forked from 3DTopia/LGM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
185 lines (146 loc) · 7.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import tyro
import time
import random
import torch
from core.options import AllConfigs
from core.models import LGM
from accelerate import Accelerator, DistributedDataParallelKwargs
from safetensors.torch import load_file
import kiui
def main():
opt = tyro.cli(AllConfigs)
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
mixed_precision=opt.mixed_precision,
gradient_accumulation_steps=opt.gradient_accumulation_steps,
# kwargs_handlers=[ddp_kwargs],
)
# model
model = LGM(opt)
# resume
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
# tolerant load (only load matching shapes)
# model.load_state_dict(ckpt, strict=False)
state_dict = model.state_dict()
for k, v in ckpt.items():
if k in state_dict:
if state_dict[k].shape == v.shape:
state_dict[k].copy_(v)
else:
accelerator.print(f'[WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.')
else:
accelerator.print(f'[WARN] unexpected param {k}: {v.shape}')
# data
if opt.data_mode == 's3':
from core.provider_objaverse import ObjaverseDataset as Dataset
else:
raise NotImplementedError
train_dataset = Dataset(opt, training=True)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
pin_memory=True,
drop_last=True,
)
test_dataset = Dataset(opt, training=False)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False,
)
# optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.05, betas=(0.9, 0.95))
# scheduler (per-iteration)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=3000, eta_min=1e-6)
total_steps = opt.num_epochs * len(train_dataloader)
pct_start = 3000 / total_steps
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=total_steps, pct_start=pct_start)
# accelerate
model, optimizer, train_dataloader, test_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, test_dataloader, scheduler
)
# loop
for epoch in range(opt.num_epochs):
# train
model.train()
total_loss = 0
total_psnr = 0
for i, data in enumerate(train_dataloader):
with accelerator.accumulate(model):
optimizer.zero_grad()
step_ratio = (epoch + i / len(train_dataloader)) / opt.num_epochs
out = model(data, step_ratio)
loss = out['loss']
psnr = out['psnr']
accelerator.backward(loss)
# gradient clipping
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), opt.gradient_clip)
optimizer.step()
scheduler.step()
total_loss += loss.detach()
total_psnr += psnr.detach()
if accelerator.is_main_process:
# logging
if i % 100 == 0:
mem_free, mem_total = torch.cuda.mem_get_info()
print(f"[INFO] {i}/{len(train_dataloader)} mem: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G lr: {scheduler.get_last_lr()[0]:.7f} step_ratio: {step_ratio:.4f} loss: {loss.item():.6f}")
# save log images
if i % 500 == 0:
gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
kiui.write_image(f'{opt.workspace}/train_gt_images_{epoch}_{i}.jpg', gt_images)
# gt_alphas = data['masks_output'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# gt_alphas = gt_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, gt_alphas.shape[1] * gt_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/train_gt_alphas_{epoch}_{i}.jpg', gt_alphas)
pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
kiui.write_image(f'{opt.workspace}/train_pred_images_{epoch}_{i}.jpg', pred_images)
# pred_alphas = out['alphas_pred'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# pred_alphas = pred_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, pred_alphas.shape[1] * pred_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/train_pred_alphas_{epoch}_{i}.jpg', pred_alphas)
total_loss = accelerator.gather_for_metrics(total_loss).mean()
total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
if accelerator.is_main_process:
total_loss /= len(train_dataloader)
total_psnr /= len(train_dataloader)
accelerator.print(f"[train] epoch: {epoch} loss: {total_loss.item():.6f} psnr: {total_psnr.item():.4f}")
# checkpoint
# if epoch % 10 == 0 or epoch == opt.num_epochs - 1:
accelerator.wait_for_everyone()
accelerator.save_model(model, opt.workspace)
# eval
with torch.no_grad():
model.eval()
total_psnr = 0
for i, data in enumerate(test_dataloader):
out = model(data)
psnr = out['psnr']
total_psnr += psnr.detach()
# save some images
if accelerator.is_main_process:
gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
kiui.write_image(f'{opt.workspace}/eval_gt_images_{epoch}_{i}.jpg', gt_images)
pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
kiui.write_image(f'{opt.workspace}/eval_pred_images_{epoch}_{i}.jpg', pred_images)
# pred_alphas = out['alphas_pred'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# pred_alphas = pred_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, pred_alphas.shape[1] * pred_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/eval_pred_alphas_{epoch}_{i}.jpg', pred_alphas)
torch.cuda.empty_cache()
total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
if accelerator.is_main_process:
total_psnr /= len(test_dataloader)
accelerator.print(f"[eval] epoch: {epoch} psnr: {psnr:.4f}")
if __name__ == "__main__":
main()