a trait of type Type. You can access the trait andobtain its value in the current
state by calling State->get<TraitName>(), or obtain a new state with a modified trait value by calling
State->set<TraitName>(NewValue). Also, TraitNameTy is now a synonym for Type.

REGISTER_LIST_WITH_PROGRAMSTATE(ListName , ElementType)

Makes the program state carry a trait of type ListNameTy, which is an LLVM immutable list of elements of
type ElementType. Apart from working with the whole list via get<>() and set<>(), you can also eas-
ily append items by calling State->add<ListName>(NewItem), or scan the list for items by calling the
State->contains<ListName>(Item)method template.

REGISTER_SET_WITH_PROGRAMSTATE(SetName , ElementType)

Makes the program state carry a trait of type SetNameTy, which is an LLVM immutable set of elements of
type ElementType. The set trait supports add<>() and contains<>() similarly to the list trait, and you can
also remove items from the set (which is too heavy of an operation for an immutable list) and obtain a new
program state with these items removed from the set by calling State->remove<SetName>(Element).
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REGISTER_MAP_WITH_PROGRAMSTATE(MapName , KeyType , ValueType)

Makes the program state carry a trait of type MapNameTy, which is an LLVM immutable map from objects
of type KeyType to objects of type ValueType. This trait supports remove<>() by key, it doesn’t support
add<>(), and also set<>() and get<>() are conveniently overridden: the State->get<MapName>(Key)
method looks-up the value for the key Key, and you can also call the State->set<MapName>(Key, Value)
method to obtain a new program state with value for Key set to Value.

If any of the Type, ElementType, KeyType, ValueType in these macros is not an integral type, eg. int or
bool, or a pointer type, then there are certain compile-time requirements imposed on these types, neces-
sary for them to qualify as elements of an immutable container. Most importantly, they need to provide a
Profile(...)method, which allows to use them as LLVM folding-set nodes.

For example, you cannot easily put an std::string, or even an llvm::StringRef, into an immutable con-
tainer. You canmake a simple wrapper though:

class StringWrapper {
const std:: string Str;

public:
StringWrapper(const std:: string &S) : Str(S) {}
const std:: string &get() const { return Str; }
void Profile(llvm:: FoldingSetNodeID &ID) const {

ID.AddString(Str);
}
bool operator ==( const StringWrapper &RHS) const { return Str == RHS.Str; }
bool operator <( const StringWrapper &RHS) const { return Str < RHS.Str; }

};

Usage example:

REGISTER_SET_WITH_PROGRAMSTATE(MyStringSet , StringWrapper)

void MyChecker :: checkPreCall(const CallEvent &Call , CheckerContext &C) {
ProgramStateRef State = C.getState ();
if (const IdentifierInfo *II = Call.getCalleeIdentifier ()) {

std:: string Str = II ->getName ();
State = State ->add <MyStringSet >( StringWrapper(Str ));
C.addTransition(State );

}
if (State ->contains <MyStringSet >( StringWrapper("main"))) {

/* ... */
}

}

Note that SVal object provides its own Profile(...) method. If you need to store a complex structure,
you can implement the Profile(...)method by profiling all its fields:

void MyStructure :: Profile(llvm:: FoldingSetNodeID &ID) const {
ID.AddPointer(Sym);
Val.Profile(ID);

}
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4.3. Path-sensitive checker callbacks

Path-sensitive checkers continuously interact with the analyzer core through numerous checker callbacks.
Di�erent callbacks fire on di�erent events that happen during analysis.

4.3.1. check::PreStmt<T>

void checkPreStmt(const T *S, CheckerContext &C) const;

A callback template defined for any AST statement class T, that fires every time the analyzer engine is about
toanalyze a statementof classT. In this callback, youcanobtain valuesof sub-statementsof the statementT
from the environment.

This callback does not get called on control flow statements (CFG terminators) like if. In order to check
such statements, subscribe to check::BranchCondition.

A typical usage example for this callback can be found in the core.DivideZero checker from the default
distribution of CSA:

1 void DivZeroChecker :: checkPreStmt(const BinaryOperator *B,
2 CheckerContext &C) const {
3 BinaryOperator :: Opcode Op = B->getOpcode ();
4 /* ... */
5 SVal Denom = C.getState()->getSVal(B->getRHS(), C.getLocationContext ());
6 /* ... */
7 }

This checker uses class BinaryOperator as template parameter T, e�ectively subscribing on receiving the
callback just before every binary operator the analyzer models. Then on line 3 it observes the binary oper-
ator’s AST to understand the which operation is being modeled, for it is only interested in divisions. Later,
on line 5, it obtains the symbolic value for the denominator from the environment.

4.3.2. check::PostStmt<T>

void checkPostStmt(const T *S, CheckerContext &C) const;

This callback template is similar to check::PreStmt<T>, and the only di�erence is that it fires a�er the
statement has been modeled. If S is an expression, this callback allows to obtain the symbolic value of S
itself; however, values of sub-expressions might have been already removed from the environment.

A good example of check::PostStmt<T> usage is available in the unix.Malloc checker from the default
distribution of CSA, which finds memory issues such as leaks or double-free crashes. This checker sub-
scribes on check::PostStmt<CXXNewExpr> in order to track symbolic values of pointers allocated with
every execution of operator new or new[].
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4.3.3. check::PreCall

void checkPreCall(const CallEvent &Call , CheckerContext &C) const;

This handy callback is simply a more convenient version of check::PreStmt<CallExpr>. It fires at exact
samemoment, before the call is executed, regardless ofwhether itwouldbehandledwith the interprocedu-
ral analysis engine or not. The di�erence is that in check::PreCall you possess the CallEvent structure
from which you can easily obtain symbolic values of the callee, all arguments, and the C++ implicit this
argument.

In this callback, it is common to try to figureoutwhat function is being called. Theeasiestway tounderstand
that is to obtain the name of the callee identifier and compare it with the given string. However, string
comparison is a heavy operation; it is much faster to store the identifier for the function we want, and then
compare identifier pointers.

We have already seen check::PreCall used in alpha.core.MainCallChecker. You can also find a usage
example for check::PreCall in alpha.unix.SimpleStreamChecker from the default distribution of CSA.

First, let us see how it obtains identifier pointers for faster function lookup:

1 void SimpleStreamChecker :: initIdentifierInfo(ASTContext &ACtx) const {
2 if (IIfclose)
3 return;
4 IIfclose = &ACtx.Idents.get("fclose");
5 }

The ASTContext.Identsmember variable is the identifier table of the translation unit. You can consult it
to find identifiers by string names, store them, and then use for faster lookup.

The implementation of the callback uses CallEvent to quickly check if the function being called is the func-
tion we are looking for. Then it obtains symbolic value for the argument andmakes checks over it:

1 void SimpleStreamChecker :: checkPreCall(const CallEvent &Call ,
2 CheckerContext &C) const {
3 initIdentifierInfo(C.getASTContext ());
4 if (!Call.isGlobalCFunction ())
5 return;
6 if (Call.getCalleeIdentifier () != IIfclose)
7 return;
8 if (Call.getNumArgs () != 1)
9 return;
10 SymbolRef FileDesc = Call.getArgSVal (0). getAsSymbol ();
11 /* ... */
12 }

4.3.4. check::PostCall

void checkPreCall(const CallEvent &Call , CheckerContext &C) const;

Similarly to check::PreCall, this is a shortcut callback for check::PostStmt<CallExpr>, in which the
CallEvent structure is available. It fires right a�er any function call. You can obtain the return value of the
call, which is already computed by now, as Call.getReturnValue().
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Usage tricks for this callback are quite similar to check::PreCall, and these callbacks are o�en used in
pairs. For example,alpha.unix.SimpleStreamCheckerusescheck::PreCall for handingfclose() calls
(where it needs to access the argument) and check::PostCall for fopen() (where it needs to access the
return value). Similarly, the unix.Malloc checker uses check::PreCall to track free() a�er catching
malloc() in the check::PostCall callback.

4.3.5. check::Location

void checkLocation(SVal L, bool IsLoad , const Stmt* S, CheckerContext &C) const;

This callback fires every time the program under analysis addresses a certain memory location, either for
reading a value from it, or for writing a value into it. Symbolic value L would be the l-value (most likely
a memory region) being checked, and the IsLoad flag is set whenever the access to L is read-only. Value
L is described with statement S; if you want to obtain the statement of the access, you’d need to look at
its parent statement, probably by using the ParentMap. Also, CheckerContext is available with its usual
functions.

Use this callback whenever you’re interested in validating the location rather than the value, that is, when-
ever accessing the location is “the” event you’re interested in. A good usage example is given in the o�icial
core.NullDereference checker, which subscribes to check::Location in order to detect undefined or
null-pointer location values.

1 void DereferenceChecker :: checkLocation(SVal L, bool IsLoad , const Stmt* S,
2 CheckerContext &C) const {
3 // Check for dereference of an undefined value.
4 if (L.isUndef ()) {
5 if (ExplodedNode *N = C.generateSink ()) {
6 /* ... */
7 }
8 return;
9 }
10 DefinedOrUnknownSVal Location = L.castAs <DefinedOrUnknownSVal >();
11 // Check for null dereferences.
12 if (! Location.getAs <Loc >())
13 return;
14 ProgramStateRef State = C.getState ();
15 ProgramStateRef NotNullState , NullState;
16 llvm::tie(NotNullState , NullState) = State ->assume(Location );
17 if (NullState) {
18 if (! NotNullState) {
19 /* ... */
20 }
21 /* ... */
22 }
23 /* ... */
24 }

In the code above, the checker implements a variety of tests in order to explore the nature of the location
value and produce di�erent kinds of warnings. You may see how it first detects undefined location values
(catches UndefinedVal), then tries to assume the location to be null or non-null in the current program
state and make decisions based on that. The checker also splits the program state in order to discriminate
between null and non-null locations if both variants are possible.
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4.3.6. check::Bind

void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;

This callback is somewhat similar to check::Location. It is called whenever a value is bound to a loca-
tion, and both the location and the value are available as symbolic values L and V respectively. Unlike
check::Location, check::Bind does not get called on loads from locations; it only gets called on writes,
when a region binding appears due to a write operation by the program.

For a substantive example of check::Bind, you can see the alpha.core.BoolAssignment checker, which
checks for assigning values other than 0 or 1 to bool-type variables.

1 void BoolAssignmentChecker :: checkBind(SVal L, SVal V, const Stmt *S,
2 CheckerContext &C) const {
3 // We are only interested in stores into Booleans.
4 const TypedValueRegion *TR =
5 dyn_cast_or_null <TypedValueRegion >(L.getAsRegion ());
6 if (!TR)
7 return;
8 QualType valTy = TR->getValueType ();
9 if (! isBooleanType(valTy ))
10 return;
11 Optional <DefinedSVal > DV = V.getAs <DefinedSVal >();
12 if (!DV)
13 return;
14 ProgramStateRef State = C.getState ();
15 SValBuilder &SVB = C.getSValBuilder ();
16 DefinedSVal ZeroVal = SVB.makeIntVal (0, valTy);
17 SVal GreaterThanOrEqualToZeroVal =
18 SVB.evalBinOp(State , BO_GE , *DV, ZeroVal , SVB.getConditionType ());
19 /* ... */
20 DefinedSVal OneVal = SVB.makeIntVal (1, valTy);
21 SVal LessThanEqToOneVal =
22 SVB.evalBinOp(State , BO_LE , *DV, OneVal , SVB.getConditionType ());
23 /* ... */
24 }

This checker first inspects the location in order to see if this location is of boolean type. Not every memory
region has a type; for example, any void pointer points to a certainmemory region, but the analyzer cannot
a�ordmaking assumptions about the type of values stored in such region. Region that contains values of an
explicitly known type is a sub-class of MemRegion known as TypedValueRegion. The checker aborts unless
the region pointed to by L certainly has a boolean type. For detailed discussion of various memory region
kinds, see subsection 5.2.

Then the checker proceeds to figure out if value V is equal to 0 or 1. For that, it creates symbolic comparison
values using SValBuilder, assumes them to be true or false, andmakes decisions based on these assump-
tions.
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4.3.7. check::EndAnalysis

void checkEndAnalysis(ExplodedGraph &G, BugReporter &BR , ExprEngine &Eng) const;

This callback fires once whenever the path-sensitive analyzer finishes analyzing a certain function code
body.

The analysis is reset (and check::EndAnalysis callback is called) whenever a function body is fully an-
alyzed. Thus, this callback may be called more than once during analysis of a single translation unit (or,
equivalently,more thanonceduringCheckerobject lifetime, or, equivalently,more thanonceduringclang
run).

This callback fires only once per function code body, rather than once for every branch of the function. This
is why CheckerContext is not available in this callback, and you cannot obtain the current ProgramState.
Instead, you have thewhole ExplodedGraph available. You also have access to the BugReporter for throw-
ing bug reports, and to the ExprEngine object, which is the unique instance of the analyzer engine.

check::EndAnalysis is useful whenever you want to gather statistics across the whole analysis run. One
of the extreme examples of using check::EndAnalysis is the deadcode.UnreachableCode checker:

1 void UnreachableCodeChecker :: checkEndAnalysis(ExplodedGraph &G,
2 BugReporter &BR,
3 ExprEngine &Eng) const {
4 /* ... */
5 if (Eng.hasWorkRemaining ())
6 return;
7 /* ... */
8 for (ExplodedGraph :: node_iterator I = G.nodes_begin (), E = G.nodes_end ();
9 I != E; ++I) {
10 /* ... */
11 }
12 /* ... */
13 }

This path-sensitive checker finds dead code by understanding which paths were executed during symbolic
execution of the function by the engine.

Sometimes the function would be dropped as too complicated; in this case, hasWorkRemaining() would
return true, and the checker would avoid jumping to conclusions. Then the checker proceeds by iterating
through the ExplodedGraph in order to find which CFG blocks were reached.

4.3.8. check::EndFunction

void checkEndFunction(CheckerContext &Ctx) const;

This callback fires every time the analyzer leaves the function body. Unlike check::EndAnalysis, it fires
for every possible return from the function, for every branch of the programexecution. Also, when interpro-
cedural analysis is enabled, this callback fires not only when the analysis ends, but also when an analysis
of an inlined function call ends.
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Consider an example:

1 void bar(int a, int b, int c) {
2 if (b) {}
3 foo(a);
4 if (c) {}
5 }
6
7 void foo(int a) {
8 if (a) {}
9 }

In this code, check::EndFunction fires twice when analyzing foo() in top frame, four times when ana-
lyzing foo() as called from bar(), and eight times when analyzing bar(), 14 times total. On the contrary,
check::EndAnalysis would be called once for foo() and once for bar(); it would not be called for the
pass through foo() from inside bar().

You o�en want to subscribe check::EndFunction when you want to find out what remains at the func-
tion context at the end of the analysis. One of the examples in the default Clang distribution is the o�icial
core.StackAddressEscape checker. This checker iterates through all region store bindings in order to find
pointers to local variables stored in global variables by the end of the function.

1 void StackAddrEscapeChecker :: checkEndFunction(CheckerContext &C) const {
2 class CallBack : public StoreManager :: BindingsHandler {
3 private:
4 CheckerContext &C;
5 const StackFrameContext *CurSFC;
6 public:
7 SmallVector <std::pair <const MemRegion*, const MemRegion*>, 10> V;
8 CallBack(CheckerContext &CC) :
9 C(CC),
10 CurSFC(CC.getLocationContext ()-> getCurrentStackFrame ())
11 {}
12 bool HandleBinding(StoreManager &SMgr , Store Store ,
13 const MemRegion *Region , SVal Val) {
14 if (!isa <GlobalsSpaceRegion >(Region ->getMemorySpace ()))
15 return true;
16 const MemRegion *VR = Val.getAsRegion ();
17 if (!VR)
18 return true;
19 /* ... */
20 if (const StackSpaceRegion *SSR =
21 dyn_cast <StackSpaceRegion >(VR->getMemorySpace ())) {
22 if (SSR ->getStackFrame () == CurSFC)
23 V.push_back(std:: make_pair(Region , VR));
24 }
25 return true;
26 }
27 };
28 ProgramStateRef State = C.getState ();
29 CallBack CB(C);
30 C.getStoreManager (). iterBindings(State ->getStore(), CB);
31 /* ... */
32 }

Note the usage of the StackFrameContext structure. By comparing the current stack frame with the stack
frame of the stack region, the checker understands whether the stack memory region belongs to the same

40



or to adi�erent stack frame. You almost always need to realize the current StackFrameContextwhenusing
the check::EndFunction callback.

4.3.9. check::BranchCondition

void checkBranchCondition(const Stmt *S, CheckerContext &C) const;

This callback gets called on every control flow branching that occurs during the analysis of the program.
Unlike the check::PreStmt and check::PostStmt callbacks, which fire for every statement in every CFG
basic block, check::BranchCondition fires for every CFG terminator instead. Such terminators may in-
clude if statements, conditional loops, or even short circuits in logical operations || and &&.

You want to subscribe to this callback whenever you want to figure out what the program uses to make
control flow decisions. For example, you may investigate the origin of the symbolic value of the condition,
which is available in the environment.

The o�icial core.uninitialized.Branch checker relies on this callback to find branch conditions that
depend on an undefined value:

1 void UndefBranchChecker :: checkBranchCondition(const Stmt *S,
2 CheckerContext &C) const {
3 SVal Val = C.getState()->getSVal(S, C.getLocationContext ());
4 if (Val.isUndef ()) {
5 /* ... */
6 }
7 /* ... */
8 }

4.3.10. check::LiveSymbols

void checkLiveSymbols(ProgramStateRef State , SymbolReaper &SR) const;

This callback allows the checker to manually manage garbage collection of range constraints for symbolic
expressions. The SymbolReaper object is responsible for garbage collection of symbols; you also have ac-
cess to the current program state in this callback.

Most of the time, unless you really know what you are doing, this callback is only useful formetadata sym-
bols. SymbolMetadata is a special kind of symbolic expression that is created andmanaged by the checker
itself, and this callback is necessary for managing the lifetime of such symbol.
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Forexample, thealpha.unix.cstring.OutOfBounds checker relieson this callback inorder tomarkmeta-
data symbols that represent string length as live:

1 void CStringChecker :: checkLiveSymbols(ProgramStateRef State ,
2 SymbolReaper &SR) const {
3 CStringLengthTy Entries = State ->get <CStringLength >();
4 for (CStringLengthTy :: iterator I = Entries.begin(), E = Entries.end();
5 I != E; ++I) {
6 SVal Len = I.getData ();
7 for (SymExpr :: symbol_iterator SI = Len.symbol_begin (),
8 SE = Len.symbol_end (); SI != SE; ++SI)
9 SR.markInUse (*SI);
10 }
11 }

A symbol that represents string length is live whenever the string is the same: even though the memory
region that holds the string is the same, changing the value at the null terminator character to a non-null
character (or inserting a null character before it) would change the length of a C-style string, and the symbol
that represents the old length is no longer necessary and can be released for garbage-collection.

It doesn’t mean that the symbol would be instantly deleted; for instance, it would not be deleted as long as
it still is stored in another variable in the region store, even if released by the checker.

Metadata symbols would be discussed in detail in 5.5.5.

4.3.11. check::DeadSymbols

void checkDeadSymbols(SymbolReaper &SymReaper , CheckerContext &C) const;

This callback gets called when the symbol is garbage-collected, and check::LiveSymbols didn’t prevent
that.

On this callback, your checker is notified that this symbol would not be encountered again during further
analysis, and you can stop tracking it in your checker-specific data structures. Most likely this assumes re-
moving the symbol information from the GDM of the program state.

This also means that the value represented by the symbol is no longer stored anywhere in the program
under analysis; this value is lost forever. For example, if this symbol is a memory address allocated but not
freed during analysis, then death of such symbol is amemory leak: there’s no way for the program to free it
once the symbol dies.
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Consider alpha.unix.SimpleStreamChecker. It uses check::DeadSymbols to both clean up its GDM and
find file descriptor leaks:

1 void SimpleStreamChecker :: checkDeadSymbols(SymbolReaper &SymReaper ,
2 CheckerContext &C) const {
3 ProgramStateRef State = C.getState ();
4 SymbolVector LeakedStreams;
5 StreamMapTy TrackedStreams = State ->get <StreamMap >();
6 for (StreamMapTy :: iterator I = TrackedStreams.begin(),
7 E = TrackedStreams.end(); I != E; ++I) {
8 SymbolRef Sym = I->first;
9 bool IsSymDead = SymReaper.isDead(Sym);
10 if (isLeaked(Sym , I->second , IsSymDead , State ))
11 LeakedStreams.push_back(Sym);
12 if (IsSymDead)
13 State = State ->remove <StreamMap >(Sym);
14 }
15 ExplodedNode *N = C.addTransition(State);
16 reportLeaks(LeakedStreams , C, N);
17 }

4.3.12. check::RegionChanges

bool wantsRegionChangeUpdate(ProgramStateRef State) const;

ProgramStateRef checkRegionChanges(ProgramStateRef State ,
const InvalidatedSymbols *Invalidated ,
ArrayRef <const MemRegion *> ExplicitRegions ,
ArrayRef <const MemRegion *> Regions ,
const CallEvent *Call) const;

This pair of callbacks allows the checker tomonitor all changes in the region store. Unlike check::Bind and
check::Location, this callback also gets called on invalidation, providing the relevant information, such
as the optional call event.

As shown on figure 4, check::RegionChanges gets called much more o�en than check::Location or
check::Bind, ensuring exhaustivemonitoring of all changes in the store. This callback is also expensive to
call, because complete lists of changed symbols and regions are presented. This is why there is an auxiliary
callback wantsRegionChangeUpdate() that should be defined in order to optimize out thework necessary
for calling checkRegionChanges()when such work is not necessary.

For example, in the o�icial alpha.unix.cstring.OutOfBounds checker, wantsRegionChangeUpdate()
returns truewhenever the checker is tracking length of at least one C string:

1 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength , const MemRegion *, SVal)
2 /* ... */
3 bool CStringChecker :: wantsRegionChangeUpdate(ProgramStateRef State) const {
4 CStringLengthTy Entries = State ->get <CStringLength >();
5 return !Entries.isEmpty ();
6 }

The checker then proceedswith iterating over the Regions array in order to remove entries for string length
for the changed regions and its sub-regions and super-regions.
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Event check::Location check::Bind check::RegionChanges

1 Load from a variable D

2 Assignment operators D D D

3 Initializations D D

4 Temporary value creation D

5 Default bindings D

6 Garbage collection of bindings D

7 Invalidation D

Figure 4: Comparison of the three region store-related callbacks.

1 ProgramStateRef
2 CStringChecker :: checkRegionChanges(ProgramStateRef State ,
3 const InvalidatedSymbols *Invalidated ,
4 ArrayRef <const MemRegion *> ExplicitRegions ,
5 ArrayRef <const MemRegion *> Regions ,
6 const CallEvent *Call) const {
7 llvm:: SmallPtrSet <const MemRegion *, 8> InvalidatedRegions;
8 llvm:: SmallPtrSet <const MemRegion *, 32> SuperRegions;
9 for (ArrayRef <const MemRegion *>:: iterator
10 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
11 const MemRegion *MR = *I;
12 InvalidatedRegions.insert(MR);
13 SuperRegions.insert(MR);
14 while (const SubRegion *SR = dyn_cast <SubRegion >(MR)) {
15 MR = SR->getSuperRegion ();
16 SuperRegions.insert(MR);
17 }
18 }
19 CStringLengthTy :: Factory &F = State ->get_context <CStringLength >();
20 for (CStringLengthTy :: iterator I = Entries.begin(),
21 E = Entries.end(); I != E; ++I) {
22 const MemRegion *MR = I.getKey ();
23 if (SuperRegions.count(MR)) {
24 Entries = F.remove(Entries , MR);
25 continue;
26 }
27 const MemRegion *Super = MR;
28 while (const SubRegion *SR = dyn_cast <SubRegion >(Super )) {
29 Super = SR->getSuperRegion ();
30 if (InvalidatedRegions.count(Super)) {
31 Entries = F.remove(Entries , MR);
32 break;
33 }
34 }
35 }
36 return State ->set <CStringLength >( Entries );
37 }
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For better performance, super-regions of invalidated regions are stored in an llvm::SmallPtrSet, which
is of course problematic with sub-regions. Also note how the checker avoids creatingmultiple intermediate
program states for each region removal, working on the immutable map directly.

4.3.13. check::PointerEscape

ProgramStateRef checkPointerEscape(ProgramStateRef State ,
const InvalidatedSymbols &Escaped ,
const CallEvent *Call ,
PointerEscapeKind Kind) const;

Whenever a pointer value is assigned to a global variable, or passed into a function that the analyzer cannot
model, the pointer is said to “escape”. Such pointer cannot be reliably tracked any longer. When a pointer
escapes, check::PointerEscape is called in order to notify the checkers for escape of pointers they were
interested in.

If the pointer escape occurs during invalidation, information on the call event is provided.

Similarly to how check::DeadSymbols can be used for detecting resource leaks, check::PointerEscape
canbeused for eliminating falsepositives in suchchecks: anescapedpointer couldhavebeen freedwithout
us knowing, or value beyond it may have been changed.

In alpha.unix.SimpleStreamChecker, this callback is used for finding escaped file descriptors:

1 ProgramStateRef
2 SimpleStreamChecker :: checkPointerEscape(ProgramStateRef State ,
3 const InvalidatedSymbols &Escaped ,
4 const CallEvent *Call ,
5 PointerEscapeKind Kind) const {
6 if (Kind == PSK_DirectEscapeOnCall && guaranteedNotToCloseFile (*Call)) {
7 return State;
8 }
9 for (InvalidatedSymbols :: const_iterator I = Escaped.begin(),
10 E = Escaped.end();
11 I != E; ++I) {
12 SymbolRef Sym = *I;
13 State = State ->remove <StreamMap >(Sym);
14 }
15 return State;
16 }

On line 6, a custom check is performed to avoid considering escapes on certain expected kinds of invalida-
tion events — in order to heuristically determine if the function is of interest.

4.3.14. eval::Assume

ProgramStateRef evalAssume(ProgramStateRef State , SVal Cond ,
bool Assumption) const;

This callback fires every timeanew range constraint appears in theprogramstate. With this callback, check-
ers can be notified on new constraints imposed over symbols they store internally, or let themhelp the ana-
lyzerwith “evaluating” the assumption, togetherwith the constraintmanager,modifying theprogramstate.
However, before using this callback, see if check::BranchConditionmay be enough for your purposes.
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For example, the unix.Malloc uses this callback to find if any of the symbols pointing to allocatedmemory
were constrained to a null-pointer value. As soon as the symbol disintegrates into a concrete value, it is
pointless to track such symbol any longer:

1 ProgramStateRef MallocChecker :: evalAssume(ProgramStateRef State , SVal Cond ,
2 bool Assumption) const {
3 RegionStateTy RS = State ->get <RegionState >();
4 for (RegionStateTy :: iterator I = RS.begin(), E = RS.end (); I != E; ++I) {
5 ConstraintManager &CMgr = State ->getConstraintManager ();
6 ConditionTruthVal AllocFailed = CMgr.isNull(State , I.getKey ());
7 if (AllocFailed.isConstrainedTrue ())
8 State = State ->remove <RegionState >(I.getKey ());
9 }
10 /* ... */
11 return State;
12 }

4.3.15. eval::Call

bool evalCall(const CallExpr *CE , CheckerContext &C) const;

This checker callback allows the checkers to model a function call, overriding the usual interprocedural
analysismechanism. Itmaybeuseful formodeling domain-specific library functions, when the source code
of the function is not available for analysis.

The callback should return true if the checker has successfully modeled the function call, and false if the
checker would better rely on the analyzer core or on other checkers to evaluate this call.

Usage of this callback is discouraged because only one checker may evaluate any call event; if two or more
checkers, probably developed by di�erent people, accidentally evaluate the same function, behavior of the
analyzer is undefined. So, if possible, check::PreCall and check::PostCall should be considered, and
most of the time they are flexible enough to model e�ects of the call on the program state.

The o�icial core.builtin.BuiltinFunctions checker uses this callback in order to emulate behavior of
certain compiler built-in functions:

1 bool BuiltinFunctionChecker :: evalCall(const CallExpr *CE ,
2 CheckerContext &C) const {
3 const FunctionDecl *FD = C.getCalleeDecl(CE);
4 if (!FD)
5 return false;
6 ProgramStateRef State = C.getState ();
7 const LocationContext *LCtx = C.getLocationContext ();
8 switch (FD ->getBuiltinID ()) {
9 /* ... */
10 case Builtin :: BI__builtin_addressof: {
11 assert (CE ->arg_begin () != CE ->arg_end ());
12 SVal X = State ->getSVal (*(CE ->arg_begin ()), LCtx);
13 C.addTransition(State ->BindExpr(CE, LCtx , X));
14 return true;
15 }
16 /* ... */
17 }
18 /* ... */
19 }
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4.4. Implementing bug reporter visitors

Usually BugReporter does a fairly good job at explaining how exactly was the path-sensitive bug discov-
ered, displaying all events along the symbolic execution path to the user. Sometimes, however, you may
want it to mark and display additional events. For instance, when reporting a double-free bug, you may
want to let the user know when the first free occurred. In this case, you need to implement a bug reporter
visitor, which would walk through the bug report path, as a list of ExplodedNode’s, from start to end, and
inject path diagnostic pieces along the way.

The syntax for bug reporter visitors is as follows:

1 class MyVisitor : public BugReporterVisitorImpl <MyVisitor > {
2 void Profile(llvm:: FoldingSetNodeID &ID) const {
3 /* ... */
4 }
5 PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
6 const ExplodedNode *PrevN ,
7 BugReporterContext &BRC ,
8 BugReport &BR) {
9 /* ... */
10 if (const Stmt *S = /* Obtain a statement for diagnostic */) {
11 PathDiagnosticLocation Pos(S, BRC.getSourceManager (),
12 N->getLocationContext ());
13 return new PathDiagnosticEventPiece(Pos , "Message");
14 }
15 return NULL;
16 }
17 };

You need to implement the Profile(...)method because bug visitors would be stored in an LLVM folding
set of path diagnostic callbacks.

Then you need to implement VisitNode(...). It should identify the node of interest, construct a path
diagnostic for it and return it, or return a null pointer if the node should be skipped.

It is not uncommon to identify nodes by statements in their program points. In this case, the static helper
method getStmt(...) of PathDiagnosticLocation class should be useful:

const Stmt *S = PathDiagnosticLocation :: getStmt(N);

Note, however, that there are most likely multiple nodes corresponding to the same statement.

4.5. Understanding interprocedural analysis

Theway CSAmodels function calls is fairly straightforward and transparent formost checkers. The analyzer
normally handles function calls by inlining the callee code body, proceeding with execution of the callee
code right a�er its arguments were evaluated, and until a return occurs, then finally binding the return
value, if any, to the call expression in the environment and continue analysis of the caller.

If the source code of the function body is not available for the analyzer, it tries to evaluate the function
conservatively. As little as possible is assumed about the function during conservative evaluation, and an
invalidation of known information usually occurs.
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Additionally, CSA checkers may override the evaluation procedure for certain functions, by subscribing on
the eval::Call callback.

In order to implement certain checks, youmay need to understand certain peculiarities of both the inlining
procedure and the conservative evaluation procedure.

4.5.1. Conservative evaluation and invalidation

When both inlining and checker-side evaluation of the call fails, the analyzer falls back to conservative eval-
uation. Such evaluation is relatively simple, as nothing really gets evaluated. Instead, the analyzer needs to
drop all information that was formerly known andmight have become invalid. The process of erasing such
information is called invalidation.

Invalidation is mostly handled by the region store. The function may write unknown values to all locations
available to it, suchas global variablesor regions thatwerepassed into it as arguments. New, unconstrained
symbolic expressions of type SymbolConjured (this type of symbols is discussed in detail in 5.5.2) are cre-
ated in order to represent these values, and bound to the invalidated regions in the region store.

There are two checker callbacks that let you catch invalidation events in your checker and take action:

— check::PointerEscape lets you handle an event of a pointer symbol being passed into a conserva-
tively evaluated function.

— check::RegionChanges lets you observe the complete consequences of invalidation, including a list
of invalidated regions.

4.5.2. Inlining and stack frames

Inlining function calls is a heavy operation for the analyzer. Every function call needs to be modeled again
and again in every new context, and the context-specific exploded graph (which may have di�erent values
for variablesof thecontext, and lackbranchesunreachable in thecontext) of thecalleebecomesasub-graph
of the exploded graph of the current analysis.

There are multiple preconditions required for inlining to happen, including:

— Source code of the callee function body needs to be available;

— No checker should evaluate the function call via eval::Call;

— If the analysis of the callee reachesmaximum exploded node limit, the callee would never be inlined,
but evaluated conservatively instead;

— Even though recursion is supported, only a limited number of nested recursive calls would be exe-
cuted.

Whenever an analyzer inlines a function and descends into it, a new StackFrameContext is created. This
structure is a kind of LocationContext that describes the location of descending into a function during
interprocedural analysis. You can obtain the current stack frame via the getStackFrame()method of the
CheckerContext. Very o�en all you need to know is that if we are inside an inlined function or in top frame;
in this case, a convenient inTopFrame()method of the CheckerContext can be used.
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One of the common cases when you need to work with stack frames is the check::EndFunction checker
callback. This callback fires on every return from the function, however you need to see if it is the end of the
analysis or merely a pop from a stack frame.

Sometimes, you may want to rely on symbolic value hierarchy (see section 5) in your checker logic. Then,
you would know that the symbolic value that represents a function argument value would be a symbol of
type SymbolRegionValue for a region of type VarRegion for a decl of type ParmVarDecl. However, for
inlined calls, this is no longer true; for instance, the argument may be an arbitrary SVal, whichever was
passed to the function in the current caller context. So if you rely on such checks, you would most likely
need to code additional checks to understand the status of IPA in the current event.

4.6. Further reading

The method of symbolic execution was first defined in 1976 in an academic article by James C. King11. In
particular, it describes the idea of the program state, and how the analyzer splits possible program states
into equivalence classes.

The implementation of interprocedural analysis in CSA is based on awork by T. Reps, S. Horwitz, andM. Sa-
giv12.

11James C. King. Symbolic execution and program testing. In: Communications of the ACM, vol. 19. N7. pp. 385–394 (1976)
12Precise interprocedural dataflow analysis via graph reachability, T Reps, S Horwitz, andMSagiv, POPL ’95, http://portal.

acm.org/citation.cfm?id=199462
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5. The symbolic value hierarchy

Symbolic values are the notation CSA uses for describing known and unknown values it encounters during
symbolic execution of the program. CSA uses a very complex hierarchy of symbolic values.

The basic class for representing various symbolic values is the SVal class. It has various sub-classes which
represent di�erent kinds of symbolic values. There are also two auxiliary classes, MemRegion and SymExpr,
that specifically handle memory regions and symbolic expressions respectively.

Objects of SymExpr class are also o�en referred to as symbols, and represent unknown numeric values; if a
value is known during analysis, it is called a concrete value. MemRegion objects — “regions” — are used for
two purposes: as locations for region store bindings in the memory model of the analyzer, and in order to
represent pointer values.

The three classes are very much inter-connected. For example, regions may be “based on” symbols and
concrete values (for example, a region pointed to by a pointer symbol, or a region of an array element with
a knownorunknown index), symbolsmaybe “basedon” regions (for example, a symbol definedas an initial
value of a region).

Additionally, SVal sub-classes are split into two large categories: Loc for l-values and NonLoc for r-values.

Figure 5 illustrates the functional di�erence between these classes.

Role SVal MemRegion SymExpr

1 Serve as range constraint keys D

2 Serve as region binding keys D

3 Serve as region binding values D

4 Serve as environment values D

5 Carry taint D

6 Carry metadata D

7 Serve as metadata values D

8 Be stored in the GDM D D D

Figure 5: Comparison of values, memory regions, and symbolic expressions.

It only makes sense to constraint symbols; concrete values are already known, so it’s pointless to assign
integral range constraints upon them any further, andmemory region addresses are never really defined in
compile-time. It is also natural that region store works by assigning arbitrary values to regions, and envi-
ronment works by assigning arbitrary values to AST expressions.

Line 5 of this tablemay surprise you, as above we have been discussing taintedmemory regions, and some
methods thatworkwith taint accept arbitrary SVal’s. However, when taint analysisworkswith values other
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than symbols, it merely tries to find symbols inside them. We are going to discuss it in detail in subsec-
tion 5.6. The concept of metadata symbols would be discussed later in 5.5.5. Finally, GDM can carry pretty
much anything, that’s what “G” stands for.

5.1. Constructing symbolic values

The SValBuilder class provides methods for constructing SVal objects. It allows constructing all kinds of
SVal’s and all kinds of SymExpr’s (representing the latter as SVal’s if necessary). It also allows evaluating
operations on symbolic values.

However, for constructingmemory regions, you should be using the MemRegionManager object. It is some-
times useful to be able to construct a sub-region (eg. a field region for a structure region with a known
declaration, in order to later obtain a value of the field).

You should almost never construct a SymExpr. A few rare cases when you want to construct a symbol
include creating some sort of SymbolConjured during some sort of eval::Call, and also constructing
SymbolMetadata when your checker uses this mechanism. Most of the time, however, you would be re-
ceiving all the necessary symbols from the environment or the region store, and rarely even care about
their kind.

In any case, you should be using methods of SValBuilder, rather than accessing the SymbolManager ob-
ject directly, for constructing all kinds of SymExpr’s. These methods would return a nonloc::SymbolVal
containing the symbol if the symbol requested is of integral type, or a loc::MemRegionVal containing a
SymbolicRegion wrapping the symbol if a pointer type was requested. In both cases, you can call the
getAsSymbol()method of the resulting SVal to obtain the SymExpr itself.

5.2. Memorymodel of the analyzer

MemRegion is a segment of memory. When it is stored inside an SVal of a pointer type, it represents the
address of the first byte of the segment; however, you should still imagine the MemRegion object as carrying
information about the whole segment.

The getAsRegion()method of the SVal class works for the following SVal kinds:

— loc::MemRegionVal— a pointer value described as the address of the first byte of the given region.

— nonloc::LocAsInteger — a similar pointer value, just stored inside an integer. This kind of SVal’s
represents results of pointer-to-integer casts.

Some memory regions are sub-regions of other regions. A sub-region is a sub-segment inside a segment.
Sub-regions inherit from SubRegion class. Every sub-region has a length (“extent”), whichmay be obtained
with the getExtent(...)method of SubRegion. Extent may be either concrete or symbolic.

Other regions, known asmemory spaces, do not belong inside any other region.

Each SubRegion has exactly one direct super-region obtained via the getSuperRegion()method. Memory
regions that have a memory space as their direct super-region are called base regions. If a region is neither
amemory space nor a base region, then there is exactly one base region at the end of its super-region chain.
There is a separate family of classes for representing base regions: by looking only at the class of the region,
you can determine if it is a base region inside a memory space, or is located inside another base-region.
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You canobtain thememory space inwhich the region belongswith getMemorySpace()method, andobtain
the base region for any sub-region with getBaseRegion().

Base regions— the direct sub-regions of memory spaces — can be either typed or untyped. A typed region
is a region that holds values of a known type. An untyped region is a region with a value of unknown type,
even though youmay have a rough idea of what is stored there or where it came from.

For example, consider the following code:

1 struct A {
2 int x, y;
3 };
4 struct B: A {
5 int u, v;
6 };
7 struct C {
8 int t;
9 B *b;
10 };
11 void foo(C c) {
12 c.b[5].y; // <-- that
13 }

Then the system of regions describing field y on line 20 is vaguely depicted on figure 6.

Variable 'c' 

StackArgumentsSpaceRegion 

UnknownSpaceRegion 

Region corresponding 
to the pointer symbol 

Element [5] Base class 'A' Field 'y' 

(holds a pointer to) 

Field 'b' 

Figure 6: The way the analyzer represents c.b[5].y.

If you dump() this region to stderr during analysis, you would see a pretty print like

base{element{SymRegion{reg_$0 <c->b>},5 S32b ,struct B},A}->y

In words, it would be expressed as:

FieldRegion for declaration of member variable y,
inside CXXBaseRegion for declaration of class A,

inside ElementRegion for element number 5 of type B,
inside SymbolicRegion for the pointer symbol of SymbolRegionValue kind,
which represents the initial value of:

FieldRegion for declaration of member variable b,
VarRegion for declaration of a local variable c.
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You should be able to understandmost of this picture a�er reading this subsection, with an exception of the
SymbolRegionValue thing, which is explained in subsection 5.5.

5.2.1. Memory spaces

Memory spaces inherit from the MemSpaceRegion class. Most memory spaces are “singletons”, and there
are actually very few of them:

— GlobalsSpaceRegion— a base class for four di�erent memory spaces:

— NonStaticGlobalSpaceRegion — the single memory space for all non-static global variables,
which is split into three:
— GlobalImmutableSpaceRegion, which consists of globals that cannot be modified,
— GlobalSystemSpaceRegion, which includes variables that aremost likely onlymodified by
system calls, such as errno,

— GlobalInternalSpaceRegion, which consists other global variables,

— StaticGlobalSpaceRegion— thememory space for all static global variables,

— HeapSpaceRegion—holding all regions allocated on the heap.

— StackSpaceRegion— a base class for two di�erent memory spaces:

— StackArgumentsSpaceRegion—memory space of function call arguments,

— StackLocalsSpaceRegion—memory space for local variables.
Note that unlike other memory spaces, there may be multiple StackSpaceRegion instances — one
for every StackFrameContext.

— UnknownSpaceRegion—whenever the analyzer has no idea where the region is actually stored.

Memory spaces are important because regions are considered di�erent if they are inside di�erent memory
spaces, even if all other traits of these regions are equal. For example, regions of the function parameter
variable in di�erent calls are di�erent because their memory spaces are defined by di�erent stack frame
contexts, even though variable declaration is the same.

5.2.2. Untyped base regions

There are only three kinds of untyped regions:

— AllocaRegion— a region allocated on the stack by calling the alloca() function of the standard C
library. This region is untyped because this function allocates raw data.

AllocaRegion always resides in StackLocalsSpaceRegion.

— SymbolicRegion — a region pointed to by a pointer, value of which is a symbolic expression. This
region is untyped, because pointers can be casted freely in C, and you cannot be sure that type of
data it points to matches the pointer type.

SymbolicRegion class deserves special attention due to the fact that pointer symbols, even though
their type is a pointer type, are technically NonLoc. So the purpose of the SymbolicRegion class is to
express and deliver the Loc part of things — a region that is created a�er a pointer value, rather than
vice versa.

If a sub-region has SymbolicRegion as its base region, the region is said to have symbolic base, and
the symbolic region is said to be the symbolic base of that region. The getSymbolicBase()method
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of MemRegion returns a pointer to the symbolic base region or a null pointer if the base isn’t symbolic.
This method is o�en useful when you need to figure out if a complex sub-region is actually related to
a certain pointer symbol.

SymbolicRegion normally resides in UnknownSpaceRegion, because the nature of the pointer is of-
ten unknown. However, sometimes the pointer is known to point to heap (for example, if it was re-
turned by the default operator new), and then the region would reside in HeapSpaceRegion. Heap
symbolic regions are created with getSymbolicHeapRegion()method of MemRegionManager.

5.2.3. Typed base regions with typed values

Typed regions are regions with a common ancestor class known as TypedValueRegion, though not all its
successors arebase regions; in fact, sub-regionsofbase regionsare typedaswell. Typed regionsenjoymuch
more variety:

— VarRegion is a regionof a variable. For every AST global or static variable declaration, one VarRegion
is defined. For stack variables, regions can be di�erent inside di�erent function calls, simply by being
sub-regions of di�erent StackSpaceRegion memory spaces. Also note that member variable of a
class is not at all a base region and is never represented with a VarRegion.

VarRegionmay reside in various memory spaces, depending on the nature of the variable declara-
tion.

— CXXThisRegion is the region where the implicit this pointer is stored during a C++method call. This
typed region is always located on the stack, and there is at most one CXXThisRegion for every stack
framecontext (that is, for everyStackArgumentsSpaceRegion space),much likeVarRegion’s of func-
tion parameters.

Note that CXXThisRegion is not the object itself, but merely a stack region holding the pointer. The
object itself would be the symbolic value stored in this region. For a top-level call, the object region
would be described as the SymbolicRegion of the SymbolRegionValue of CXXThisRegion of the
top-level stack frame; in particular, it would be untyped, even though CXXThisRegion itself is always
typed. For nested function calls during interprocedural analysis, the current object region may be
typed (eg. when CXXThisRegion of the stack frame of the nested call holds a pointer to a VarRegion
for a known variable).

— CXXTempObjectRegion represents memory regions of a C++ temporary object. It appears when se-
mantics of C++ require creating an auxiliary invisible object, for example, when creating an object by
calling a constructor directly without operator new. This region holds memory of an AST expression
that caused it to appear.

CXXTempObjectRegionmay reside in StackLocalsSpaceRegion, and it may also sometimes reside
inGlobalInternalSpaceRegionKind, when thegetCXXStaticTempObjectRegion()methodof the
MemRegionManagerwas used for creating it.

— CompoundLiteralRegion representsmemory region of an initializer-list (“compound literal”) object.

— StringRegion— a region of a string literal.

5.2.4. Typed base regions with untyped values

There are a few special kinds of regions that inherit from TypedRegion but not TypedValueRegion. These
regions havewell-defined “location” (pointer) type, however the type of the values they store is not defined
as the pointee type of the location type.
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— BlockDataRegion— a base region for representing data stored inside blocks (the non-standard Ap-
ple Inc. extension to C and C++). These regions handle both code and data for the block, and imple-
ment methods for working with closures.

— CodeTextRegion represents memory regions of program code rather than data. There are two sub-
kinds: FunctionTextRegion for function code, o�en used for representing function pointer values in
the analyzer, and BlockTextRegion for block code.

5.2.5. Sub-regions of base regions

Sub-regions of base regions are always typed, even if the base region is untyped.

— CXXBaseObjectRegion is the regionof a base class object inside a regionof anobject of derived class.
This region is defined by the base class declaration in the AST.

— ElementRegion is a region of an array element inside a solid one-dimensional array. The index of the
element is an arbitrary NonLoc symbolic value of array index type, which is either a concrete integer,
or a symbol. This region also carries type information; ElementRegions of same super-region with
same index but di�erent type are considered di�erent.

ElementRegion is also used for representing type casts for untyped regions. For example, value of
a symbolic pointer casted to type T* is represented as element region of value type T of a symbolic
region over this pointer. If the pointer is casted further to another type S*, then this ElementRegion
may be replaced with another ElementRegion of value type S.

— FieldRegion is a region of a field inside a structure or class or union. Similarly to VarRegion, this
region is also based on an AST variable declaration.

Note that theElementRegiondoesnot representapointerdereference (instead, theSymbolicRegiondoes),
and subscripting pointers and arrays is handled completely di�erently.

For example, consider a function foo():

void foo(int *p, int a[5]) {
/* ... */

}

p 

StackArgumentsSpaceRegion UnknownSpaceRegion 

*p p[5] 

(holds a pointer to) 

a a[5] 

Figure 7: The system of regions that represents p[5] and a[5] during analysis of foo().

Then a[5] would be an ElementRegion of VarRegion of parameter variable a, which lies somewhere in
StackArgumentsSpaceRegion:

element{a,5 S32b ,int}
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However,p[5] is anElementRegionofSymbolicRegion inUnknownSpaceRegion, constructed for the sym-
bolic pointer value of parameter variable p:

element{SymRegion{reg_$0 <p>},5 S32b ,int}

The respective region hierarchy is displayed on figure 7.

5.3. Concrete values

Concrete values are values known in compile-time. If a value of an integer variable is known to be 42, then
there exists a concrete value representing it, and also there are no two di�erent symbolic values thatmight
accidentally represent it; one is enough.

5.3.1. Numeric values

The most primitive concrete value, representing an integer with value known in compile-time. Internally,
nonloc::ConcreteInt holds an llvm::APSInt inside; you can obtain it via getValue():

nonloc :: ConcreteInt CI = Val.castAs <nonloc :: ConcreteInt >();
uint64_t Int = CI.getValue (). getLimitedValue ();

Di�erent instances of nonloc::ConcreteInt class have di�erent numeric value, type size, and signedness.
However, for each combination of the three, there is only one nonloc::ConcreteInt representing it; you
cannot discriminate between two 32-bit signed zeros obtained from di�erent sources.

A loc::ConcreteInt is a concrete integer representing a known pointer value. Internally it is similar to
nonloc::ConcreteInt. Usually instances of loc::ConcreteInt would be unsigned integers of pointer
width. It is very unlikely to know amemory address in compile-time, so themost common value youwould
see in loc::ConcreteInt is 0, representing a null-pointer.

5.3.2. Compound values

Thesimplest exampleof a concretecompoundvalue isnonloc::CompoundVal, which representsaconcrete
r-value of an initializer-list or a string. Internally, it contains an llvm::ImmutableList of SVal’s stored
inside the literal.

However, there is another compound value used in the analyzer, which appears much more o�en during
analysis, which is nonloc::LazyCompoundVal. This value is an r-value that represents a snapshot of any
structure “as a whole“ at a givenmoment during the analysis. Such value is already quite far from being re-
ferred to as “concrete”, asmany fields inside itwouldbeunknownor symbolic. nonloc::LazyCompoundVal
operates by storing two things:

— a reference to the TypedValueRegion being snapshotted (yes, it is always typed), and also

— a copy of the whole Store object, obtained from the ProgramState in which it was created.

Essentially, nonloc::LazyCompoundVal is a performance optimization for the analyzer. Because Store is
immutable, creating a nonloc::LazyCompoundVal is a very cheap operation. Note that the Store contains
all region bindings in the program state, not only related to the region. Later, if necessary, such value can
be unpacked — eg. when it is assigned to another variable.

56



5.4. Special values

This subsection describes two singleton values reserved for special purposes.

5.4.1. UndefinedVal

Whenever it is necessary for the analyzer core to emphasize that the value of something (an expression or a
region) is undefined according to the language standard, an UndefinedVal is produced. There is only one
UndefinedVal: you cannot discriminate between two UndefinedVal’s obtained from di�erent sources.

Most of the time, whenever an UndefinedVal appears, there should be a checker to warn that an unde-
fined behavior has occurred. There are multiple o�icial checkers that throw this type of warnings in the
core.uninitialized package.

A common example of a situation inwhich UndefinedVal appears is trying to obtain a value of an uninitial-
ized variable.

This is the only value that is banned in the assume(...)method of the ProgramState.

5.4.2. UnknownVal

Whenever a symbolic execution engine fails to represent a certain value with a symbol, it creates another
special value called UnknownVal. Like UndefinedVal, UnknownVal is a singleton value; you cannot discrim-
inate between two UnknownVal’s obtained from di�erent sources. However, you can discriminate between
UnknownVal and UndefinedVal.

An UnknownValmay appear anywhere, anytime. It o�en appears when a symbolic expression exceeds its
complexity limit. Its appearance in any place, no matter how critical, does not instantly indicate an error
in the program, however it most likely indicates a failure of the analyzer core: lack of a distinct symbol for
an unknown value defeats the purpose of symbolic execution. Most of the time, the analyzer “conjures”
a special symbol for such values, but sometimes it wants to be sure you make completely no assumptions
against this value, and thus createsanUnknownVal. Most likely you’dwant toavoid throwingwarningswhen
you encounter an UnknownVal in a checker callback.

5.5. Symbolic expressions

Symbolic expressions, also referred to as symbols, are without doubt the essence of the whole idea behind
symbolic execution.

Symbols are timeless: a symbolic value cannot “change” during analysis. Once a symbol is created, it rep-
resents the same value throughout all analysis. However, when the analysis progresses further through the
program, new information may be gathered about this value and stored inside ProgramState in the form
of range constraints imposed over this symbol.

For example, on the true branch of an if statement, the symbol representing the condition value would
be known to be non-zero. On the false branch, it would be known to be equal to zero, essentially turning
into a concrete value; in fact, the getSVal(...) family ofmethodswould internally substitute such symbol
with a concrete integer 0.
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However, classification of symbolic values is very rarely important. Most of the time, the most important
thing you need to know about symbols is that values represented by the same symbol are always equal,
while di�erent symbolsmay ormay not represent di�erent values. In fact, most of the analysis would work
fairly well even if all symbols everywhere were of SymbolConjured type. Here are some of the benefits we
have due to possessing a hierarchy of di�erent classes for symbols:

— RangeConstraintManager uses symbolic binary-expression classes to significantly simplify const-
raint conditions, eg. (x + 3) > 5 is easily transformed into x > 2, which would be hard if the symbol
representing (x + 3) didn’t remember anything about x or 3.

— Taint propagates automatically from tainted regions to data symbols representing their values, via
the reference to the region stored inside the symbol.

— At any moment, we can easily trace the origin of the symbol in a high-level manner. If we want to
figure out what conditions are necessary in order to replicate the bug found by the analyzer, we can
o�en do so by looking at the symbols inside the program state.

— It is also o�en useful for debugging, and sometimes — very rarely — the internal logic of the checker
itself would rely on symbol kinds. However, you should know what you’re doing; this technique is
o�enmisusedor used for quick anddirty incorrect heuristics. This subsection should give youa rough
idea of what symbols are and what symbols aren’t.

Symbol values always have a type, which is an integer or a pointer.

The getAsSymbol()method of the SVal class works with the following SVal kinds:

— nonloc::SymbolVal— the value which “is” the symbol “itself”.

— loc::MemRegionVal, if the region inside it is a SymbolicRegion (a “symbolic pointer” — because
nonloc::SymbolVal is always NonLoc, this method represents pointers as Loc values). In this case,
the method would return the symbol for which the region is constructed. If the optional boolean
parameter of getAsSymbol() is set to true, this method would also work on arbitrary regions with
symbolic base.

— nonloc::LocAsInteger— extracting a symbolic pointer from the underlying loc::MemRegionVal,
if any.

5.5.1. Operation symbols

There are three symbols that represent binary operators on other symbols:

— SymIntExpr represents result of a binary operation between another symbol and a concrete integer,
eg. x + 5;

— IntSymExpr represents result of a binary operation between a concrete integer and another symbol,
eg. 3 > x;

— SymSymExpr represents result of a binary operation between a concrete integer and another sym-
bol, eg. x ∗ y. Note that SymSymExpr symbols are created by the analyzer very rarely, because they
aremostly useless for the RangeConstraintManager, which cannot handle complicated constraints.
Usually SymSymExpr’s appear when one of the operands is tainted, in order to keep taint information.

There is also SymbolCast, which represents the result of a cast into a certain type from another symbol.
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5.5.2. Conjured symbols

SymbolConjured is a fallback when everything else fails: the analyzer failed to make any sense at all from
the expression, so it conjured up at least some symbol in order to keep path-sensitivity. Common examples
of SymbolConjured include return values of functions which were not modeled by the analyzer, because
their source code of their body was not available, or for other reasons; it is also used for purposes of invali-
dation.

5.5.3. Region value symbols

Probably the most primitive “sensible” atomic (“data”) symbol, which we have already mentioned a few
times, is SymbolRegionValue. It represents the value stored in the memory region at the beginning of the
analysis. This symbol contains a reference to the region.

Consider the following example:

1 void foo(int a) {
2 int b = a;
3 a = 1;
4 }

At the beginning of the analysis (before line 2), value of b is an UndefinedVal, while value of a is a symbol
of class SymbolRegionValue representing the value of region of parameter variable a.

A�er line 2, the value of b is changed to the SymbolRegionValue representing the value of a.

A�er line3, thevalueofa is changed toanonloc::ConcreteIntwithvalue 1. However,b still holdsa symbol
of SymbolRegionValue kind for the region of variable a, which still represents the original value of a, rather
than the new concrete value 1.

Another atomic symbol, closely related to SymbolRegionValue, is SymbolDerived. It represents a value of
a region a�er another symbol was written into a direct or indirect super-region. SymbolDerived contains a
reference to both the parent symbol and the parent region. This symbol is mostly a technical hack. Usually
SymbolDerived appears a�er invalidation: the whole structure of a certain type gets smashedwith a single
SymbolConjured, and then values of its fields become representedwith the help of SymbolDerived of that
conjured symbol and the region of the field. In any case, SymbolDerived is similar to SymbolRegionValue,
just refers to a value a�er a certain event during analysis rather than at start of analysis.

5.5.4. Extent symbols

Aswementioned in subsection 5.2, everymemory region is a segment of bytes. We are usually interested in
the address of the first byte, but sometimeswemay try to find out the length (“extent”) of the region, which
may be known (for plain variable regions) or unknown (usually for symbolic regions, which may actually
be arrays of unknown length). When the extent is unknown, it is represented with a special symbol called
SymbolExtent. This symbol contains a reference for the region.

Of course, if you need to obtain extent of a certain region, you shouldn’t be creating a new SymbolExtent
manually; you can rely on the getExtent(...)method of SubRegion.
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5.5.5. Metadata symbols

Metadata symbols are symbols with a checker-specific meaning, tied tomemory regions. The checker may
create such symbols and manage their lifetime and garbage collection (via the check::LiveSymbols call-
back). Theanalyzer corenever createsSymbolMetadataon its own; only a checker can create such symbols.

You can use SValBuilder to create a new SymbolMetadata. Here is an example code from the o�icial
alpha.unix.cstring.OutOfBoundscheckerwhichcreatesmetadata symbols that represent string length:

SValBuilder &SVB = C.getSValBuilder ();
QualType SizeTy = SVB.getContext (). getSizeType ();
SVal StrLength = SVB.getMetadataSymbolVal(CStringChecker :: getTag(),

MR , Ex , SizeTy , C.blockCount ());

SymbolMetadata is made with the following ingredients:

— A symbol tag — a void* that uniquely identifies a kind of metadata symbols. In this example, the
unique identifier of the checker itself, returned by the static getTag()method of the Checker object,
is being used.

— The parent region, towhich themetadata is tied; in our case, it is the region of the string for which the
length is defined.

— An AST expression on which the symbol appeared.

— The expected type of the symbol. As expected from an SValBuildermethod, if this type is Loc, then
the resulting SValwould be of type loc::MemRegionVal, carrying a SymbolicRegionwrapping the
symbol.

— The block count: number of times the CFG block was visited during analysis. This allows discrimi-
nating symbols created on the same expression for the same region, whenever it is passed-through
multiple times during analysis.

5.6. Tainted values

As mentioned above, any symbols, and only symbols, can carry taint. However, for convenience, other
values are said to inherit taint information from symbols on which they rely. Below is the complete list of
cases of taint propagation through symbolic value hierarchy:

— Memory regions are said to be tainted in the following cases:

— A SymbolicRegion, when constructed with a tainted pointer symbol;
— An ElementRegion, when constructed with a tainted index value;
— Any kind of region inherits taint from its super-region.

— Symbols can inherit taint, regardless of their own taint information, in the following cases:

— SymbolRegionValuemay inherit taint from its parent region;
— SymbolDerivedmay inherit taint from its parent symbol, but not from its parent region;
— All operation symbols inherit taint from their operands.

— SVal’s are said to be taintedwhen a symbol extractedwith getAsSymbol() or a region extractedwith
getAsRegion() is tainted.
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These heuristics significantly simplify taint manipulation in the checkers.

5.7. Understanding debug dumps

All three symbolic value classes allow a convenient dump()method useful for debugging. For most of the
value kinds, this method produces a recognizable pattern, which can tell a lot of useful information about
the value.

Consider an example:

reg_$2 <element{SymRegion{derived_$1{conj_$0{int},a->ptr}},0 S32b ,int}>

This SVal is a symbol, namely a SymbolRegionValue, which is represented by the reg_$N<...> wrapper.
The number N a�er $ is the internal symbol counter assigned to each symbol inside the SymbolManager
object.

This symbol represents the original value of a signed integer in ElementRegionwith index 0 inside a certain
SymbolicRegion corresponding to a symbolic pointer. It is uncertain to the analyzer whether this pointer
points to an array or to a single integer; however, it is certain that this pointer gets dereferenced in order to
obtain the original value.

Thepointer itself is aSymbolDerived, which isderived for aFieldRegionof fieldptrof somestructure vari-
able a, froma SymbolConjured of type int. The SymbolDerived itself, being a base for a SymbolicRegion,
is necessarily a pointer value. However, the type of SymbolConjured isn’t a pointer; it has most likely ap-
peared as a result of invalidation of structure a.

Hence, the value can be described in words as “the value of the integer that was originally stored behind
the pointer that appeared in the a.ptr field during invalidation”.

Consider another example:

&base{base{base{d,C},B},A} [as 64 bit integer]

This value is a nonloc::LocAsInteger that represents a concrete value of a location casted into a 64-bit
integer. The location is a loc::MemRegionVal (hence prefix ‘&’) holding a certain region.

The region itself is the region of a C++ base object of class A for an object d (which probably belongs to class
D, and you can check this by dumping the declaration of variable d). However, because D is not a direct
descendant of A, you see the whole class inheritance path inside the region hierarchy.

5.8. Further reading

Thememory model of Clang Static Analyzer was described in detail in an article by Z. Xu, T. Kremenek, and
J. Zhang13.

13Z. Xu, T. Kremenek, and J. Zhang. A memory model for static analysis of C programs. In: ISoLA’10 Proceedings of the 4th
international conference on Leveraging applications of formal methods, verification, and validation. pp. 535–548 (2010)
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PathDiagnosticLocation, 20, 22, 47

createBegin(), 20, 22
getStmt(), 47

ProgramPoint, 16
ProgramState, 16, 26, 39, 56, 57

add<>(), 33, 34
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SymbolReaper, 41
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SymbolDerived, 59, 60, 61
SymbolExtent, 59
SymbolMetadata, 41, 51, 60
SymbolRegionValue, 16, 49, 52, 54, 59, 60, 61
SymIntExpr, 58
SymSymExpr, 58

TypeMatcher, 23

64


	Preface
	FAQ: a quick guide through the guide

	Introduction to the Clang Static Analyzer
	MainCallChecker — a simple tutorial checker
	Checker example code explained
	Declaring a checker class
	Implementing checker callbacks
	Throwing bug reports
	Registering the checker

	Compiling the checker as a standalone module
	Further reading

	Kinds of analyses and program representations
	Abstract syntax tree
	Control flow graph
	Exploded graph
	Further reading

	AST-based checkers
	Path-insensitive checker callbacks
	check::EndOfTranslationUnit
	check::ASTCodeBody
	check::ASTDecl<T>

	AST visitors
	Implementing a simple statement visitor
	Merging statement and declaration visitors

	AST matchers
	Implementing a simple AST matcher
	Re-using matchers
	Defining custom matchers
	Matching particular statements

	Constant folding
	Further reading

	Path-sensitive analysis
	Obtaining information from the program state
	Obtaining values of expressions
	A brief introduction to memory regions
	Iterating over region store bindings
	Assumptions on symbolic values
	Operations on symbolic values
	Using the taint analysis

	Mutating and splitting the program state
	Adding transitions to the exploded graph
	Splitting the state on range constraint assumptions
	Creating region store bindings
	Expanding the taint analysis
	Using program state traits

	Path-sensitive checker callbacks
	check::PreStmt<T>
	check::PostStmt<T>
	check::PreCall
	check::PostCall
	check::Location
	check::Bind
	check::EndAnalysis
	check::EndFunction
	check::BranchCondition
	check::LiveSymbols
	check::DeadSymbols
	check::RegionChanges
	check::PointerEscape
	eval::Assume
	eval::Call

	Implementing bug reporter visitors
	Understanding interprocedural analysis
	Conservative evaluation and invalidation
	Inlining and stack frames

	Further reading

	The symbolic value hierarchy
	Constructing symbolic values
	Memory model of the analyzer
	Memory spaces
	Untyped base regions
	Typed base regions with typed values
	Typed base regions with untyped values
	Sub-regions of base regions

	Concrete values
	Numeric values
	Compound values

	Special values
	UndefinedVal
	UnknownVal

	Symbolic expressions
	Operation symbols
	Conjured symbols
	Region value symbols
	Extent symbols
	Metadata symbols

	Tainted values
	Understanding debug dumps
	Further reading

	Index of notions
	Index of classes

