forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mdp4e.py
552 lines (425 loc) · 18.5 KB
/
mdp4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"""Markov Decision Processes (Chapter 16)
First we define an MDP, and the special case of a GridMDP, in which
states are laid out in a 2-dimensional grid. We also represent a policy
as a dictionary of {state: action} pairs, and a Utility function as a
dictionary of {state: number} pairs. We then define the value_iteration
and policy_iteration algorithms."""
from utils4e import argmax, vector_add, orientations, turn_right, turn_left
from planning import *
import random
import numpy as np
from collections import defaultdict
# _____________________________________________________________
# 16.1 Sequential Detection Problems
class MDP:
"""A Markov Decision Process, defined by an initial state, transition model,
and reward function. We also keep track of a gamma value, for use by
algorithms. The transition model is represented somewhat differently from
the text. Instead of P(s' | s, a) being a probability number for each
state/state/action triplet, we instead have T(s, a) return a
list of (p, s') pairs. We also keep track of the possible states,
terminal states, and actions for each state. [page 646]"""
def __init__(self, init, actlist, terminals, transitions=None, reward=None, states=None, gamma=0.9):
if not (0 < gamma <= 1):
raise ValueError("An MDP must have 0 < gamma <= 1")
# collect states from transitions table if not passed.
self.states = states or self.get_states_from_transitions(transitions)
self.init = init
if isinstance(actlist, list):
# if actlist is a list, all states have the same actions
self.actlist = actlist
elif isinstance(actlist, dict):
# if actlist is a dict, different actions for each state
self.actlist = actlist
self.terminals = terminals
self.transitions = transitions or {}
if not self.transitions:
print("Warning: Transition table is empty.")
self.gamma = gamma
self.reward = reward or {s: 0 for s in self.states}
# self.check_consistency()
def R(self, state):
"""Return a numeric reward for this state."""
return self.reward[state]
def T(self, state, action):
"""Transition model. From a state and an action, return a list
of (probability, result-state) pairs."""
if not self.transitions:
raise ValueError("Transition model is missing")
else:
return self.transitions[state][action]
def actions(self, state):
"""Return a list of actions that can be performed in this state. By default, a
fixed list of actions, except for terminal states. Override this
method if you need to specialize by state."""
if state in self.terminals:
return [None]
else:
return self.actlist
def get_states_from_transitions(self, transitions):
if isinstance(transitions, dict):
s1 = set(transitions.keys())
s2 = set(tr[1] for actions in transitions.values()
for effects in actions.values()
for tr in effects)
return s1.union(s2)
else:
print('Could not retrieve states from transitions')
return None
def check_consistency(self):
# check that all states in transitions are valid
assert set(self.states) == self.get_states_from_transitions(self.transitions)
# check that init is a valid state
assert self.init in self.states
# check reward for each state
assert set(self.reward.keys()) == set(self.states)
# check that all terminals are valid states
assert all(t in self.states for t in self.terminals)
# check that probability distributions for all actions sum to 1
for s1, actions in self.transitions.items():
for a in actions.keys():
s = 0
for o in actions[a]:
s += o[0]
assert abs(s - 1) < 0.001
class MDP2(MDP):
"""
Inherits from MDP. Handles terminal states, and transitions to and from terminal states better.
"""
def __init__(self, init, actlist, terminals, transitions, reward=None, gamma=0.9):
MDP.__init__(self, init, actlist, terminals, transitions, reward, gamma=gamma)
def T(self, state, action):
if action is None:
return [(0.0, state)]
else:
return self.transitions[state][action]
class GridMDP(MDP):
"""A two-dimensional grid MDP, as in [Figure 16.1]. All you have to do is
specify the grid as a list of lists of rewards; use None for an obstacle
(unreachable state). Also, you should specify the terminal states.
An action is an (x, y) unit vector; e.g. (1, 0) means move east."""
def __init__(self, grid, terminals, init=(0, 0), gamma=.9):
grid.reverse() # because we want row 0 on bottom, not on top
reward = {}
states = set()
self.rows = len(grid)
self.cols = len(grid[0])
self.grid = grid
for x in range(self.cols):
for y in range(self.rows):
if grid[y][x]:
states.add((x, y))
reward[(x, y)] = grid[y][x]
self.states = states
actlist = orientations
transitions = {}
for s in states:
transitions[s] = {}
for a in actlist:
transitions[s][a] = self.calculate_T(s, a)
MDP.__init__(self, init, actlist=actlist,
terminals=terminals, transitions=transitions,
reward=reward, states=states, gamma=gamma)
def calculate_T(self, state, action):
if action:
return [(0.8, self.go(state, action)),
(0.1, self.go(state, turn_right(action))),
(0.1, self.go(state, turn_left(action)))]
else:
return [(0.0, state)]
def T(self, state, action):
return self.transitions[state][action] if action else [(0.0, state)]
def go(self, state, direction):
"""Return the state that results from going in this direction."""
state1 = tuple(vector_add(state, direction))
return state1 if state1 in self.states else state
def to_grid(self, mapping):
"""Convert a mapping from (x, y) to v into a [[..., v, ...]] grid."""
return list(reversed([[mapping.get((x, y), None)
for x in range(self.cols)]
for y in range(self.rows)]))
def to_arrows(self, policy):
chars = {(1, 0): '>', (0, 1): '^', (-1, 0): '<', (0, -1): 'v', None: '.'}
return self.to_grid({s: chars[a] for (s, a) in policy.items()})
# ______________________________________________________________________________
""" [Figure 16.1]
A 4x3 grid environment that presents the agent with a sequential decision problem.
"""
sequential_decision_environment = GridMDP([[-0.04, -0.04, -0.04, +1],
[-0.04, None, -0.04, -1],
[-0.04, -0.04, -0.04, -0.04]],
terminals=[(3, 2), (3, 1)])
# ______________________________________________________________________________
# 16.1.3 The Bellman equation for utilities
def q_value(mdp, s, a, U):
if not a:
return mdp.R(s)
res = 0
for p, s_prime in mdp.T(s, a):
res += p * (mdp.R(s) + mdp.gamma * U[s_prime])
return res
# TODO: DDN in figure 16.4 and 16.5
# ______________________________________________________________________________
# 16.2 Algorithms for MDPs
# 16.2.1 Value Iteration
def value_iteration(mdp, epsilon=0.001):
"""Solving an MDP by value iteration. [Figure 16.6]"""
U1 = {s: 0 for s in mdp.states}
R, T, gamma = mdp.R, mdp.T, mdp.gamma
while True:
U = U1.copy()
delta = 0
for s in mdp.states:
# U1[s] = R(s) + gamma * max(sum(p*U[s1] for (p, s1) in T(s, a))
# for a in mdp.actions(s))
U1[s] = max(q_value(mdp, s, a, U) for a in mdp.actions(s))
delta = max(delta, abs(U1[s] - U[s]))
if delta <= epsilon * (1 - gamma) / gamma:
return U
# ______________________________________________________________________________
# 16.2.2 Policy Iteration
def best_policy(mdp, U):
"""Given an MDP and a utility function U, determine the best policy,
as a mapping from state to action."""
pi = {}
for s in mdp.states:
pi[s] = argmax(mdp.actions(s), key=lambda a: q_value(mdp, s, a, U))
return pi
def expected_utility(a, s, U, mdp):
"""The expected utility of doing a in state s, according to the MDP and U."""
return sum(p * U[s1] for (p, s1) in mdp.T(s, a))
def policy_iteration(mdp):
"""Solve an MDP by policy iteration [Figure 17.7]"""
U = {s: 0 for s in mdp.states}
pi = {s: random.choice(mdp.actions(s)) for s in mdp.states}
while True:
U = policy_evaluation(pi, U, mdp)
unchanged = True
for s in mdp.states:
a_star = argmax(mdp.actions(s), key=lambda a: q_value(mdp, s, a, U))
# a = argmax(mdp.actions(s), key=lambda a: expected_utility(a, s, U, mdp))
if q_value(mdp, s, a_star, U) > q_value(mdp, s, pi[s], U):
pi[s] = a_star
unchanged = False
if unchanged:
return pi
def policy_evaluation(pi, U, mdp, k=20):
"""Return an updated utility mapping U from each state in the MDP to its
utility, using an approximation (modified policy iteration)."""
R, T, gamma = mdp.R, mdp.T, mdp.gamma
for i in range(k):
for s in mdp.states:
U[s] = R(s) + gamma * sum(p * U[s1] for (p, s1) in T(s, pi[s]))
return U
# ___________________________________________________________________
# 16.4 Partially Observed MDPs
class POMDP(MDP):
"""A Partially Observable Markov Decision Process, defined by
a transition model P(s'|s,a), actions A(s), a reward function R(s),
and a sensor model P(e|s). We also keep track of a gamma value,
for use by algorithms. The transition and the sensor models
are defined as matrices. We also keep track of the possible states
and actions for each state. [page 659]."""
def __init__(self, actions, transitions=None, evidences=None, rewards=None, states=None, gamma=0.95):
"""Initialize variables of the pomdp"""
if not (0 < gamma <= 1):
raise ValueError('A POMDP must have 0 < gamma <= 1')
self.states = states
self.actions = actions
# transition model cannot be undefined
self.t_prob = transitions or {}
if not self.t_prob:
print('Warning: Transition model is undefined')
# sensor model cannot be undefined
self.e_prob = evidences or {}
if not self.e_prob:
print('Warning: Sensor model is undefined')
self.gamma = gamma
self.rewards = rewards
def remove_dominated_plans(self, input_values):
"""
Remove dominated plans.
This method finds all the lines contributing to the
upper surface and removes those which don't.
"""
values = [val for action in input_values for val in input_values[action]]
values.sort(key=lambda x: x[0], reverse=True)
best = [values[0]]
y1_max = max(val[1] for val in values)
tgt = values[0]
prev_b = 0
prev_ix = 0
while tgt[1] != y1_max:
min_b = 1
min_ix = 0
for i in range(prev_ix + 1, len(values)):
if values[i][0] - tgt[0] + tgt[1] - values[i][1] != 0:
trans_b = (values[i][0] - tgt[0]) / (values[i][0] - tgt[0] + tgt[1] - values[i][1])
if 0 <= trans_b <= 1 and trans_b > prev_b and trans_b < min_b:
min_b = trans_b
min_ix = i
prev_b = min_b
prev_ix = min_ix
tgt = values[min_ix]
best.append(tgt)
return self.generate_mapping(best, input_values)
def remove_dominated_plans_fast(self, input_values):
"""
Remove dominated plans using approximations.
Resamples the upper boundary at intervals of 100 and
finds the maximum values at these points.
"""
values = [val for action in input_values for val in input_values[action]]
values.sort(key=lambda x: x[0], reverse=True)
best = []
sr = 100
for i in range(sr + 1):
x = i / float(sr)
maximum = (values[0][1] - values[0][0]) * x + values[0][0]
tgt = values[0]
for value in values:
val = (value[1] - value[0]) * x + value[0]
if val > maximum:
maximum = val
tgt = value
if all(any(tgt != v) for v in best):
best.append(np.array(tgt))
return self.generate_mapping(best, input_values)
def generate_mapping(self, best, input_values):
"""Generate mappings after removing dominated plans"""
mapping = defaultdict(list)
for value in best:
for action in input_values:
if any(all(value == v) for v in input_values[action]):
mapping[action].append(value)
return mapping
def max_difference(self, U1, U2):
"""Find maximum difference between two utility mappings"""
for k, v in U1.items():
sum1 = 0
for element in U1[k]:
sum1 += sum(element)
sum2 = 0
for element in U2[k]:
sum2 += sum(element)
return abs(sum1 - sum2)
class Matrix:
"""Matrix operations class"""
@staticmethod
def add(A, B):
"""Add two matrices A and B"""
res = []
for i in range(len(A)):
row = []
for j in range(len(A[0])):
row.append(A[i][j] + B[i][j])
res.append(row)
return res
@staticmethod
def scalar_multiply(a, B):
"""Multiply scalar a to matrix B"""
for i in range(len(B)):
for j in range(len(B[0])):
B[i][j] = a * B[i][j]
return B
@staticmethod
def multiply(A, B):
"""Multiply two matrices A and B element-wise"""
matrix = []
for i in range(len(B)):
row = []
for j in range(len(B[0])):
row.append(B[i][j] * A[j][i])
matrix.append(row)
return matrix
@staticmethod
def matmul(A, B):
"""Inner-product of two matrices"""
return [[sum(ele_a * ele_b for ele_a, ele_b in zip(row_a, col_b)) for col_b in list(zip(*B))] for row_a in A]
@staticmethod
def transpose(A):
"""Transpose a matrix"""
return [list(i) for i in zip(*A)]
def pomdp_value_iteration(pomdp, epsilon=0.1):
"""Solving a POMDP by value iteration."""
U = {'': [[0] * len(pomdp.states)]}
count = 0
while True:
count += 1
prev_U = U
values = [val for action in U for val in U[action]]
value_matxs = []
for i in values:
for j in values:
value_matxs.append([i, j])
U1 = defaultdict(list)
for action in pomdp.actions:
for u in value_matxs:
u1 = Matrix.matmul(Matrix.matmul(pomdp.t_prob[int(action)],
Matrix.multiply(pomdp.e_prob[int(action)], Matrix.transpose(u))),
[[1], [1]])
u1 = Matrix.add(Matrix.scalar_multiply(pomdp.gamma, Matrix.transpose(u1)), [pomdp.rewards[int(action)]])
U1[action].append(u1[0])
U = pomdp.remove_dominated_plans_fast(U1)
# replace with U = pomdp.remove_dominated_plans(U1) for accurate calculations
if count > 10:
if pomdp.max_difference(U, prev_U) < epsilon * (1 - pomdp.gamma) / pomdp.gamma:
return U
__doc__ += """
>>> pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .01))
>>> sequential_decision_environment.to_arrows(pi)
[['>', '>', '>', '.'], ['^', None, '^', '.'], ['^', '>', '^', '<']]
>>> from utils import print_table
>>> print_table(sequential_decision_environment.to_arrows(pi))
> > > .
^ None ^ .
^ > ^ <
>>> print_table(sequential_decision_environment.to_arrows(policy_iteration(sequential_decision_environment)))
> > > .
^ None ^ .
^ > ^ <
""" # noqa
"""
s = { 'a' : { 'plan1' : [(0.2, 'a'), (0.3, 'b'), (0.3, 'c'), (0.2, 'd')],
'plan2' : [(0.4, 'a'), (0.15, 'b'), (0.45, 'c')],
'plan3' : [(0.2, 'a'), (0.5, 'b'), (0.3, 'c')],
},
'b' : { 'plan1' : [(0.2, 'a'), (0.6, 'b'), (0.2, 'c'), (0.1, 'd')],
'plan2' : [(0.6, 'a'), (0.2, 'b'), (0.1, 'c'), (0.1, 'd')],
'plan3' : [(0.3, 'a'), (0.3, 'b'), (0.4, 'c')],
},
'c' : { 'plan1' : [(0.3, 'a'), (0.5, 'b'), (0.1, 'c'), (0.1, 'd')],
'plan2' : [(0.5, 'a'), (0.3, 'b'), (0.1, 'c'), (0.1, 'd')],
'plan3' : [(0.1, 'a'), (0.3, 'b'), (0.1, 'c'), (0.5, 'd')],
},
}
"""
# __________________________________________________________________________
# Chapter 17 Multiagent Planning
def double_tennis_problem():
"""
[Figure 17.1] DOUBLE-TENNIS-PROBLEM
A multiagent planning problem involving two partner tennis players
trying to return an approaching ball and repositioning around in the court.
Example:
>>> from planning import *
>>> dtp = double_tennis_problem()
>>> goal_test(dtp.goals, dtp.initial)
False
>>> dtp.act(expr('Go(A, RightBaseLine, LeftBaseLine)'))
>>> dtp.act(expr('Hit(A, Ball, RightBaseLine)'))
>>> goal_test(dtp.goals, dtp.initial)
False
>>> dtp.act(expr('Go(A, LeftNet, RightBaseLine)'))
>>> goal_test(dtp.goals, dtp.initial)
True
"""
return PlanningProblem(
initial='At(A, LeftBaseLine) & At(B, RightNet) & Approaching(Ball, RightBaseLine) & Partner(A, B) & Partner(B, A)',
goals='Returned(Ball) & At(a, LeftNet) & At(a, RightNet)',
actions=[Action('Hit(actor, Ball, loc)',
precond='Approaching(Ball, loc) & At(actor, loc)',
effect='Returned(Ball)'),
Action('Go(actor, to, loc)',
precond='At(actor, loc)',
effect='At(actor, to) & ~At(actor, loc)')])