Skip to content

growthcharts/jamesclient

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

jamesclient

R-CMD-check

The goal of jamesclient is to facilitate interaction for R users with the Joint Automatic Measurement and Evaluation System (JAMES). JAMES is an online resource for creating growth charts and analysing growth curves.

Installation

You can install the development version from GitHub with:

install.packages("remotes")
remotes::install_github("growthcharts/jamesclient")

Example

The primary functions are:

Function Description
james_post Send POST request to JAMES
james_get Send GET request to JAMES
inspect_demodata() Upload demo child data and download parsed file

james_post()

Upload BDS data

library(jamesclient)
fn <- system.file("extdata", "allegrosultum", "client3.json", 
                  package = "jamesdemodata", mustWork = TRUE)
host <- "https://james.groeidiagrammen.nl"
r1 <- james_post(host = host, path = "data/upload/json", txt = fn)
r1$parsed
#> $psn
#>   id                                 name        dob       dobf       dobm  src
#> 1 -1 fa308134-069e-49ce-9847-ccdae380ed6f 2018-10-11 1995-07-04 1990-12-02 1234
#>      sex gad ga smo  bw hgtm hgtf agem etn
#> 1 female 189 27   1 990  167  190   27  NL
#> 
#> $xyz
#>       age xname yname zname                  zref       x     y      z
#> 1  0.0849   age   hgt hgt_z nl_2012_hgt_female_27  0.0849 38.00 -0.158
#> 2  0.1670   age   hgt hgt_z nl_2012_hgt_female_27  0.1670 43.50  0.047
#> 3  0.0849   age   wgt wgt_z nl_2012_wgt_female_27  0.0849  1.25 -0.203
#> 4  0.1670   age   wgt wgt_z nl_2012_wgt_female_27  0.1670  2.10  0.015
#> 5  0.0849   age   hdc hdc_z nl_2012_hdc_female_27  0.0849 27.00 -0.709
#> 6  0.1670   age   hdc hdc_z nl_2012_hdc_female_27  0.1670 30.50 -0.913
#> 7  0.0849   age   bmi bmi_z nl_1997_bmi_female_nl  0.0849  8.66 -5.719
#> 8  0.1670   age   bmi bmi_z nl_1997_bmi_female_nl  0.1670 11.10 -3.767
#> 9  0.0849   hgt   wfh wfh_z   nl_2012_wfh_female_ 38.0000  1.25 -0.001
#> 10 0.1670   hgt   wfh wfh_z   nl_2012_wfh_female_ 43.5000  2.10  0.326
#> 11 0.0000   age   wgt wgt_z nl_2012_wgt_female_27  0.0000  0.99  0.190

james_get()

Get output from R console (just for checking)

r2 <- james_get(host = host, path = paste(r1$session, "console", sep = "/"))
cat(r2$parsed, "\n")
#> > upload_data(txt = c("{\"Referentie\":\"fa308134-069e-49ce-9847-ccdae380ed6f\",\"OrganisatieCode\":1234,\"ClientGegevens\":{\"Elementen\":[{\"Bdsnummer\":19,\"Waarde\":\"2\"},{\"Bdsnummer\":20,\"Waarde\":\"20181011\"},{\"Bdsnummer\":82,\"Waarde\":\"189\"},{\"Bdsnummer\":91,\"Waarde\":\"1\"},{\"Bdsnummer\":110,\"Waarde\":\"990\"},{\"Bdsnummer\":238,\"Waarde\":\"1670\"},{\"Bdsnummer\":240,\"Waarde\":\"1900\"}],\"Groepen\":[{\"Elementen\":[{\"Bdsnummer\":63,\"Waarde\":\"19950704\"},{\"Bdsnummer\":71,\"Waarde\":\"6030\"},{\"Bdsnummer\":62,\"Waarde\":\"01\"}]},{\"Elementen\":[{\"Bdsnummer\":63,\"Waarde\":\"19901202\"},{\"Bdsnummer\":71,\"Waarde\":\"6030\"},{\"Bdsnummer\":62,\"Waarde\":\"02\"}]}]},\"Contactmomenten\":[{\"Tijdstip\":\"20181111\",\"Elementen\":[{\"Bdsnummer\":235,\"Waarde\":\"380\"},{\"Bdsnummer\":245,\"Waarde\":\"1250\"},{\"Bdsnummer\":252,\"Waarde\":\"270\"}]},{\"Tijdstip\":\"20181211\",\"Elementen\":[{\"Bdsnummer\":235,\"Waarde\":\"435\"},{\"Bdsnummer\":245,\"Waarde\":\"2100\"},{\"Bdsnummer\":252,\"Waarde\":\"305\"}]}]}"))
#> List of length  2 
#> [psn]
#> [xyz]

For other end points, see https://james.groeidiagrammen.nl.

inspect_demodata()

library(jamesclient)
data <- inspect_demodata(name = "Anne_S", "smocc", format = "1.0")
data
#> $psn
#>   id   name        dob dobf       dobm src  dnr    sex gad ga smo   bw hgtm
#> 1 -1 Anne S 1989-01-31 <NA> 1961-08-01   0 <NA> female 283 40   0 3300  172
#>   hgtf agem etn
#> 1  183   27  NL
#> 
#> $xyz
#>       age xname yname zname                   zref       x     y      z
#> 1  0.0000   age   hgt hgt_z  nl_1997_hgt_female_nl  0.0000 51.00  0.052
#> 2  0.0986   age   hgt hgt_z  nl_1997_hgt_female_nl  0.0986 54.70  0.145
#> 3  0.1369   age   hgt hgt_z  nl_1997_hgt_female_nl  0.1369 56.00  0.114
#> 4  0.2327   age   hgt hgt_z  nl_1997_hgt_female_nl  0.2327 59.50  0.206
#> 5  0.5010   age   hgt hgt_z  nl_1997_hgt_female_nl  0.5010 68.00  0.661
#> 6  0.7885   age   hgt hgt_z  nl_1997_hgt_female_nl  0.7885 73.00  0.498
#> 7  0.9610   age   hgt hgt_z  nl_1997_hgt_female_nl  0.9610 75.50  0.375
#> 8  1.2485   age   hgt hgt_z  nl_1997_hgt_female_nl  1.2485 80.00  0.434
#> 9  1.5140   age   hgt hgt_z  nl_1997_hgt_female_nl  1.5140 83.50  0.449
#> 10 1.9740   age   hgt hgt_z  nl_1997_hgt_female_nl  1.9740 89.50  0.731
#> 11 0.0000   age   wgt wgt_z  nl_1997_wgt_female_nl  0.0000  3.30 -0.105
#> 12 0.0986   age   wgt wgt_z  nl_1997_wgt_female_nl  0.0986  4.10 -0.280
#> 13 0.1369   age   wgt wgt_z  nl_1997_wgt_female_nl  0.1369  4.52 -0.123
#> 14 0.2327   age   wgt wgt_z  nl_1997_wgt_female_nl  0.2327  5.64  0.350
#> 15 0.5010   age   wgt wgt_z  nl_1997_wgt_female_nl  0.5010  7.95  0.723
#> 16 0.7885   age   wgt wgt_z  nl_1997_wgt_female_nl  0.7885  9.46  0.714
#> 17 0.9610   age   wgt wgt_z  nl_1997_wgt_female_nl  0.9610 10.01  0.552
#> 18 1.2485   age   wgt wgt_z  nl_1997_wgt_female_nl  1.2485 11.35  0.827
#> 19 1.5140   age   wgt wgt_z  nl_1997_wgt_female_nl  1.5140 12.01  0.711
#> 20 1.9740   age   wgt wgt_z  nl_1997_wgt_female_nl  1.9740 13.34  0.747
#> 21 0.0986   age   hdc hdc_z  nl_1997_hdc_female_nl  0.0986 37.60  0.461
#> 22 0.1369   age   hdc hdc_z  nl_1997_hdc_female_nl  0.1369 38.30  0.398
#> 23 0.2327   age   hdc hdc_z  nl_1997_hdc_female_nl  0.2327 40.40  0.655
#> 24 0.5010   age   hdc hdc_z  nl_1997_hdc_female_nl  0.5010 44.40  1.134
#> 25 0.7885   age   hdc hdc_z  nl_1997_hdc_female_nl  0.7885 46.00  0.829
#> 26 0.9610   age   hdc hdc_z  nl_1997_hdc_female_nl  0.9610 47.00  0.929
#> 27 1.2485   age   hdc hdc_z  nl_1997_hdc_female_nl  1.2485 48.00  0.896
#> 28 1.5140   age   hdc hdc_z  nl_1997_hdc_female_nl  1.5140 48.50  0.801
#> 29 1.9740   age   hdc hdc_z  nl_1997_hdc_female_nl  1.9740 50.10  1.354
#> 30 0.0000   age   bmi bmi_z  nl_1997_bmi_female_nl  0.0000 12.69  0.160
#> 31 0.0986   age   bmi bmi_z  nl_1997_bmi_female_nl  0.0986 13.70 -0.476
#> 32 0.1369   age   bmi bmi_z  nl_1997_bmi_female_nl  0.1369 14.41 -0.295
#> 33 0.2327   age   bmi bmi_z  nl_1997_bmi_female_nl  0.2327 15.93  0.214
#> 34 0.5010   age   bmi bmi_z  nl_1997_bmi_female_nl  0.5010 17.19  0.352
#> 35 0.7885   age   bmi bmi_z  nl_1997_bmi_female_nl  0.7885 17.75  0.590
#> 36 0.9610   age   bmi bmi_z  nl_1997_bmi_female_nl  0.9610 17.56  0.514
#> 37 1.2485   age   bmi bmi_z  nl_1997_bmi_female_nl  1.2485 17.73  0.824
#> 38 1.5140   age   bmi bmi_z  nl_1997_bmi_female_nl  1.5140 17.23  0.641
#> 39 1.9740   age   bmi bmi_z  nl_1997_bmi_female_nl  1.9740 16.65  0.436
#> 40 0.0986   age   dsc dsc_z  nl_2014_dsc_female_40  0.0986 14.69  0.190
#> 41 0.1369   age   dsc dsc_z  nl_2014_dsc_female_40  0.1369 16.72 -0.094
#> 42 0.2327   age   dsc dsc_z  nl_2014_dsc_female_40  0.2327 20.82 -0.743
#> 43 0.5010   age   dsc dsc_z  nl_2014_dsc_female_40  0.5010 35.30 -0.002
#> 44 0.7885   age   dsc dsc_z  nl_2014_dsc_female_40  0.7885 41.52 -0.806
#> 45 0.9610   age   dsc dsc_z  nl_2014_dsc_female_40  0.9610 47.59 -0.157
#> 46 1.2485   age   dsc dsc_z  nl_2014_dsc_female_40  1.2485 56.21  0.844
#> 47 1.5140   age   dsc dsc_z  nl_2014_dsc_female_40  1.5140 59.75  0.654
#> 48 1.9740   age   dsc dsc_z  nl_2014_dsc_female_40  1.9740 64.21  0.248
#> 49 0.0000   hgt   wfh wfh_z nl_1997_wfh_female_nla 51.0000  3.30 -0.858
#> 50 0.0986   hgt   wfh wfh_z nl_1997_wfh_female_nla 54.7000  4.10 -0.780
#> 51 0.1369   hgt   wfh wfh_z nl_1997_wfh_female_nla 56.0000  4.52 -0.419
#> 52 0.2327   hgt   wfh wfh_z nl_1997_wfh_female_nla 59.5000  5.64  0.215
#> 53 0.5010   hgt   wfh wfh_z nl_1997_wfh_female_nla 68.0000  7.95  0.326
#> 54 0.7885   hgt   wfh wfh_z nl_1997_wfh_female_nla 73.0000  9.46  0.655
#> 55 0.9610   hgt   wfh wfh_z nl_1997_wfh_female_nla 75.5000 10.01  0.584
#> 56 1.2485   hgt   wfh wfh_z nl_1997_wfh_female_nla 80.0000 11.35  0.851
#> 57 1.5140   hgt   wfh wfh_z nl_1997_wfh_female_nla 83.5000 12.01  0.644
#> 58 1.9740   hgt   wfh wfh_z nl_1997_wfh_female_nla 89.5000 13.34  0.464

Some older functions

Everything can be done with james_post() and james_get(). The functions below are not needed anymore, and will be deprecated in the future.

upload_txt()

Upload BDS data and create a tibble on the server:

library(jamesclient)
fn <- file.path(path.package("jamesclient"), "testdata", "client3.json")
r1 <- upload_txt(fn)
browseURL(get_url(r1, "return"))

request_chart()

Make a combined upload and automatic chartcode choice:

r2 <- request_chart(fn, chartcode = "PJAHN27")
browseURL(get_url(r2, "svg"))

Removed functions

Function Description Alternative
request_site() Create personalised site james_post()
upload_bds() Upload and parse data james_post()