B.E E&C SEVENTH SEMESTER SYLLABUS

MICROWAVES AND ANTENNAS

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Course Code	15EC71	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50 (10 Hours / Module)	Exam Hours	03	
CREDITS 04				

CREDITS – 04

Course objectives: This course will enable students to:

- Describe the microwave properties and its transmission media
- Describe microwave devices for several applications
- Understand the basics of antenna theory
- Select antennas for specific applications

Module-1

Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). (Text 1: 9.1, 9.2.2) Microwave Transmission Lines: Microwave Frequencies, Microwave devices, Microwave Systems, Transmission Line equations and solutions, Reflection Coefficient and Transmission Coefficient, Standing Wave and Standing Wave Ratio, Smith Chart, Single Stub matching. (Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 Except Double stub matching) L1, L2

Module-2

Microwave Network theory: Symmetrical Z and Y-Parameters for Reciprocal Networks, S matrix representation of Multi-Port Networks. (Text 1: 6.1, 6.2, 6.3) **Microwave Passive Devices:** Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16) **L1, L2**

Module-3

Strip Lines: Introduction, Micro Strip lines, Parallel Strip lines, Coplanar Strip lines, Shielded Strip Lines. (Text 2: Chapter 11)

Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Bandwidth, Radio Communication Link, Antenna Field Zones & Polarization. (Text 3: 2.1- 2.11, 2.13,2.15) **L1, L2, L3**

Module-4

Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Field Patterns, Phase Patterns, Arrays of Two Isotropic Point Sources, Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing.(Text 3: 5.1 – 5.10,5.13)

Electric Dipoles: Introduction, Short Electric Dipole, Fields of a Short Dipole (General and Far Field Analyses), Radiation Resistance of a Short Dipole, Thin Linear Antenna (Field Analyses), Radiation Resistances of Lambda/2 Antenna. (Text 3: 6.1 -6.6) **L1, L2, L3, L4**

Module-5

Loop and Horn Antenna: Introduction, Small loop, Comparison of Far fields of Small Loop and Short Dipole, The Loop Antenna General Case, Far field Patterns of Circular Loop Antenna with Uniform Current, Radiation Resistance of Loops, Directivity of Circular Loop Antennas with Uniform Current, Horn antennas Rectangular Horn Antennas.(Text 3: 7.1-7.8, 7.19, 7.20)

Antenna Types: Helical Antenna, Helical Geometry, Practical Design Considerations of Helical Antenna, Yagi-Uda array, Parabola General Properties, Log Periodic Antenna. (Text 3: 8.3, 8.5, 8.8, 9.5, 11.7) **L1, L2, L3**

Course Outcomes: At the end of the course, students will be able to:

- Describe the use and advantages of microwave transmission
- Analyze various parameters related to microwave transmission lines and waveguides
- Identify microwave devices for several applications
- Analyze various antenna parameters necessary for building an RF system
- Recommend various antenna configurations according to the applications

Text Books:

- 1. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.
- 2. Microwave Devices and circuits- Liao, Pearson Education.
- 3. **Antennas and Wave Propagation,** John D. Krauss, Ronald J Marhefka and Ahmad S Khan,4th Special Indian Edition , McGraw- Hill Education Pvt. Ltd., 2010.

Reference Books:

- 1. **Microwave Engineering** David M Pozar, John Wiley India Pvt. Ltd. 3rdEdn, 2008.
- 2. Microwave Engineering Sushrut Das, Oxford Higher Education, 2ndEdn, 2015.
- 3. Antennas and Wave Propagation Harish and Sachidananda: Oxford University Press, 2007.

DIGITAL IMAGE PROCESSING B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC72	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours /	Exam Hours	03	
Lecture Hours	Module)			
	CREDI			
Course Objectives:	The objectives of this co	urse are to:		
Understand the	fundamentals of digital	image processir	ng	
	image transform used image enhancement te			rocessing
	e image restoration tecl			
Understand the	e Morphological Operati	ons and Segmen	itation used in d	igital image
processing	Madala 1			RBT Level
	Module-1			KBI Leve i
	damentals : What is Dig			L1, L2
of Digital Image Pro	cessing, Examples of fie	elds that use DIF	P, Fundamental	
	age Processing, Compo			
	of Visual Perception, In			
0 1 0	nd Quantization, Some	e Basic Relation	ships Between	
	Pixels, Linear and Nonlinear Operations.			
[Text: Chapter 1 and Chapter 2: Sections 2.1 to 2.5, 2.6.2]				
Module-2				
-	Some Basic Intensit	5		L1, L2,
Histogram Processing, Fundamentals of Spatial Filtering, Smoothing			L3	
Spatial Filters, Sharpening Spatial Filters				
	Frequency Domain: Preliminary Concepts, The Discrete Fourier			
Transform (DFT) of Two Variables, Properties of the 2-D DFT, Filtering in				
	the Frequency Domain, Image Smoothing and Image Sharpening Using			
	Filters, Selective Filterin			
	ections 3.2 to 3.6 and	Chapter 4: Secti	ons 4.2, 4.5 to	
4.10]				
	Module-3			
Restoration: Noise	models, Restoration i	n the Presence	of Noise Only	L1, L2,
	ing and Frequency Don		•	L3
Invariant Degradat	ions, Estimating the	Degradation Fu	nction, Inverse	
Filtering, Minimum	Mean Square Error	(Wiener) Filterin	g, Constrained	
Least Squares Filter				
[Text: Chapter 5: Se				
	Module-4			
	mount-4			

Color Image Processing: Color Fundamentals, Color Models, Pseudocolor	L1, L2,
Image Processing.	L1, L2, L3
Wavelets: Background, Multiresolution Expansions.	10
Morphological Image Processing: Preliminaries, Erosion and Dilation,	
Opening and Closing, The Hit-or-Miss Transforms, Some Basic	
Morphological Algorithms.	
[Text: Chapter 6: Sections 6.1 to 6.3, Chapter 7: Sections 7.1 and 7.2,	
Chapter 9: Sections 9.1 to 9.5]	
Module-5	
Segmentation : Point, Line, and Edge Detection, Thresholding, Region-Based Segmentation, Segmentation Using Morphological Watersheds. Representation and Description: Representation, Boundary descriptors. [Text: Chapter 10: Sections 10.2, to 10.5 and Chapter 11: Sections 11.1 and 11.2]	L1, L2, L3
Course Outcomes: At the end of the course students should be able to:	
 Understand image formation and the role human visual system plays in perception of gray and color image data. Apply image processing techniques in both the spatial and frequency (Fedomains.) Design image analysis techniques in the form of image segmentation are evaluate the Methodologies for segmentation. Conduct independent study and analysis of Image Enhancement techniques in techniques in techniques in the form of image for the segmentation. 	Fourier) nd to
Question paper pattern:	
• The question paper will have ten questions.	
• Each full question consists of 16 marks.	from oo ob
• There will be 2 full questions (with a maximum of Three sub questions) module.	from each
 Each full question will have sub questions covering all the topics under The students will have to answer 5 full questions, selecting one full que each module. 	
Text Book:	
Digital Image Processing - Rafel C Gonzalez and Richard E. Woods, PHI Edition 2010.	3rd
Reference Books: 1. Digital Image Processing- S.Jayaraman, S.Esakkirajan, T.Veerakumar, McGraw Hill 2014.	Tata
2. Fundamentals of Digital Image Processing-A. K. Jain, Pearson 2004.	

POWER ELECTRONICS

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

POWER ELECTRONICS						
B.E., VII Semester, Electronics & Communication Engineering						
[As per Choice Based Credit System (CBCS) Scheme]						
Course Code						
Number of Lecture						
Hours/Week						
Total Number of	50 (10 Hours / Module)	Exam Hours	03			
Lecture Hours	CREDITS – 04					
Course Objectives: This	s course will enable students	to:				
Understand the cor	nstruction and working of var	rious power devices.				
	of thyristor circuits with diff	-				
• Learn the application	ons of power devices in contr	olled rectifiers, conv	verters and			
inverters.	-					
Study of power elect	tronics circuits under variou	s load conditions.				
	Module-1					
Introduction - Applicatio	ns of Power Electronics, Pow	er Semiconductor I	Devices, Control			
	Devices, types of Power Elect	-				
	r BJTs: Steady state charac					
	aracteristics, IGBTs: device		t and transfer			
characteristics, di/dt and	d dv/dt limitations. (Text 1)	L1, L2				
The sector of the sector of the sector	Module-2		Assada Catlanda			
5	on, Principle of Operation Two transisitor model of S					
	n-OFF Mechanism, Turn-O					
	and Class B types, Gate					
	citance firing circuit, UJT Fir					
	Module-3	(,,,,			
Controlled Rectifiers - In	troduction, Principle of Pha	se-Controlled Conve	erter Operation,			
Single-Phase Full Conve	rter with RL Load, Single-Ph	ase Dual Converter	rs, Single-Phase			
Semi Converter with RL	oad.					
AC Voltage Controllers -	AC Voltage Controllers - Introduction, Principles of ON-OFF Control, Principle of Phase					
U I	ntrollers with resistive and i	nductive loads. (Te	ext 1) L1, L2,			
L3						
	Module-4					
	roduction, principle of step	-	5			
with RL load, principle of step-up operation, Step-up converter with a resistive load,						
Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators, Chopper circuit design. (Text 1)						
8	L1, L2					
Module-5						
Pulse Width Modulated	Inverters- Introduction, pr	inciple of operation	n, performance			
	se bridge inverters, voltage		-			
	s, Variable DC-link inverte					
design.						
Static Switches: Introdu	action, Single phase AC sv	vitches, DC Switch	nes, Solid state			

relays, Microelectronic relays. (Text 1) L1, L2

Course Outcomes: At the end of the course students should be able to:

- Describe the characteristics of different power devices and identify the various applications associated with it.
- Illustrate the working of power circuit as DC-DC converter.
- Illustrate the operation of inverter circuit and static switches.
- Determine the output response of a thyristor circuit with various triggering options.
- Determine the response of controlled rectifier with resistive and inductive loads.

Evaluation of Internal Assessment Marks:

It is suggested that at least 4 experiments of Power Electronics to be conducted by the students. This activity can be considered for the evaluation of 05 marks out of 20 Internal Assessment (IA) Marks, reserved for the other activities.

Text Books:

- 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, $3^{rd}/4^{th}$ Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5.
- 2. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897

Reference Books:

- 1. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.
- 2. Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Delhi, 2012.
- 3. P.C. Sen, "Modern Power Electronics", S Chand & Co New Delhi, 2005.
- 4. Earl Gose, Richard Johnsonbaugh, Steve Jost, Pattern Recognition and Image Analysis, ePub eBook.

MULTIMEDIA COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC741	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (08 Hours /	Exam Hours	03	
Lecture Hours	Module)			
CREDITS – 03				

Course objectives: This course will enable students to:

- Gain fundamental knowledge in understanding the basics of different multimedia networks and applications.
- Understand digitization principle techniques required to analyze different media types.
- Analyze compression techniques required to compress text and image and gain knowledge of DMS.
- Analyze compression techniques required to compress audio and video.
- Gain fundamental knowledge about multimedia communication across different networks.

<u>Cryptography</u> B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC744	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (08 Hours /	Exam Hours	03	
Lecture Hours	Module)			
	CREI	DITS - 03		
Course Objectives: '	This Course will enab	le students to:		
cryptography.	ts to understand the l	5	0	0
	s with some basic mat	-	ts and pseudorar	ndom
	ators required for cryp			
	ts to authenticate and	1 5	pted data.	
Enrich knowle	dge about Email, IP a	nd Web security.		
		odules		
	Module	-1		RBT Level
Groups, Rings and arithmetic, Finite fi Classical Encrypti techniques, Transp SYMMETRIC CIPH	tithm, Euclidean algor Fields, Finite fields of elds of the form GF(2 ^r Module- on Techniques: Symposition techniques, St ERS: Traditional Bloc rd (DES) (Text 1: Chap	the form GF(p), Po (Text 1: Chapter 3 2 metric cipher mode eganography (Text ck Cipher structure oter 2: Section1, 2)	olynomial 3) el, Substitution : 1: Chapter 1) e, Data	L1, L2
	Module-			
4)	ERS: The AES Cipher	-		L1, L2, L3
Congruential Gener	equence Generators rators, Linear Feedbac ciphers, Stream cipher 4)	ck Shift Registers,	Design and	
	Module-4	ł		
Primality testing, C Chapter 7) Principles of Publi Hellman Key Excha	ry : Prime Numbers, F hinese Remainder the c-Key Cryptosystem nge, Elliptic Curve Ar	Fermat's and Euler corem, discrete log s: The RSA algorit ithmetic, Elliptic C	arithm. (Text 1: hm, Diffie - Curve	L1, L2, L3
Chapter 7) Principles of Publi Hellman Key Excha	c-Key Cryptosystem	s : The RSA algorit ithmetic, Elliptic (hm, Diffie - Curve	

Secu block funct Discr 18.5,	re Hash Algorithm [SHA],One way hash functions using symmetric algorithms, Using public key algorithms, Choosing a one-way hash ions, Message Authentication Codes. Digital Signature Algorithm, ete Logarithm Signature Scheme (Text 2: Chapter 18: Section 18.1 to 18.7, 18.11 to 18.14 and Chapter 20: Section 20.1, 20.4)	1, L2, L3
	 e Outcomes: After studying this course, students will be able to: Use basic cryptographic algorithms to encrypt the data. Generate some pseudorandom numbers required for cryptographic applications. Provide authentication and protection for encrypted data. 	
•	ion paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub ques There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question each module.	е
1. 2.	Books : William Stallings , "Cryptography and Network Security Principles and Prace Pearson Education Inc., 6 th Edition, 2014, ISBN: 978-93-325-1877-3 Bruce Schneier, "Applied Cryptography Protocols, Algorithms, and Source of C", Wiley Publications, 2 nd Edition, ISBN: 9971-51-348-X	
Refer	ence Books:	
1.	Cryptography and Network Security, Behrouz A. Forouzan, TMH, 2007. Cryptography and Network Security, Atul Kahate, TMH, 2003.	

DSP Algorithms and Architecture B.E., VII Semester, Electronics & Communication Engineering /**Telecommunication Engineering** [As per Choice Based Credit System (CBCS) scheme]

Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi Introduction, Com Addressing Modes Processors, Program Instructions and P	Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing. Module-3 tal Signal Processors: mercial Digital Signa of TMS32OC54XX, Men n Control. Detail Stud rogramming, On – Ch rocessors, Pipeline O Module-4	DSP Computat Data Addressing and Program Ex- al-processing I nory Space of dy of TMS3200 ip Peripherals,	ional Building g Capabilities, ecution, Speed Devices, Data TMS32OC54xx C54X & 54xx Interrupts of	
Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi Introduction, Com Addressing Modes Processors, Program Instructions and P TMS32OC54XX Pr	Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing. Module-3 tal Signal Processors: mercial Digital Signa of TMS32OC54XX, Men n Control. Detail Stud rogramming, On – Ch	DSP Computat Data Addressing and Program Ex- al-processing I nory Space of dy of TMS3200 ip Peripherals,	ional Building g Capabilities, ecution, Speed Devices, Data TMS32OC54xx C54X & 54xx Interrupts of	L1, L2, L3
Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi Introduction, Com Addressing Modes Processors, Program	Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing. Module-3 tal Signal Processors: mercial Digital Signa of TMS32OC54XX, Mem n Control. Detail Stud	DSP Computat Data Addressing and Program Ex- al-processing I nory Space of dy of TMS3200	ional Building g Capabilities, ecution, Speed Devices, Data TMS32OC54xx C54X & 54xx	L1, L2, L3
Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi Introduction, Com Addressing Modes	Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing. Module-3 tal Signal Processors: mercial Digital Signa of TMS32OC54XX, Mer	DSP Computat Data Addressing and Program Exc al-processing I nory Space of	ional Building g Capabilities, ecution, Speed Devices, Data TMS32OC54xx	L1, L2, L3
Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi Introduction, Com	Architectural Features, ecture and Memory, E Unit, Programmability a External Interfacing. Module-3 tal Signal Processors: mercial Digital Signa	DSP Computat Data Addressing and Program Ex- al-processing I	ional Building g Capabilities, ecution, Speed Devices, Data	L1, L2, L3
Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi	Architectural Features, ecture and Memory, D Unit, Programmability a External Interfacing. Module-3 tal Signal Processors:	DSP Computat Data Addressing and Program Ex	ional Building g Capabilities, ecution, Speed	
Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for	Architectural Features, ecture and Memory, D Unit, Programmability a External Interfacing. Module-3	DSP Computat Data Addressing	ional Building g Capabilities,	
Introduction, Basic Blocks, Bus Archit Address Generation	Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing.	DSP Computat Data Addressing	ional Building g Capabilities,	L1, L2, L3
Introduction, Basic Blocks, Bus Archit Address Generation	Architectural Features, ecture and Memory, D Unit, Programmability a	DSP Computat Data Addressing	ional Building g Capabilities,	L1, L2, L3
Introduction, Basic Blocks, Bus Archit	Architectural Features, ecture and Memory, I	DSP Computat Data Addressing	ional Building g Capabilities,	L1, L2, L3
Introduction, Basic	Architectural Features,	DSP Computat	ional Building	L1, L2, L3
	0	0	0	L1, L2, L3
	no grammahla Digital Si	ignal - Processi	ng Davioasi	
	Module-2			
Range and Precision		r implementatio)11.	
Number Formats for Signals and Coefficients in DSP Systems, Dynamic Range and Precision, Sources of Error in DSP Implementation.				
Computational Accuracy in DSP Implementations:				
Fourier Transform (FFT), Linear Time-Invariant Systems, Digital Filters, Decimation and Interpolation.				
Discrete Time Sequences, Discrete Fourier Transform (DFT) and Fast				
Introduction, A Digi	tal Signal – Processing S	System, The San		
Introduction to Dig	ital Signal Processing:			L1, L2
	Module-1			RBT Level
 Understand ba 	sic DSP algorithms with	their implemen	tation.	
various modes			·	
	interface the external	•	S320C54xx pr	ocessor in
	he various addressing acture of TMS320C54xx		prierais, interi	rupts and
issues.	he various addressing	a modos nori	nhorals intom	unte and
	e computational buildin	g blocks of DSF	processors an	d its speed
	knowledge and concepts			
Course Objectives:	This course will enable	students to:		
-	CREDIT			
Lecture Hours	40 (8 Hours / Module)	Exam Hours	03	
Total Number of	03	Exam Marks	80	
			20	

	Г
Implementation of Basic DSP Algorithms: Introduction, The Q – notation, FIR Filters, IIR Filters, Interpolation and	L1, L2, L3
Decimation Filters (one example in each case).	
Implementation of FFT Algorithms:	
Introduction, An FFT Algorithm for DFT Computation, Overflow and	
Scaling, Bit – Reversed Index. Generation & Implementation on the TMS32OC54xx.	
Module-5	
Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices:	L1, L2, L3
Introduction, Memory Space Organization, External Bus Interfacing	
Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,	
Interrupts and I/O Direct Memory Access (DMA).	
Interfacing and Applications of DSP Processors:	
Introduction, Synchronous Serial Interface, A CODEC Interface Circuit,	
DSP Based Bio-telemetry Receiver, A Speech Processing System, An Image	
Processing System.	
Course Outcomes: At the end of this course, students would be able to	
• Comprehend the knowledge and concepts of digital signal processing	
techniques.	
• Apply the knowledge of DSP computational building blocks to achieve speed in DSP architecture or processor.	
• Apply knowledge of various types of addressing modes, interrupts,	
peripherals and pipelining structure of TMS320C54xx processor.	
• Develop basic DSP algorithms using DSP processors.	
• Discuss about synchronous serial interface and multichannel buffered	
serial port (McBSP) of DSP device.Demonstrate the programming of CODEC interfacing.	
• Demonstrate the programming of CODLe methacing.	
Question paper pattern:	
 The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub- 	auestions
 Each full question consists of 16 marks with a maximum of three suit There will be 2 full questions from each module covering all the topics 	-
module	01 010
• The students will have to answer 5 full questions, selecting one full qu	lestion from
each module.	
Text Book: "Digital Signal Processing", Avatar Singh and S. Srinivasan, Thomson Learn	ing, 2004.
Reference Books:	
1. "Digital Signal Processing: A practical approach", Ifeachor E. C., Jervis E	3. W
Pearson-Education, PHI, 2002.	
2. "Digital Signal Processors", B Venkataramani and M Bhaskar, TMH, 2nd	
3. "Architectures for Digital Signal Processing", Peter Pirsch John Weily, 20	108