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Abstract—The Internet of Things (IoT) has recently emerged as
a revolutionary communication paradigm where a large number
of objects and devices are closely interconnected to enable smart
industrial environments. The tremendous growth of visual sen-
sors can significantly promote the traffic situational awareness,
traffic safety management, and intelligent vehicle navigation
in intelligent transportation systems (ITS). However, due to
the absorption and scattering of light by the turbid medium
in atmosphere, the visual IoT inevitably suffers from imaging
quality degradation, e.g., contrast reduction, color distortion, etc.
This negative impact can not only reduce the imaging quality,
but also bring challenges for the deployment of several high-level
vision tasks (e.g., object detection, tracking and recognition, etc.)
in ITS. To improve imaging quality under the hazy environment,
we propose a deep network-enabled three-stage dehazing network
(termed TSDNet) for promoting the visual IoT-driven ITS. In
particular, the proposed TSDNet mainly contains three parts, i.e.,
multi-scale attention module for estimating the hazy distribution
in the RGB image domain, two-branch extraction module for
learning the hazy features, and multi-feature fusion module for
integrating all characteristic information and reconstructing the
haze-free image. Numerous experiments have been implemented
on synthetic and real-world imaging scenarios. Dehazing results
illustrated that our TSDNet remarkably outperformed several
state-of-the-art methods in terms of both qualitative and quan-
titative evaluations. The high-accuracy object detection results
have also demonstrated the superior dehazing performance of
TSDNet under hazy atmosphere conditions. The source code is
available at https://github.com/gy65896/TSDNet.

Index Terms—Visual Internet of Things, smart traffic services,
image dehazing, deep network, intelligent transportation systems

I. INTRODUCTION

W ITH the rapid developments of communications, net-
works, sensor devices, and data science technologies,

the Internet of Things (IoT) has attracted significant attention
from both industry and academia [1]–[5]. The tremendous
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growth of visual sensors can specialize in sensing and gather-
ing imaging data [6], directly contributing to the extension of
industrial IoT in vision-empowered video surveillance. With
the advanced IoT, visual perception and computation have
become an integral part of smart traffic services, ranging from
traffic situational awareness, traffic safety management to in-
telligent vehicle navigation. As shown in Fig. 1, the distributed
computing and high extensibility properties of IoT make the
deployment of intelligent transportation systems (ITS) prac-
ticable. In the visual IoT-enabled ITS, intelligent computing
technology is essential to promote intelligent monitoring, intel-
ligent navigation, collision avoidance, and transport efficiency,
etc. However, due to the scattering and absorption of ambient
light by turbid medium in atmosphere, the video/image cap-
tured by the observers is inevitably attenuated under the hazy
imaging condition. This degenerate phenomenon will seriously
reduce the contrast and color fidelity across the image. Mean-
while, the foreground and background will become blurred
and deformed, causing the critical target information to be
hidden. In particular, the visibility degradation will be more
serious as the distance between the camera and the object or
scene becomes larger. Therefore, the haze commonly presents
non-homogeneous distribution in realistic imaging scenarios.
It is necessary to design an advanced dehazer to effectively
enhance visibility for promoting the visual IoT-enabled ITS.

To eliminate the haze, many handcrafted prior-based meth-
ods have been proposed. For example, He et al. [7] de-
signed a dark channel prior (DCP) method to suppress the
haze from the captured RGB image. However, DCP easily
fails in the large sky regions and white scenes, resulting in
unsatisfactory dehazing performance. Similarly, other prior-
based dehazing methods [8]–[13] easily suffer from the low
generalization ability, since these prior assumptions fail to
accurately model the image degradation process in complex
imaging situations. Inspired by deep learning, convolutional
neural network (CNN)-based learning methods have been
applied in various low-level visual tasks, e.g., low-visibility
enhancement, denoising, and deraining, etc. Although the
learning-based dehazing strategies [14]–[24] have received
continuous attention, few methods perform haze visibility
enhancement in different IoT-enabled ITS scenarios. Unlike
other tasks, the dehazing network employed in IoT-enabled
ITS firstly should have more stable and gratifying effects
in outdoor traffic scenarios. Secondly, since the real-world
haze is irregularly distributed in the spatial position, it is
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Fig. 1. The flowchart of the visual IoT-enabled intelligent transportation system, which includes visual information collection, intelligent computing, and
decision and application. Note that UAV and USV, respectively, denote the unmanned aerial vehicle and unmanned surface vehicle.

more challenging to fully remove the haze and highlight the
potential information for improving visibility and detection
accuracy. Furthermore, it is necessary to real-timely restore
the haze-degraded images in practical application.

To concern the above issues comprehensively, we propose
to design a three-stage dehazing network (termed TSDNet).
Given the previous studies, the main contributions of this work
are as follows

• We propose a deep network-enabled haze visibility en-
hancement method for promoting the visual IoT-based
ITS under hazy conditions. The proposed TSDNet is
mainly composed of multi-scale attention, two-branch
extraction, and multi-feature fusion modules.

• The proposed multi-scale attention module is capable of
estimating the hazy distribution. The two-branch extrac-
tion network performs well in refining the hazy features
from both spatial image and frequency domains. The
outputs of attention and extraction modules are finally
fused by a residual network to reconstruct the haze-free
image with more structures and high-frequency details.

• We conduct comprehensive dehazing experiments on syn-
thetic and real-world images to demonstrate the superi-
ority of our TSDNet over other competitive methods. In
addition, object detection experiments and running time
analysis are also implemented on different devices to
verify the practicability and efficiency of our method.

II. RELATED WORKS

In current literature, numerous dehazing methods have been
proposed to improve imaging quality. We will briefly review
the recent progress of image dehazing in this section.

A. Prior-Based Dehazing Methods

Generally, prior-based methods assume that the formation
of haze is defined as follows

I(x) = e−βd(x)(J(x)− 1) +A, (1)

where x is the pixel index of the 2D image, I , J , and A denote
the haze-degraded image, haze-free image, and atmospheric

light value, respectively. e−βd(x) represents the transmission
map t related to the scattering coefficient β and the scene depth
d. In prior-based methods, many methods are proposed to
directly estimate A and t. According to the statistical analysis
of massive outdoor haze-free images, He et al. [7] found the
haze-free image contains some pixels with a low value in
at least one color channel and proposed dark channel prior
(DCP). Based on the DCP theory and atmospheric scattering
model, the restored image can be generated by estimating
the thickness of the haze. Intuitively, some pixels in the
white scenes and sky regions do not follow the DCP, which
will generate the results with low-illumination and unnatural
artifacts. For the sake of better dehazing effect, many DCP-
based methods are proposed [8]–[10]. In particular, zhu et al.
[9] designed a fusion of luminance and dark channel prior
(F-LDCP) method, which exploits a sigmoid function to fuse
the transmission maps generated by the luminance and DCP
models for guaranteeing the sky naturalness. However, F-
LDCP easily produces serious distortion in some real-world
hazy images.

Furthermore, several physically-grounded prior strategies
have been constructed [11]–[13]. For example, Fattal [11]
proposed a local feature model (named CL), which explained
the color-lines in the hazy scene. CL can generate the haze-
free image based on the offset of the line from the origin.
Zhu et al. [12] used color attenuation prior (CAP) to model
the scene depth of hazy images and estimated the depth
information through the supervised learning method. Berman
[13] proposed a non-local prior (NL) model to characterize
clean images. Although massive prior-based researches have
been implemented, it is generally challenging to accurately
model the haze in practical scenarios. The effectiveness of
the prior-based dehazing methods strongly depends on the
accuracy of assumptions. When the prior is insufficient to
characterize the hazy degradation, algorithms will provide an
unsatisfactory restored result.

B. Learning-Based Dehazing Methods

The data-driven convolutional neural network (CNN) has
been applied in the image recovery task. Early CNN-enabled
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Fig. 2. The architecture of our three-stage dehazing network (termed TSDNet). TSDNet consists of three components, i.e., multi-scale attention, two-branch
extraction, and multi-feature fusion. The Conv, DConv, and LReLU represent the convolution, dilated convolution, and leaky rectified linear unit activation
function, respectively.

dehazing attempts reconstructed the haze-free images by esti-
mating the transmission of the atmospheric scattering model,
e.g., DehazeNet [14] and MSCNN [15]. Meanwhile, Zhang
et al. [16] proposed a densely connected pyramid dehazing
network (DCPDN) to jointly learn the transmission map and
atmospheric light. However, it is a tricky issue to produce the
labels of model parameters accurately. Once the estimation of
parameters is inaccurate, a significant cumulative error will
appear between the restored and clear image.

Recently, various end-to-end neural networks have been
constructed to learn the translation of the haze-to-clear image.
For instance, Li et al. [17] designed an all-in-one dehazing
network (AODNet) based on the re-formulated atmospheric
scattering model. Since AODNet collects hazy information
using fewer parameters, it tends to provide restored images
with low-illumination effects. In [18], a gated context aggre-
gation network (GCANet) was constructed to learn the end-
to-end mapping of hazy and clear images. GCANet introduces
a smooth dilated convolution to solve the passive impact of
gridding artifacts caused by the dilation technique. However,
the non-homogeneous haze still remains in the result recovered
by GCANet. To solve this issue, Liu et al. [19] designed
an attention-based multi-scale end-to-end network (termed
GridDehazeNet) to focus on the hazy distribution in the image
domain. In particular, GridDehazeNet designs a channel-wise
attention mechanism to flexibly adjust the weights of different
scales for feature fusion. To further improve the capability
of image detail extraction, a feature fusion attention network
(FFANet) [20] was proposed to obtain the hazy distribution in
channels and pixels. Meanwhile, many attempts based on gen-
erative adversarial network (GAN) have also been applied in

image dehazing [21]–[24]. Engin et al. [21] designed an end-
to-end cycle-consistent adversarial dehazing network (Cycle-
Dehaze) without paired datasets. To more accurately estimate
the transmission map in the real-world hazy scene, Dudhane
et al. [22] designed an encoder-decoder-based generator net-
work and an optical model to generate the haze-free image.
Meanwhile, a residual initial (RI) module [23] composed of
dense connections within the multi-scale convolutional layer
is designed for learning the potential rich features in hazy
images more efficiently. Mehta et al. [24] improved the visual
quality of hazy images by generating an adversarial network
and analyzing hyperspectral information.

Although extensive CNN- and GAN-based dehazing meth-
ods are oriented to improve imaging quality by increasing
network parameters and depth, the expensive computation and
redundant feature information will hinder the application of
the hazy elimination technology. In addition, insufficient detail
recovery capabilities will seriously affect the performance of
visual IoT-enabled ITS.

III. TSDNET: THREE-STAGE DEHAZING NETWORK

Fig. 2 provides the schematic configuration of our TSDNet,
which mainly contains three parts, i.e., multi-scale attention
module for estimating the hazy distribution in the RGB image
domain, two-branch extraction module for learning the hazy
features, and multi-feature fusion module for reconstructing
the latent haze-free image. In addition, a mixed loss function
is reconstructed to improve the robustness of our network.

A. Multi-Scale Attention
Theoretically, the human visual system (HVS) selectively

focuses on a certain specific signal while ignoring other
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visible information. Inspired by this phenomenon, the attention
mechanism is widely used in natural language processing
(NLP), text recognition, image classification, etc. Since the
haze is generally non-homogeneous, it is feasible and critical
to employ an attention module for estimating the hazy distri-
bution of the image domain before dehazing.

Fig. 2 (a) shows the proposed multi-scale attention sub-
network, which consists of a dilated convolution-based atrous
spatial pyramid pooling (ASPP) module and multiple con-
volutional layers. In particular, we first adjust the size of
the feature map as 1/2 of the original resolution through
a max-pooling operator to reduce the computational cost.
A convolutional layer with the leaky rectified linear unit
(LReLU) function is then arranged after max-pooling. Let ω,
C, and Al, respectively, denote the max-pooling, convolution,
and LReLU, this computing process can be mathematically
expressed as follows

F a1 = Al(C(ω(I))), (2)

with I and F a1 , respectively, being the input haze-degraded
image and output feature map. Three dilated convolutions
Cdm with the dilated rate m ∈ {5, 7, 9} are simultaneously
employed to extract the multi-scale hazy information, i.e.,

Gm = Al(Cdm(F a1 )), (3)

with Gm being the feature map generated by the dilated
convolutional layer with the dilated rate of m. Meanwhile,
the three outputs and F a1 are merged into one feature map,
which is given by

F a2 = [F a1 , G5, G7, G9]. (4)

Finally, we adopt two convolutional layers and a bilinear
interpolation upsampling operator to obtain the attention map
Am from F a2 . The final output of multi-scale attention module
Ī will be written as

Ī(x) = I(x) ∗Am(x) + I(x). (5)

B. Two-Branch Extraction

The two-branch extraction module employs an encoder-
decoder network and a dense network to obtain hazy fea-
tures. Enormous studies have proved that the encoder-decoder
network can get significant achievement in image restoration
tasks. In particular, this network can fully extract the structure
and texture features (i.e., multi-scale information) from input
image [25]. Therefore, we use a three-scale encoder-decoder
network to achieve hazy feature extraction, shown in Fig. 2
(b). In particular, two convolutions with step size stride = 2
are exploited to reduce image size in the encoder, and the
decoder uses two bilinear interpolation operators to restore
image size. Meanwhile, two skip connection operations are
adopted between the encoder and decoder. These operations
are able to transfer the hierarchical features learned by the
encoder to the decoder, resulting in avoiding the loss of spatial
information caused by down-sampling.

In addition, Fig. 2 (c) shows the proposed dense network,
which only contains five convolutional layers. To avoid infor-
mation loss, this network adopts many concatenation strategies

to guarantee feature reuse and prevent gradient disappearance.
Specifically, the output of all previous convolutional operations
will be cascaded and fed to the current layer. For instance,
let F ci be the output of i-th layer in the dense network, the
operation of the 5-th convolutional layer can be written as

F c5 = Al(C([F c4 , F
c
3 , F

c
2 , F

c
1 ])). (6)

Since the features yielded by each convolutional layer are
reused, this dense network can extract rich feature infor-
mation through fewer convolutional kernels. Meanwhile, our
dense network adopts frequency domain supervision based on
the fast Fourier transform to extract hazy features different
from the encoder-decoder network. The specific details about
frequency domain supervision in the dense network will be
introduced in Section III-D1.

C. Multi-Feature Fusion

For the sake of better visual performance, the multi-feature
fusion module employs a simple but effective residual network
to integrate all hazy information. As shown in Fig. 2 (d),
the outputs of the multi-scale attention module and the two-
branch extraction module are fed into the multi-feature fusion
module to reconstruct haze-free images. In particular, the
proposed fusion module includes two convolutional layers and
five residual modules. Each residual module is composed of
two convolutional layers and a pixel addition operation, which
can suppress the feature loss issue caused by convolution.

D. Reconstruction of Loss Function

This section introduces the mixed loss function of the
proposed network. To achieve satisfactory imaging results,
network parameters can be optimized by minimizing this loss
function. In particular, this loss function L mainly consists of
smooth L1 loss Ls1 and MS-SSIM loss LMS-SSIM. Let γ1 and
γ2 be the trade-off parameters, the mixed loss function can
then be given by

L = γ1Ls1 + γ2LMS-SSIM. (7)

1) Smooth L1 Loss: Hang et al. [26] have verified L1 loss
function has better effects than L2 in image restoration task.
We thus use a robust L1 loss (termed smooth L1 [27]) to
supervise the final output Ĵ and the outputs of the two-branch
extraction module (Ĵ1, Ĵ2), i.e.,

Ls1 = Ls1(J− Ĵ)+γ3L
s
1(J− Ĵ1)+γ4L

s
1(F(J)−F(Ĵ2)), (8)

with J being the ground truth, i.e., haze-free image. In Eq.
(8), γ3 and γ4 denote the penalty coefficients. Since the
encoder-decoder network and dense network are designed for
respectively extracting feature information from the spatial and
frequency domains, the fast Fourier transform operator F(·)
is used to convert J and Ĵ2 into the frequency domain. Let P
denote the input, the operation of Ls1 is defined as follows

Ls1(P ) =
1

N

N∑
i=1

Sl1(P (i)), (9)
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TABLE I
THE DETAILS OF THREE DATASETS USED IN OUR EXPERIMENTS. “REAL”
AND “DEPTH” DENOTE WHETHER THIS DATASET IS REAL-WORLD HAZY

IMAGES AND WHETHER IT CONTAINS DEPTH INFORMATION,
RESPECTIVELY.

Dataset Train Test-S Test-R Test-D Real Depth

RESIDE [29] OTS 2000 35 0 0 "

RTTS 0 0 45 4320 "
Seaships [30] 2000 35 0 0

VOC2007 [31] 0 0 0 4952

where i denotes the pixel index, N represents the sum of the
image pixel. The smooth L1 operator Sl1 is given by

Sl1(P (i)) =

{
0.5P 2(i), if |P (i)| < 1,

|P (i)| − 0.5, otherwise.
(10)

By comparison, the smooth L1 loss is less sensitive to
outliers than L2 and has a faster convergence than raw L1.

2) MS-SSIM Loss: Although the smooth L1 loss preserves
the color and luminance of each region with equal weight, the
contrast of high-frequency regions in the image still needs to
be improved. Therefore, we adopt MS-SSIM loss for capturing
the superior hazy characteristics. Specifically, the MS-SSIM
loss used in our TSDNet can be written as follows

LMS-SSIM = LMS-SSIM(J, Ĵ) + γ5LMS-SSIM(J, Ĵ1)

+ γ6LMS-SSIM(J, Ĵ2),
(11)

where LMS-SSIM represents the multi-scale structure similarity
operator, γ5 and γ6 denote the penalty weights. Let Ŷ and Y
be the restored image and ground truth, SSIM value for pixel
x is defined as follows

SSIM(x) =
2µY µŶ + c

µ2
Y + µ2

Ŷ
+ c
·

2σY Ŷ + c∗
σ2
Y + σ2

Ŷ
+ c∗

= l(x)· cs(x),

(12)

where c and c∗ are two constants for avoiding a zero denom-
inator. The means µY , µŶ , standard deviations σY , σŶ , and
covariance σY Ŷ are computed by a Gaussian filter. Finally,
the operation of MS-SSIM is given by

LMS-SSIM = 1− lαM ·
M∏
j=1

[csj ]
βj , (13)

where lM and csj represent the terms we defined in Eq. (12),
M denotes the default parameter of scales. Please refer to [28]
for detail parameter settings on MS-SSIM.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section mainly introduces the implementation details
of the proposed method. Meanwhile, extensive experiments
on both synthetic and real-world hazy images are conducted
to verify the effectiveness of our TSDNet. Furthermore, the
application of the dehazing method in object detection and
running time analysis will be further discussed.

A. Datasets
In this paper, we employ three datasets to train and test our

TSDNet, including realistic single image dehazing (RESIDE)
[29], Seaships [30], and VOC2007 [31].

1) RESIDE: As a large-scale dataset specially applied in
single image dehazing, RESIDE is divided into five subsets
for different tasks. In particular, the outdoor training set (OTS)
and real-world task-driven testing set (RTTS) from RESIDE
are exploited because our dehazer is designed for special tasks.
OTS is a synthetic hazy set, which includes 8970 haze-free
images and the corresponding depth information. In contrast,
RTTS is composed of 4322 real-world hazy images. Mean-
while, each image in RTTS has a corresponding annotation,
which contains five object types, i.e., “Bicycle”, “Bus”, “Car”,
“Motorbike”, and “Person”.

2) Seaships: In 2018, Shao et al. [30] published a large-
scale ship dataset (named Seaships), which contains 31455
images from 10800 real-world video segments. Massive high-
visibility images can be extracted from the Seaships. There-
fore, we will manually select extensive high-quality images
from the Seaships as the training and testing datasets.

3) VOC2007: This dataset mainly contains 5011 train-
ing/validation images and 4952 test images. Meanwhile,
VOC2007 has 20 types of object. Since our TSDNet is
designed for outdoor traffic scenarios, we only consider eight
types of object, i.e., “Aeroplane”, “Bicycle”, “Boat”, “Bus”,
“Car”, “Motorbike”, “Person”, and “Train”.

To train the proposed network, we select 2000 haze-free
images from RESIDE-OTS and 2000 high-visibility images
from Seaships as the training dataset (termed Train). In par-
ticular, each image is cropped as several 200 × 200 patches.
Each image patch is randomly rotated 90, 180, 270, and
360 degrees. Meanwhile, we randomly select 35 RESIDE-
OTS images and 35 Seaships images as the synthetic test
dataset (Test-S), 45 RESIDE-RTTS images as the real-world
test dataset (Test-R), and 4952 VOC2007 images and 4320
RESIDE-RTTS images as the detection test dataset (Test-D),
respectively. It is mentioned that the training and test datasets
do not overlap. Since the Seaships and VOC2007 datasets lack
the scene depth, we employ MegaDepth [33] to calculate the
depth information of each pixel. Finally, the hazy images I
can be generated by clear images J and depth information d
through Eq. (1) with β ∈ [0.08, 0.3] and A ∈ [0.7, 1.0]. The
usage details of all datasets are organized in Table I.

B. Experimental Settings

Our TSDNet is trained on a PC with Intel (R) Core (TM) i5-
10600KF CPU @ 4.10GHz and Nvidia GeForce RTX 2080 Ti
GPU. In this work, the TSDNet is implemented based on the
Pytorch 1.9.0 package in the Python 3.7 platform. Meanwhile,
the Adam optimizer is exploited to train our network. The
training epoch, initial learning rate, and batch size are set to
120, 10−4, and 4, respectively. The learning rate is adjusted to
1/2 by every 15 epoch. The six weight values are empirically
set as γ1 = 1 and γ2 = γ3 = γ4 = γ5 = γ6 = 0.5,
respectively. For a fair comparison, the parameters of all
competing methods are optimally provided by the authors.

C. Visibility Enhancement Results on Synthetic Images

In this section, we evaluate our TSDNet and other state-
of-the-art methods on the Test-S. In particular, four metrics,
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TABLE II
PSNR, SSIM, FSIM, AND LPIPS RESULTS OF VARIOUS METHODS ON THE 35 RESIDE-OTS AND 35 SEASHIPS IMAGES FROM TEST-S. THE BEST

RESULTS ARE IN BOLD.

Method RESIDE-OTS [29] Seaships [30]
PSNR↑ SSIM↑ FSIM↑ LPIPS↓ PSNR↑ SSIM↑ FSIM↑ LPIPS↓

Hazy 13.59±1.89 0.726±0.091 0.852±0.065 0.185±0.058 17.36±3.07 0.864±0.079 0.917±0.051 0.152±0.061
DCP [7] 15.34±2.67 0.826±0.081 0.938±0.026 0.136±0.060 12.30±1.52 0.677±0.065 0.904±0.018 0.354±0.083
CAP [12] 21.18±2.73 0.911±0.049 0.950±0.029 0.057±0.024 19.97±2.46 0.917±0.028 0.965±0.013 0.141±0.023
HL [32] 20.37±3.30 0.906±0.071 0.962±0.021 0.083±0.052 18.60±1.92 0.818±0.058 0.904±0.035 0.266±0.063

F-LDCP [9] 21.08±3.47 0.917±0.062 0.967±0.012 0.080±0.043 17.46±1.96 0.857±0.045 0.943±0.014 0.248±0.053
DehazeNet [14] 15.57±2.40 0.783±0.090 0.887±0.058 0.140±0.056 20.06±4.15 0.884±0.068 0.934±0.042 0.161±0.051
MSCNN [15] 18.67±2.80 0.869±0.081 0.947±0.031 0.084±0.046 23.87±3.35 0.940±0.026 0.971±0.016 0.111±0.019
AODNet [17] 17.99±1.78 0.854±0.062 0.888±0.040 0.100±0.032 17.45±2.57 0.879±0.032 0.916±0.023 0.174±0.034
GCANet [18] 19.93±3.28 0.887±0.055 0.949±0.025 0.190±0.047 19.86±3.36 0.893±0.060 0.960±0.012 0.154±0.057

GridDehazeNet [19] 24.04±3.43 0.950±0.026 0.980±0.012 0.030±0.014 24.26±3.13 0.943±0.027 0.965±0.014 0.065±0.024
FFANet [20] 22.63±3.69 0.927±0.052 0.968±0.019 0.048±0.036 21.31±3.69 0.919±0.047 0.952±0.029 0.093±0.040

TSDNet 24.24±3.25 0.959±0.022 0.981±0.010 0.029±0.016 25.49±3.56 0.965±0.012 0.984±0.005 0.062±0.015

Fig. 3. Visual comparisons of various methods on two RESIDE-OTS and two Seaships images from Test-S. Our TSDNet can obtain clearer and more colorful
results than other state-of-the-art dehazing methods.

i.e., peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), feature similarity (FSIM), and learned perceptual
image patch similarity (LPIPS), are simultaneously employed
to quantitatively compare the performance of various methods.

For the sake of better visual comparison, we show four
dehazing cases to verify the superiority of our method, shown
in Fig. 3. It can be observed that the enhanced results yielded
by DCP [7] have serious distortion, which causes the image
brightness to be lower. In contrast, the unremoved haze still
remains in the restored versions of CAP [12] and HL [32].
Although F-LDCP [9] has the strong dehazing ability, the color
distortion in the local region (e.g., water and sky) will affect
the visual effect. The failure of these prior-based methods is
that the outdoor condition is complex and changeable, leading
to the inapplicability of prior knowledge. In the learning-based
methods, DehazeNet [14], MSCNN [15], AODNet [17], and
FFANet [20] fail to remove haze in the road and maritime
scenes adequately. On the contrary, the excessive removal of
haze by GCANet [18] and GridDehazeNet [19] results in

abnormalities in some homogeneous regions, such as artifacts
in the sky area shown in Fig. 3 (i) and (j). By visual
comparison, our TSDNet can fully avoid the problems existing
in other methods and has the best scores on PSNR, SSIM,
FSIM, and LPIPS, shown in Table II.

D. Visibility Enhancement Results on Real-World Images

To verify that the proposed method can remove the haze in
the real-world scene, we further conduct a dehazing experi-
ment on 45 real-world hazy images from Test-R. Meanwhile,
three no-reference indexes, i.e., naturalness image quality
evaluator (NIQE), perception-based image quality evaluator
(PIQE), and blind/referenceless image spatial quality evaluator
(BRISQUE), are used for comparing the imaging performance
of all methods.

Fig. 4 displays three real-world dehazing cases. Obviously,
traditional prior-based methods [7], [9], [12], [32] unable to
produce clear dehazing results and may further cause image
degradation. Specifically, F-LDCP [9] not only fails to remove
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Fig. 4. Visual comparisons of various methods on three RESIDE-RTTS real-world images from Test-R. The proposed method can remove haze more fully
on the premise of ensuring the natural scene.

TABLE III
NIQE, PIQE, AND BRISQUE RESULTS (MEAN±STD) OF VARIOUS

METHODS ON THE 45 RESIDE-RTTS IMAGES FROM TEST-R. THE BEST
RESULTS ARE IN BOLD.

Method NIQE↓ PIQE↓ BRISQUE↓
Hazy 4.208±1.148 22.01±9.55 0.513±0.127

DCP [7] 3.633±0.658 19.23±8.22 0.542±0.165
CAP [12] 4.026±0.849 21.30±8.47 0.504±0.046
HL [32] 3.786±0.741 19.22±7.39 0.499±0.065

F-LDCP [9] 3.773±0.767 20.10±8.03 0.499±0.100
DehazeNet [14] 4.090±1.069 21.02±8.80 0.529±0.100
MSCNN [15] 3.847±0.867 19.93±8.24 0.504±0.080
AODNet [17] 3.973±0.798 19.68±8.07 0.498±0.055
GCANet [18] 4.070±0.751 22.05±8.74 0.502±0.049

GridDehazeNet [19] 3.852±0.816 18.79±8.01 0.509±0.192
FFANet [20] 3.992±0.892 19.86±8.86 0.538±0.147

TSDNet 3.607±0.668 16.42±7.58 0.468±0.188

the haze but also produces serious color abnormalities. Since
the transmission is overestimated, the illumination of scene
recovered by DCP [7], CAP [12] and HL [32] becomes
darker. For the learning-based methods, AODNet [17] tends
to produce low-illumination results. DehazeNet [14], MSCNN
[15], GridDehazeNet [19], and FFANet [20] fail to get the
clean images, and retained a certain degree of haze. GCANet
[18] can obtain natural visual effects, but the haze often
residues in the image domain. By comparison, our TSDNet is
more suitable for the dehazing task of outdoor traffic scenarios

TABLE IV
METRIC RESULTS (MAP±STD) OF YOLOV4-TINY/FASTER

R-CNN/YOLOV4 ON THE 4952 VOC2007 SYNTHETIC HAZY IMAGES
FROM TEST-D AND THE ENHANCED IMAGES YIELDED BY ALL DEHAZING

METHODS (UNIT: %). THE BEST RESULTS ARE IN BOLD, AND THE
SECOND-BEST ARE WITH UNDERLINE.

Method YOLOv4-Tiny [34] Faster R-CNN [35] YOLOv4 [36]
Hazy 51.55±10.6 79.01±8.32 89.13±4.87

DCP [7] 53.92±8.70 80.92±7.74 91.16±3.41
CAP [12] 53.64±8.33 80.38±7.82 90.69±3.99
HL [32] 51.23±10.3 80.07±8.17 90.28±3.77

F-LDCP [9] 54.14±8.75 81.16±7.46 90.61±3.80
DehazeNet [14] 51.99±10.1 79.71±8.79 89.65±4.63
MSCNN [15] 53.37±9.48 80.96±8.04 90.67±4.04
AODNet [17] 52.41±8.92 80.42±7.70 90.71±4.26
GCANet [18] 52.97±9.19 80.04±7.97 90.68±3.93

GridDehazeNet [19] 54.09±9.10 80.96±8.04 91.33±3.92
FFANet [20] 54.28±8.91 81.51±8.37 91.01±4.21

TSDNet 54.83±8.61 81.57±7.98 91.40±3.45
GT 55.78±8.31 82.03±7.58 91.74±3.65

and tends to generate robust and high-contrast results. Further-
more, Table III provides the comparison of three no-reference
evaluators on the Test-R. Our method generates the optimal
values in all three indexes, better than the sub-optimal methods
by −0.026 NIQE, −2.37 PIQE, and −0.030 BRISQUE. The
superior dehazing performance of TSDNet benefits from the
attention of hazy distribution and the dual feature extraction
from image and frequency domains.
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TABLE V
DETECTION AVERAGE PRECISION (%) OF YOLOV4-TINY/FASTER R-CNN/YOLOV4 ON THE 4320 REAL-WORLD HAZY IMAGES OF RESIDE-RTTS

FROM TEST-D AND THE ENHANCED IMAGES BY ALL DEHAZING METHODS. THE BEST RESULTS ARE IN BOLD.

Method Bicycle Bus Car Motorbike Person mAP ↑
Hazy 52.01/43.86/53.58 28.97/21.53/34.83 66.53/44.91/72.12 43.04/33.49/55.54 72.14/70.49/78.70 52.54/42.86/58.96

DCP [7] 49.42/44.80/53.58 28.85/24.43/38.38 69.32/47.63/72.34 40.83/37.39/55.09 74.12/72.59/78.84 52.51/45.37/59.65
CAP [12] 39.62/38.75/47.16 27.00/21.83/34.28 65.77/43.47/69.62 37.95/31.80/48.83 70.21/68.84/75.27 48.11/40.94/55.03
HL [32] 47.32/45.89/50.51 24.15/22.97/35.44 67.64/49.47/71.71 39.49/34.71/52.51 70.27/69.54/76.98 49.77/44.52/57.43

F-LDCP [9] 52.01/43.86/53.58 28.98/21.53/34.83 66.53/44.90/72.12 43.04/33.49/54.54 72.14/70.49/78.70 52.54/42.86/58.96
DehazeNet [14] 52.27/45.75/54.40 29.51/22.31/35.17 67.65/46.29/72.48 42.61/35.07/54.70 72.36/70.66/78.71 52.88/44.02/59.09
MSCNN [15] 53.95/46.81/55.55 31.77/24.51/38.30 69.42/48.66/73.44 46.34/37.86/56.05 73.96/72.43/79.10 53.95/46.05/60.49
AODNet [17] 53.63/46.99/56.17 27.65/22.61/35.61 67.17/45.72/72.28 42.22/34.76/53.55 72.93/72.08/78.82 52.72/44.43/59.29
GCANet [18] 52.83/47.33/53.83 31.54/24.60/36.72 69.08/47.59/72.15 46.52/37.50/54.69 73.07/71.53/78.13 54.61/45.71/59.10

GridDehazeNet [19] 53.92/47.85/55.64 31.14/24.33/36.33 68.56/47.78/73.20 47.02/38.52/57.70 74.07/72.41/79.30 54.94/46.18/60.43
FFANet [20] 52.59/45.86/54.87 29.66/22.62/35.23 67.59/46.36/72.79 44.74/35.86/56.98 72.85/71.43/78.93 53.49/44.42/59.76

TSDNet 55.22/49.29/56.24 31.94/25.53/38.55 69.75/49.12/73.46 47.42/39.28/56.65 74.33/72.75/79.58 55.73/47.20/60.90

TABLE VI
DETAILED CONFIGURATION OF ALL DEVICES USED IN RUNNING TIME

ANALYSIS.

Number Type CPU RAM GPU GDDR
Dev.1 Laptop Intel Core i7-9750H 8GB GTX 1050 3GB
Dev.2 Laptop AMD Ryzen 7 5800H 16GB GTX 3060 6GB
Dev.3 Desktop Intel Core i5-8600 8GB GTX 1060 6GB
Dev.4 Desktop Intel Core i5-10600KF 16GB RTX 2080 Ti 11GB
Dev.5 Desktop Intel Core i9-10850K 32GB RTX 2080 Ti 11GB

E. Object Detection after Visibility Enhancement

High-level vision tasks, e.g., object detection and recogni-
tion, have received continuous attention. However, these meth-
ods trained on haze-free images may have the poor precision
under hazy conditions, which affect practical applications.
Therefore, we study the reliability of object detection in the
presence of haze and verify that our TSDNet can promote
the detection performance. In particular, we conduct an ex-
periment on 4952 VOC2007 synthetic hazy images and 4320
RESIDE-RTTS real-world hazy images. YOLOv4-Tiny [34],
Faster R-CNN [35], and YOLOv4 [36] are simultaneously
used to detect the object in the hazy images and the images
restored by all dehazing methods.

Table IV displays the mean average precision (mAP) and
standard deviation of all methods on the VOC2007 synthetic
hazy images from Test-D. By comparing the detection results
of hazy images and ground truth (GT), the synthetic fog
will reduce the mAP of three object detection methods with
different extents. The detection failure on the hazy image lies
in that the fog buries the critical information, making the object
invisible. Theoretically, the detection accuracy can be im-
proved by enhancing the visibility of hazy images. Therefore,
object detection after dehazing can achieve better precision
than hazy images detection in most cases. In particular, our
TSDNet can obtain the detection accuracy closest to the GT
in each target detection method.

To verify that dehazing methods are also effective in the
real-world hazy environment, Table V compares the average
detection precision of all methods on the RESIDE-RTTS
images from Test-D. Our TSDNet achieves the best perfor-
mance with 55.73% mAP in YOLOv4-Tiny, 47.20% mAP in
Faster R-CNN, and 60.90% mAP in YOLOv4. Meanwhile,
our method can generate the best detection average precision

in most cases. Although the proposed TSDNet is non-optimal
for “Car” detection using Faster R-CNN and “Mobtorbike”
detection using YOLOv4, our method gets the second and
third places, which falls behind the optimal solution by a slight
difference. Furthermore, Fig. 5 provides six real-world hazy
scenes to observe the impact of the proposed dehazing method
on YOLOv4. Obviously, it is challenging to accurately detect
the target in the hazy images by YOLOv4, which often pro-
duces the issue of detection failure or misclassification. With
the distance between the observer and the target increasing,
the degradation phenomenon becomes more serious, which
increases the risk of detection failure. Fortunately, our method
can significantly improve detection accuracy by highlighting
the critical information of the object in the hazy image.

F. Running Time Analysis
It is well known that many devices applied in the dis-

tributed intelligence-enabled Internet of Things (IoT) have
different computing power. Therefore, we select five types
of equipment with different performances for calculating the
running time of all methods. The detailed configuration of
all devices is displayed in Table VI. As shown in Table
VII, we calculate the average running time on three different
scale datasets, i.e., 480 × 640, 640 × 800, and 1080 × 720.
Each dataset contains 20 images. Undoubtedly, four com-
parable algorithms implemented by Matlab [7], [9], [12],
[32] have slower calculation speeds, which fail to meet the
requirement of real-time processing in practical applications.
On the contrary, the learning-based methods accelerated by
GPU have a great advantage. Unfortunately, many competitive
approaches require expensive computational costs due to the
huge complexity of network. In deep learning methods, only
AODNet [17], GridDehazeNet [19], and our TSDNet can
satisfy the processing speed over than 30 frames per second in
all datasets with different scales and devices with different per-
formance. In contrast, our method has faster inference speed
and better enhancement effects under the hazy environment.
The robustness and efficiency of our method benefits from the
novel strategy, which considers the challenging dehazing task
as three simple works, i.e., haze distribution attention, feature
extraction, and information fusion. Each part thus only needs
fewer parameters and calculations to generate the efficient
dehazing performance.
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Fig. 5. The detection results on (Top) RESIDE-RTTS real-world hazy images from Test-D and (Bottom) restored images yielded by our TSDNet. It is obvious
that our TSDNet can not only reduce haze but also improve the accuracy and robustness of YOLOv4-based object detection.

TABLE VII
AVERAGE RUNNING TIME COMPARISON OF THREE DATASETS (480× 640/640× 800/1080× 720) ON FIVE DEVICES (UNIT: SECOND). THE FASTEST

TIMES ARE IN BOLD.

Method Language Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5
DCP [7] Matlab

(CPU)

1.2245/2.0567/3.0913 1.0354/1.7270/2.8429 1.0387/1.8224/2.7664 1.0641/1.7615/2.6398 0.9564/1.8347/2.7821
CAP [12] 1.0913/1.7804/2.7294 1.4375/1.8495/2.6752 1.0658/1.5789/2.2944 1.0543/1.4984/2.3438 0.8980/1.4901/2.2344

F-LDCP [9] 1.4564/2.3750/3.4490 1.4844/2.0617/3.3553 1.3766/2.1168/3.6571 1.2738/2.0313/2.9424 1.3224/2.0148/3.2681
HL [32] Matlab

(GPU)

5.3479/6.0275/7.0730 5.1868/5.8526/6.6321 5.2668/5.9034/6.6914 5.1599/5.8031/6.6118 5.1034/5.4900/6.6217
DehazeNet [14] 0.6934/1.1839/1.6592 0.6765/1.0387/1.5023 0.6868/1.0423/1.5568 0.6728/1.0299/1.4935 0.6680/0.9936/1.4289
MSCNN [15] 0.2911/0.5082/0.9572 0.2875/0.4569/0.8975 0.2875/0.4601/0.9012 0.2795/0.4459/0.8918 0.2391/0.4109/0.8701
AODNet [17]

Python
(GPU)

0.0345/0.0517/0.0779 0.0140/0.0209/0.0186 0.0287/0.0466/0.0574 0.0126/0.0196/0.0287 0.0122/0.0195/0.0280
GCANet [18] 0.2950/0.4872/0.7540 0.1055/0.1395/0.1776 0.2937/0.4569/1.7016 0.0866/0.1355/0.1994 0.0798/0.1255/0.1858

GridDehazeNet [19] 0.0269/0.0286/0.0316 0.0171/0.0195/0.0162 0.0183/0.0194/0.0327 0.0213/0.0268/0.0270 0.0208/0.0252/0.0266
FFANet [20] 3.7178/6.2597/9.4397 0.7951/1.3194/1.8980 3.1832/4.8600/6.4772 0.4080/0.6731/1.1272 0.3981/0.6655/1.1228

TSDNet 0.0143/0.0193/0.0225 0.0099/0.0112/0.0132 0.0124/0.0149/0.0171 0.0111/0.0128/0.0148 0.0102/0.0121/0.0166

G. Ablation Study

To verify the effectiveness of the proposed strategies, we
implement an ablation study in this work. In particular, we
select 200 RESIDE-OTS and 200 Seaships images from Train
mentioned in Table. I to train all dehazing models. Other train-
ing parameters are consistent with Section IV-B. As shown in
Table VIII, we compare the PSNR and SSIM results of seven
different models on 70 images from Test-S. The reconstructed
images generally have lower PSNR and SSIM values when the
single sub-network (e.g., TBEb, TBEc, and MFF) is directly
adopted for dehazing. Compared with Model.1, Model.4 and
Model.5 combine TBEb and TBEc with MFF, respectively,
which can improve the dehazing performance with different
degrees. Obviously, Model.6 achieves better results. The su-
perior performance of Model.6 benefits from the dual feature
extraction and fusion strategies in image domain and frequency
domain. Therefore, Model.6 can fully extract the hazy features
and reconstruct sharp images. Finally, Model.7 (i.e., TSDNet)
further introduces a multi-scale attention module to achieve
optimal dehazing results.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we designed a three-stage dehazing network
(named TSDNet) for promoting visual IoT-enabled ITS. To
be specific, the proposed TSDNet mainly contains three parts,
i.e., multi-scale attention, two-branch extraction, and multi-
feature fusion modules. The multi-scale attention module
consists of a dilated convolution-based ASPP module and
several convolutional layers to obtain hazy distribution. The
two-branch extraction module exploits an encoder-decoder
network and a dense network to extract features separately.

TABLE VIII
PSNR AND SSIM RESULTS OF SEVEN DIFFERENT MODELS ON TEST-S.

NOTE THAT MSA, TBEB, TBEC, AND MFF REPRESENT THE
MULTI-SCALE ATTENTION MODULE, ENCODER-DECODER NETWORK,

DENSE NETWORK, AND MULTI-FEATURE FUSION MODULE SHOWN IN FIG.
2, RESPECTIVELY.

Number MSA TBEb TBEc MFF PSNR SSIM

Model.1 " 20.94±2.98 0.932±0.029
Model.2 " 17.40±3.19 0.859±0.072
Model.3 " 19.33±2.91 0.878±0.060
Model.4 " " 21.92±3.36 0.939±0.027
Model.5 " " 19.89±3.06 0.887±0.061
Model.6 " " " 23.03±3.07 0.942±0.031
Model.7 " " " " 23.07±3.22 0.944±0.030

In particular, the dense network adopts the frequency domain
supervision to obtain hazy characteristics different from the
encoder-decoder network. Finally, the outputs of the atten-
tion and extraction modules are simultaneously fed into the
multi-feature fusion module to reconstruct the latent haze-
free image. Comprehensive experiments on synthetic and real-
world scenarios have demonstrated the superior performance
of TSDNet in terms of imaging reliability and robustness under
different hazy imaging conditions. In addition, our TSDNet
is able to significantly improve the robustness and accuracy
of object detection for YOLOv4-Tiny, Faster R-CNN, and
YOLOv4 under hazy weather. The imaging results meet the
real-time requirement of detection applications in visual IoT-
driven ITS. To make our work more reliable and applicable,
the study shown in this work can be extended with the
following directions.
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• To further enhance the efficacy and robustness of our
TSDNet, the weights γ1≤k≤6 of different loss functions
in Section III-D should be adaptively adjusted for dif-
ferent imaging scenarios. Traditional parameter-selection
methods, commonly performed using sufficient exper-
imental experiences, can generate satisfactory imaging
results, but are rather complex and time-consuming. To
replace the constant weights with the adaptive ones, the
homoscedastic uncertainty weighting strategy [37] could
be considered to automatically select the optimal weights.

• In practical scenarios, the state-of-the-art visibility en-
hancement methods still inevitably suffer from the loss
of fine details in restored images, leading to the limited
improvement in object detection under hazy weather [38].
To further improve the detection accuracy and robustness,
there is strong potential for simultaneously restoring
the latent haze-free images and detecting the objects
of interest. To achieve this challenging goal, we will
further consider the influence of other factors (e.g., air
pollution and season) on haze generation to produce more
realistic hazy dataset. Meanwhile, the multi-task learning
paradigm [39], where multiple learning tasks are solved
jointly, could be exploited in future work.

• In addition, almost no previous dehazing studies consider
the influences of ultraviolet (UV) light on visibility
enhancement. The UV light is inevitably absorbed and
scattered by fog and haze in long-range outdoor scenes,
easily leading to color distortion in blue sky regions.
The UV light filter, an additional optical device, is able
to reduce the atmospheric haze through absorbing UV
light [40]. There is thus a potential solution to combine
our TSDNet (i.e., software dehazing) and UV light filter
(i.e., hardware dehazing) to further enhance the imaging
quality in visual IoT-enabled ITS.

Owing to the advantages of the introduced multi-scale atten-
tion, two-branch extraction, and multi-feature fusion modules,
our TSDNet could effectively and robustly improve the haze
visibility enhancement, leading to the high-quality images and
the promoted object detection for visual IoT-driven ITS.
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