You can create isolated Python virtual environments to package multiple Python libraries for a PySpark job. Here is an example of how you can package Great Expectations and profile a set of sample data.
- Access to EMR Serverless
- Docker
- An S3 bucket in
us-east-1
and an IAM Role to run your EMR Serverless jobs
Set the following variables according to your environment.
export S3_BUCKET=<YOUR_S3_BUCKET_NAME>
export APPLICATION_ID=<EMR_SERVERLESS_APPLICATION_ID>
export JOB_ROLE_ARN=<EMR_SERVERLESS_IAM_ROLE>
The example below builds a virtual environment with the necessary dependencies to use Great Expectations to profile a limited set of data from the New York City Taxi and Limo trip data.
All the commands below should be executed in this (examples/pyspark/dependencies
) directory.
- Build your virtualenv archive
This command builds the included Dockerfile
and exports the resulting pyspark_ge.tar.gz
file to your local filesystem.
docker build --output . .
aws s3 cp pyspark_ge.tar.gz s3:https://${S3_BUCKET}/artifacts/pyspark/
- Copy your code
There's a sample ge_profile.py
script included here.
aws s3 cp ge_profile.py s3:https://${S3_BUCKET}/code/pyspark/
- Run your job
entryPoint
should point to your script on S3entryPointArguments
defines the output location of the Great Expectations profiler- The virtualenv archive is added via the
--archives
parameter
aws emr-serverless start-job-run \
--application-id $APPLICATION_ID \
--execution-role-arn $JOB_ROLE_ARN \
--job-driver '{
"sparkSubmit": {
"entryPoint": "s3:https://'${S3_BUCKET}'/code/pyspark/ge_profile.py",
"entryPointArguments": ["s3:https://'${S3_BUCKET}'/tmp/ge-profile"],
"sparkSubmitParameters": "--conf spark.driver.cores=1 --conf spark.driver.memory=2g --conf spark.executor.cores=3 --conf spark.executor.memory=4g --conf spark.executor.instances=2 --conf spark.archives=s3:https://'${S3_BUCKET}'/artifacts/pyspark/pyspark_ge.tar.gz#environment --conf spark.emr-serverless.driverEnv.PYSPARK_DRIVER_PYTHON=./environment/bin/python --conf spark.emr-serverless.driverEnv.PYSPARK_PYTHON=./environment/bin/python --conf spark.emr-serverless.executorEnv.PYSPARK_PYTHON=./environment/bin/python"
}
}' \
--configuration-overrides '{
"monitoringConfiguration": {
"s3MonitoringConfiguration": {
"logUri": "s3:https://'${S3_BUCKET}'/logs/"
}
}
}'
When the job finishes, it will write a part-00000
file out to s3:https://${S3_BUCKET}/tmp/ge-profile
.
- Copy and view the output
aws s3 cp s3:https://${S3_BUCKET}/tmp/ge-profile/part-00000 ./ge.html
open ./ge.html