#!/usr/bin/env python # encoding: utf-8 """ SurfGeopotentialHeight.py * DESCRIPTION: Class to granulate the ViirsAncSurfGeopotentialHeight * data product Created by Geoff Cureton on 2013-02-25. Copyright (c) 2011 University of Wisconsin SSEC. All rights reserved. """ file_Date = '$Date$' file_Revision = '$Revision$' file_Author = '$Author$' file_HeadURL = '$HeadURL$' file_Id = '$Id$' __author__ = 'G.P. Cureton ' __version__ = '$Id$' __docformat__ = 'Epytext' import os, sys, logging, traceback from os import path,uname,environ import string import re import uuid from glob import glob from time import time from datetime import datetime,timedelta from scipy import round_ import numpy as np from numpy import ma import copy from bisect import bisect_left,bisect_right import ctypes from numpy.ctypeslib import ndpointer import ViirsData from NCEPtoBlob import NCEPclass # skim and convert routines for reading .asc metadata fields of interest import adl_blob2 as adl_blob import adl_asc from adl_asc import skim_dir, contiguous_granule_groups, granule_groups_contain, effective_anc_contains,eliminate_duplicates,_is_contiguous, RDR_REQUIRED_KEYS, POLARWANDER_REQUIRED_KEYS from adl_common import ADL_HOME, CSPP_RT_HOME, CSPP_RT_ANC_PATH, CSPP_RT_ANC_CACHE_DIR, COMMON_LOG_CHECK_TABLE # every module should have a LOG object try : sourcename= file_Id.split(" ") LOG = logging.getLogger(sourcename[1]) except : LOG = logging.getLogger('SurfGeopotentialHeight') from Utils import getURID, getAscLine, getAscStructs, findDatelineCrossings, shipOutToFile class SurfGeopotentialHeight() : def __init__(self,inDir=None, sdrEndian=None, ancEndian=None): self.collectionShortName = 'VIIRS-ANC-Geopot-Ht-Lev-Mod-Gran' self.xmlName = 'VIIRS_ANC_GEOPOT_HT_LEV_MOD_GRAN.xml' self.blobDatasetName = 'surfaceGeopotentialHeight' self.dataType = 'float32' self.sourceType = 'NCEP_ANC_Int' self.sourceList = [''] self.trimObj = ViirsData.ViirsTrimTable() if inDir is None : self.inDir = path.abspath(path.curdir) else : self.inDir = inDir if sdrEndian is None : self.sdrEndian = adl_blob.LITTLE_ENDIAN else : self.sdrEndian = sdrEndian if ancEndian is None : self.ancEndian = adl_blob.LITTLE_ENDIAN else : self.ancEndian = ancEndian def ingest(self,ancBlob=None): ''' Ingest the ancillary dataset. ''' dates = [] ncepBlobFiles = [] for gridBlobStruct in ancBlob: timeObj = gridBlobStruct[0] ncepBlobFile = gridBlobStruct[1] LOG.debug("VIIRS-ANC-Temp-Surf2M-Mod-Gran %s --> %s" % \ (ncepBlobFile,timeObj.strftime("%Y-%m-%d %H:%M:%S:%f"))) dates.append(timeObj) ncepBlobFiles.append(ncepBlobFile) self.date_0 = dates[0] self.date_1 = dates[1] LOG.debug("Minimum NCEP date is: %s" %(self.date_0.strftime("%Y-%m-%d %H:%M:%S:%f"))) LOG.debug("Maximum NCEP date is: %s" %(self.date_1.strftime("%Y-%m-%d %H:%M:%S:%f"))) ncepBlobFile_0 = ncepBlobFiles[0] ncepBlobFile_1 = ncepBlobFiles[1] self.gridData_0 = getattr(ncepBlobFile_0,self.blobDatasetName).astype(self.dataType) self.gridData_1 = getattr(ncepBlobFile_1,self.blobDatasetName).astype(self.dataType) def setGeolocationInfo(self,dicts): ''' Populate this class instance with the geolocation data for a single granule ''' # Set some environment variables and paths ANC_SCRIPTS_PATH = path.join(CSPP_RT_HOME,'viirs') ADL_ASC_TEMPLATES = path.join(ANC_SCRIPTS_PATH,'asc_templates') # Collect some data from the geolocation dictionary self.geoDict = dicts URID = dicts['URID'] geo_Collection_ShortName = dicts['N_Collection_Short_Name'] N_Granule_ID = dicts['N_Granule_ID'] ObservedStartTimeObj = dicts['ObservedStartTime'] geoFiles = glob('%s/%s*' % (self.inDir,URID)) geoFiles.sort() LOG.debug("###########################") LOG.debug(" Geolocation Information ") LOG.debug("###########################") LOG.debug("N_Granule_ID : %r" % (N_Granule_ID)) LOG.debug("ObservedStartTime : %s" % (ObservedStartTimeObj.__str__())) LOG.debug("N_Collection_Short_Name : %s" %(geo_Collection_ShortName)) LOG.debug("URID : %r" % (URID)) LOG.debug("geoFiles : %r" % (geoFiles)) LOG.debug("###########################") timeDelta = (self.date_1 - self.date_0).total_seconds() LOG.debug("timeDelta is %r seconds" %(timeDelta)) timePrime = (ObservedStartTimeObj - self.date_0).total_seconds() LOG.debug("timePrime is %r seconds (%f percent along time interval)" % \ (timePrime,(timePrime/timeDelta)*100.)) delta_gridData = self.gridData_1 - self.gridData_0 self.gridData = (delta_gridData/timeDelta) * timePrime + self.gridData_0 gridData_0_avg = np.average(self.gridData_0) gridData_1_avg = np.average(self.gridData_1) gridData_avg = np.average(self.gridData) LOG.debug("average(gridData_0) = %f" %(np.average(self.gridData_0))) LOG.debug("average(gridData_1) = %f" %(np.average(self.gridData_1))) LOG.debug("average(gridData) = %f" %(np.average(self.gridData))) # Do we have terrain corrected geolocation? terrainCorrectedGeo = True if 'GEO-TC' in geo_Collection_ShortName else False # Do we have long or short style geolocation field names? if (geo_Collection_ShortName=='VIIRS-MOD-GEO-TC' or geo_Collection_ShortName=='VIIRS-MOD-RGEO') : longFormGeoNames = True LOG.debug("We have long form geolocation names") elif (geo_Collection_ShortName=='VIIRS-MOD-GEO' or geo_Collection_ShortName=='VIIRS-MOD-RGEO-TC') : LOG.debug("We have short form geolocation names") longFormGeoNames = False else : LOG.error("Invalid geolocation shortname: %s" %(geo_Collection_ShortName)) return -1 # Get the geolocation xml file geoXmlFile = "%s.xml" % (string.replace(geo_Collection_ShortName,'-','_')) geoXmlFile = path.join(ADL_HOME,'xml/VIIRS',geoXmlFile) if path.exists(geoXmlFile): LOG.debug("We are using for %s: %s,%s" %(geo_Collection_ShortName,geoXmlFile,geoFiles[0])) # Open the geolocation blob and get the latitude and longitude endian = self.sdrEndian geoBlobObj = adl_blob.map(geoXmlFile,geoFiles[0], endian=endian) # Get scan_mode to find any bad scans scanMode = geoBlobObj.scan_mode[:] badScanIdx = np.where(scanMode==254)[0] LOG.debug("Bad Scans: %r" % (badScanIdx)) # Detemine the min, max and range of the latitude and longitude, # taking care to exclude any fill values. if longFormGeoNames : if endian==adl_blob.BIG_ENDIAN: latitude = getattr(geoBlobObj,'latitude').byteswap() longitude = getattr(geoBlobObj,'longitude').byteswap() latitude = latitude.astype('float') longitude = longitude.astype('float') else: latitude = getattr(geoBlobObj,'latitude').astype('float') longitude = getattr(geoBlobObj,'longitude').astype('float') else : latitude = getattr(geoBlobObj,'lat').astype('float') longitude = getattr(geoBlobObj,'lon').astype('float') latitude = ma.masked_less(latitude,-800.) latMin,latMax = np.min(latitude),np.max(latitude) latRange = latMax-latMin longitude = ma.masked_less(longitude,-800.) lonMin,lonMax = np.min(longitude),np.max(longitude) lonRange = lonMax-lonMin LOG.debug("min,max,range of latitide: %f %f %f" % (latMin,latMax,latRange)) LOG.debug("min,max,range of longitude: %f %f %f" % (lonMin,lonMax,lonRange)) # Determine the latitude and longitude fill masks, so we can restore the # fill values after we have scaled... latMask = latitude.mask lonMask = longitude.mask # Check if the geolocation is in radians, convert to degrees if 'RGEO' in geo_Collection_ShortName : LOG.debug("Geolocation is in radians, convert to degrees...") latitude = np.degrees(latitude) longitude = np.degrees(longitude) latMin,latMax = np.min(latitude),np.max(latitude) latRange = latMax-latMin lonMin,lonMax = np.min(longitude),np.max(longitude) lonRange = lonMax-lonMin LOG.debug("New min,max,range of latitude: %f %f %f" % (latMin,latMax,latRange)) LOG.debug("New min,max,range of longitude: %f %f %f" % (lonMin,lonMax,lonRange)) # Restore fill values to masked pixels in geolocation geoFillValue = self.trimObj.sdrTypeFill['VDNE_FLOAT64_FILL'][latitude.dtype.name] latitude = ma.array(latitude,mask=latMask,fill_value=geoFillValue) self.latitude = latitude.filled() geoFillValue = self.trimObj.sdrTypeFill['VDNE_FLOAT64_FILL'][longitude.dtype.name] longitude = ma.array(longitude,mask=lonMask,fill_value=geoFillValue) self.longitude = longitude.filled() # Record the corners, taking care to exclude any bad scans... nDetectors = 16 firstGoodScan = np.where(scanMode<=2)[0][0] lastGoodScan = np.where(scanMode<=2)[0][-1] firstGoodRow = firstGoodScan * nDetectors lastGoodRow = lastGoodScan * nDetectors + nDetectors - 1 latCrnList = [latitude[firstGoodRow,0],latitude[firstGoodRow,-1],latitude[lastGoodRow,0],latitude[lastGoodRow,-1]] lonCrnList = [longitude[firstGoodRow,0],longitude[firstGoodRow,-1],longitude[lastGoodRow,0],longitude[lastGoodRow,-1]] # Check for dateline/pole crossings num180Crossings = findDatelineCrossings(latCrnList,lonCrnList) LOG.debug("We have %d dateline crossings."%(num180Crossings)) # Copy the geolocation information to the class object self.latMin = latMin self.latMax = latMax self.latRange = latRange self.lonMin = lonMin self.lonMax = lonMax self.lonRange = lonRange self.scanMode = scanMode self.latitude = latitude self.longitude = longitude self.latCrnList = latCrnList self.lonCrnList = lonCrnList self.num180Crossings = num180Crossings # Parse the geolocation asc file to get struct information which will be # written to the ancillary asc files geoAscFileName = path.join(self.inDir,URID+".asc") LOG.debug("\nOpening %s..." % (geoAscFileName)) geoAscFile = open(geoAscFileName,'rt') self.RangeDateTimeStr = getAscLine(geoAscFile,"ObservedDateTime") self.RangeDateTimeStr = string.replace(self.RangeDateTimeStr,"ObservedDateTime","RangeDateTime") self.GRingLatitudeStr = getAscStructs(geoAscFile,"GRingLatitude",12) self.GRingLongitudeStr = getAscStructs(geoAscFile,"GRingLongitude",12) geoAscFile.close() def _grid2Gran_bilinearInterp(self,dataLat, dataLon, gridData, gridLat, gridLon): '''Granulates a gridded dataset using an input geolocation''' nData = np.int64(dataLat.size) gridRows = np.int32(gridLat.shape[0]) gridCols = np.int32(gridLat.shape[1]) data = np.ones(np.shape(dataLat),dtype=np.float64)* -999.9 dataIdx = np.ones(np.shape(dataLat),dtype=np.int64) * -99999 ANC_SCRIPTS_PATH = path.join(CSPP_RT_HOME,'viirs') libFile = path.join(ANC_SCRIPTS_PATH,'libgriddingAndGranulation.so.1.0.1') LOG.debug("Gridding and granulation library file: %s" % (libFile)) lib = ctypes.cdll.LoadLibrary(libFile) grid2gran_bilinearInterp = lib.grid2gran_bilinearInterp grid2gran_bilinearInterp.restype = None grid2gran_bilinearInterp.argtypes = [ ndpointer(ctypes.c_double,ndim=1,shape=(nData),flags='C_CONTIGUOUS'), ndpointer(ctypes.c_double,ndim=1,shape=(nData),flags='C_CONTIGUOUS'), ndpointer(ctypes.c_double,ndim=1,shape=(nData),flags='C_CONTIGUOUS'), ctypes.c_int64, ndpointer(ctypes.c_double,ndim=2,shape=(gridRows,gridCols),flags='C_CONTIGUOUS'), ndpointer(ctypes.c_double,ndim=2,shape=(gridRows,gridCols),flags='C_CONTIGUOUS'), ndpointer(ctypes.c_double,ndim=2,shape=(gridRows,gridCols),flags='C_CONTIGUOUS'), ndpointer(ctypes.c_int64,ndim=1,shape=(nData),flags='C_CONTIGUOUS'), ctypes.c_int32, ctypes.c_int32 ] ''' int snapGrid_ctypes(double *lat, double *lon, double *data, long nData, double *gridLat, double *gridLon, double *gridData, long *gridDataIdx, int nGridRows, int nGridCols ) ''' LOG.debug("Calling C routine grid2gran_bilinearInterp()...") retVal = grid2gran_bilinearInterp(dataLat, dataLon, data, nData, gridLat, gridLon, gridData, dataIdx, gridRows, gridCols) LOG.debug("Returning from C routine grid2gran_bilinearInterp()") return data,dataIdx def granulate(self,ANC_objects): ''' Granulate the ancillary dataset. ''' LOG.info("Granulating %s ..." % (self.collectionShortName)) degInc = 0.5 lats = np.arange(361.)*degInc - 90. lons = np.arange(720.)*degInc - 180. latitude = self.latitude longitude = self.longitude gridData = self.gridData[:,:] if self.num180Crossings != 2 : #gridData = np.roll(gridData,360) # old gridData = np.roll(gridData,360,axis=1) # new gridLon,gridLat = np.meshgrid(lons,lats) LOG.debug("start,end NCEP Grid Latitude values : %f,%f"%(gridLat[0,0],gridLat[-1,0])) LOG.debug("start,end NCEP Grid Longitude values : %f,%f"%(gridLon[0,0],gridLon[0,-1])) else : negLonIdx = np.where(lons<0) lons[negLonIdx] += 360. lons = np.roll(lons,360) gridLon,gridLat = np.meshgrid(lons,lats) longitudeNegIdx = np.where(longitude < 0.) longitude[longitudeNegIdx] += 360. LOG.debug("start,end NCEP Grid Latitude values : %f,%f"%(gridLat[0,0],gridLat[-1,0])) LOG.debug("start,end NCEP Grid Longitude values : %f,%f"%(gridLon[0,0],gridLon[0,-1])) LOG.debug("min of gridData = %r"%(np.min(gridData))) LOG.debug("max of gridData = %r"%(np.max(gridData))) t1 = time() data,dataIdx = self._grid2Gran_bilinearInterp(np.ravel(latitude), np.ravel(longitude), gridData.astype(np.float64), gridLat, gridLon) t2 = time() elapsedTime = t2-t1 LOG.info("Granulation took %f seconds for %d points" % (elapsedTime,latitude.size)) data = data.reshape(latitude.shape) dataIdx = dataIdx.reshape(latitude.shape) LOG.debug("Shape of granulated %s data is %s" % (self.collectionShortName,np.shape(data))) LOG.debug("Shape of granulated %s dataIdx is %s" % (self.collectionShortName,np.shape(dataIdx))) # Moderate resolution trim table arrays. These are # bool arrays, and the trim pixels are set to True. modTrimMask = self.trimObj.createModTrimArray(nscans=48,trimType=bool) # Fill the required pixel trim rows in the granulated NCEP data with # the ONBOARD_PT_FILL value for the correct data type fillValue = self.trimObj.sdrTypeFill['ONBOARD_PT_FILL'][self.dataType] data = ma.array(data,mask=modTrimMask,fill_value=fillValue) self.data = data.filled() def shipOutToFile(self): ''' Pass the current class instance to this Utils method to generate a blob/asc file pair from the input ancillary data object.''' return shipOutToFile(self)