
Sparsity, Observability, and Temporal Abstraction in
Hierarchical Deep Q-Learning

Gabriel B Margolis 1

Abstract
Hierarchical-DQN (h-DQN) was introduced by
Kulkarni et al. (2016) to address the challenge
of learning hierarchical value functions across
different temporal scales. We replicate the origi-
nal paper’s experiments on a discrete stochastic
decision process and present an analysis of this
environment and its fully observable variant. Our
results verify that the original paper’s results are
repeatable, and our analysis provides insight on
why the paper’s discrete stochastic decision pro-
cess is a useful example.

1. Introduction
Deep Q-Networks (DQN) have recently enabled the suc-
cessful application of reinforcement learning techniques in
new environments of complex state. A particularly notable
success of DQN has been its application to a library of
Atari games, where it rivaled or surpassed human profes-
sional benchmark scores across many differently-structured
games without significant domain-specific modification
(Mnih et al., 2015).

Although DQN works well for a large number of Atari 2600
games, it fails miserably on others. Notably, DQN achieves
a score of zero on Montezuma’s Revenge, an Atari game
with a sparse, delayed reward structure unlike the dense
reward distribution of many other games on the platform.
Kulkarni et al. (2016) addressed this shortcoming by propos-
ing a hierarchical deep reinforcement learning algorithm,
h-DQN. Hierarchical modeling is a techinique which de-
fines and plans over temporally abstracted macro-actions in
order to achieve delayed rewards over long time horizons.

In this paper, we implement the h-DQN algorithm of Kulka-
rni et al. and demonstrate its success in environments of
sparse, delayed reward. Although our constrained compu-
tational resources limit us from training h-DQN on Mon-

1Massachusetts Institute of Technogy, Cambridge, Mas-
sachusetts, USA. Correspondence to: Gabriel B Margolis
<gmargo@mit.edu>.

Figure 1. Montezuma’s Revenge, an Atari game with sparse, de-
layed reward. h-DQN outperforms DQN in this environment by
identifying meta-goals (red) and a macro-actions which produce
intrinsic reward for reaching each meta-goal.

tezuma’s Revenge, a demonstration which took millions
of training iterations in the original paper, we are able to
replicate the results the original paper obtained in a small
discrete stochastic decision process environment.

2. Method
We implement four reinforcement learning algorithms: Q-
learning, Deep Q-Networks (DQN), hierarchical-DQN (h-
DQN), and hierarchical Q-learning.

2.1. Q-learning

Q-learning is an off-policy, value-based reinforcement learn-
ing algorithm. In Q-learning, a tabular list of state-action
pair value estimates is maintained and updated with a new



Replication and Extension of Hierarchical Deep Q-Learning

experience 〈s, a, r, s′〉 according to the equation:

Q[s, a]← (1− α)Q[s, a] + α(r + γmax
a′

Q[s′, a′])

Exploration in Q-learning is performed by random action
selection, while exploitation is performed by selecting the
available action with maximum Q-value given the current
state. We balance exploration and exploitation using an
epsilon-greedy strategy, exploring with a probability εwhich
is annealed from 1.0 to 0.1 over the course of training.

2.2. DQN

DQN (Mnih et al., 2015) is an extension of Q-learning which
trains a deep neural network to predict Q-values from states.
By training a neural network model instead of tabulating Q-
values explicitly, DQN enables the generalization of value
observations to update the Q-value estimates of states with
similar features. This makes DQN viable for application to
environments with high-dimensional or continuous state.

To train a neural network for DQN, the network’s loss func-
tion is defined as:

L = E(s,a,r,s′)[(r + γmax
a′

Q(s′, a′)−Q(s, a))2]

The learning rate of the neural network serves the same func-
tion in DQN that α serves in Q-learning. As in Q-learning,
we employ an epsilon-greedy strategy in our implementation
of DQN to collect experiences.

2.3. Hierarchical DQN (h-DQN)

Kulkarni et al. (2016) introduced h-DQN as a hierarchi-
cal extension to DQN, in order to address the poor perfor-
mance of DQN in domains of sparse, delayed reward such
as Montezuma’s Revenge. h-DQN makes decisions at two
hierarchical levels: a meta-controller which selects a goal
based on the current state, and a controller which selects
primitive actions based on the current state and selected
goal until either the goal or a terminal state is reached. An
intrinsic reward is provided to the controller by a critic if
the goal is reached successfully. Both the controller and
meta-controller learn from the outcomes of their decisions
using DQN; the meta-controller learns goal values based
on the extrinsic reward obtained from goal selection, while
the controller learns action values from the intrinsic reward
obtained by selecting a particular action given the current
state and goal.

2.4. Hierarchical Q-learning

To simply demonstrate the benefits of h-DQN’s hierarchical
architecture, we implement a version of the h-DQN algo-
rithm where the DQN parameter update is replaced by a
Q-value update, as in Q-learning. We refer to this algorithm
as hierarchical Q-learning.

Algorithm 1 h-DQN
1: Initialize experience replay memories {D1, D2} and

parameters {Θ1,Θ2} for the controller and meta-
controller respectively.

2: Initialize exploration probability ε1,g = 1 for the con-
troller for all goals g and ε2 = 1 for the meta-controller.

3: for i = 1, num episodes do
4: Initialize environment and get state description s
5: g← epsGreedy(s,G, ε2, Q2)
6: while s is not terminal do
7: F ← 0
8: s0 ← s
9: while not (s is terminal or goal g reached) do

10: a← epsGreedy(s, g, A, ε1,g, Q1)
11: Execute a and obtain next state s′ and extrinsic

reward f from environment
12: Obtain intrinsic reward r(s, a, s′) from internal

critic
13: Store transition (s, g, a, r, s′, g) in D1

14: updateParams(L1(Θ1,i), D1)
15: updateParams(L2(Θ2,i), D2)
16: F ← F + f
17: s← s′

18: end while
19: Store transition (s0, g, F, s

′) in D2

20: if s is not terminal then
21: g← epsGreedy(s,G, ε2, Q2)
22: end if
23: end while
24: Anneal ε2 and ε1
25: end for

3. Experiments
3.1. Discrete Stochastic Decision Process

3.1.1. RESULTS

The paper by Kulkarni et al. evaluates hierarchical Q-
learning by comparing it to a non-hierarchical Q-learning
baseline in a stochastic decision process with six states (Fig-
ure 2).

One would not expect deep reinforcement learning to pro-
vide an advantage over Q-learning in this six-state stochastic
decision process. DQN offers benefits in complex, highly
featured environments such as video games, where the value
of a state may generalize to states with similar features as
identified by a neural network. In the discrete stochastic
decision process environment, where states are practically
featureless, one would not expect to attain a benefit from
DQN over ordinary Q-learning. Indeed, in this first exper-
iment, Kulkarni et al. sensibly forgo neural networks and
strictly evaluate the effect of their hierarchical approach on
the performance of old fashioned Q-learning.



Replication and Extension of Hierarchical Deep Q-Learning

Figure 2. A stochastic decision process where the reward at the
terminal state s1 depends on whether s6 is visited (r = 1) or not
(r = 1/100)

We replicated the results of Kulkarni et al. in this dis-
crete stochastic decision process environment over 20,000
episodes. We compared the episode reward (Figure 3) and
state visitation rate (Figure 4) for Q-learning and hierarchi-
cal Q-learning in this environment. We observed similar
results to those of Kulkarni et al., with some caveats. The
average extrinsic reward obtained by our hierarchical Q-
learning implementation was 0.10, as compared to the 0.13
value claimed in Kuklarni et al. We also observed that as ε
was annealed in non-hierarchical Q-learning, the variance in
the reward of Q-learning became small, while in the original
paper this variance remained high. Both of these differences
may have been the result of an adaptive annealing strategy
that was mentioned but not detailed in the original paper.
The full details of our implementation including hyperpa-
rameters are available in Appendix A.

In addition to replicating the results of Kulkarni et al., we
sought to evaluate the return of pure exploitation based
on the learned Q-values for each algorithm in the discrete
stochastic decision process. After 20,000 steps, we dropped
all ε terms from 0.1 to 0.0 and evaluated the exploitative
return for 5000 additional episodes. We found that hierar-
chical Q-learning achieved an average reward of 0.20 during
this exploitation phase, while DQN achieved a return of 0.01.
In section 3.2.2, we show that hierarchical Q-learning’s ex-
ploitative reward is equal to the reward obtained by the
optimal strategy.

3.1.2. ANALYSIS

Why is the stochastic decision process environment in Fig-
ure 2 particularly challenging for an agent performing non-
hierarchical Q-learning? Kulkarni et al. assert throughout
their paper that this environment, along with Montezuma’s
revenge, is characterized by ”long-range delayed feedback,”
and that hierarchical approaches confer benefits under such a
condition. Upon inspection, however, reward sparsity alone
is not the property of this environment that causes hierarchi-
cal Q-learning to outperform Q-learning. Rather, the partial

Figure 3. Episode reward in the discrete stochastic decision pro-
cess environment. In this environment, hierarchical q-learning
learns to reach the higher reward r = 1 by visiting s6, while non-
hierarchical q-learning converges to a policy that achieves only
the lower reward r = 1/100. The mean and standard deviation
of 20 trials are shown, smoothed over 1000 epochs. After 20000
episodes, exploration rates were set to 0 and the expected return of
pure exploitation was evaluated for 5000 additional episodes.

observability and hierarchical structure of this environment
allow hierarchical Q-learning to solve a much less sparse
problem than Q-learning by estimating the hidden state of
the system. A hierarchical agent that believes s6 has already
been visited (by virtue of having just selected it as a goal)
can choose to quickly transition back to the terminal state
under this condition, while an agent that cannot observe the
visitation status of s6 must choose the same move in every
state under a deterministic strategy, and will take a much
longer walk between visiting the sixth state and terminating.

In order to illustrate this point, in section 3.2 we convert the
environment to an equivalent fully observable MDP (Figure
5) and again evaluate the performance of hierarchical and
non-hierarchical Q-learning. This fully observable MDP
has the same states, actions, and transition probabilities as
our discrete stochastic decision process, but the agent can
now observe whether s6 has been visited.

3.2. Fully Observable Discrete Stochastic Decision
Process

3.2.1. RESULTS

We evaluate Q-learning and hierarchical Q-learning in our
fully observable MDP environment (Figure 5). Each al-
gorithm learns for 20,000 episodes, and its reward is then
evaluated under purely exploitative behavior for 5,000 addi-
tional episodes. Implementation details for each algorithm



Replication and Extension of Hierarchical Deep Q-Learning

Figure 4. Rate at which states are visited by each learning algo-
rithm in the discrete stochastic decision process. Mean and stan-
dard deviation of 20 trials, smoothed over 1000 episodes, are
plotted.

are provided in appendix A.

Figure 6 shows the reward of each algorithm in the fully
observable MDP environment. We observe that both Q-
learning and hierarchical Q-learning match the average re-
ward of the optimal policy (0.21) in the best case. However,
the variance of the exploitative returns of Q-learning in
episodes 20000-25000 is greater than that of hierarchical
Q-learning, and mean reward for Q-learning decreases dra-
matically during exploitation, indicating that Q-learning was
using the stochasticity of epsilon-greedy action selection as
a key element in its learned policy.

3.2.2. ANALYSIS

In this MDP environment, we can analytically evaluate the
expected payoff of an optimal strategy. Since action 1 is the
only action to be taken in s1...s5 with a nonzero probability

Figure 5. A stochastic MDP where information about whether s6
has been visited is fully observable. The two terminal states are
s1 (r = 1/100) and s′1 (r = 1). The states, actions, and transition
probabilities of this MDP are identical to those of the decision
process in Figure 1.

Figure 6. Episode reward in the fully observable MDP environ-
ment. In this environment, both agents learn to obtain the optimal
reward in the best case, but the variance of the exploitative average
reward obtained by Q-learning is much higher. The mean and
standard deviation of 20 trials are shown, smoothed over 1000
epochs. After 20000 episodes, exploration rates were set to 0 and
the expected return of pure exploitation was evaluated for 5000
additional episodes.

of advancing closer to s′1, the location of maximum reward,
we see that the optimal strategy for these states is to take
action 1. If s6 is reached, there is no transition back to s5
since we cannot ’un-visit’ s6, and as a result an agent that
reaches s6 is guaranteed an eventual reward of 1. Thus, we
only need to evaluate the probability of the agent reaching
s6 following the optimal strategy of only choosing action 1.
We can write this as a Markov chain with transition matrix:

T =


1 0 0 0 0 0

0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0 0 1


Solving for the steady-state distribution with initial state
xi =

[
0 1 0 0 0 0

]
, we find that there is an 0.2



Replication and Extension of Hierarchical Deep Q-Learning

probability of reaching s6 under this strategy and a 0.8 prob-
ability of terminating in s1. So, the expected reward of the
optimal strategy in both the MDP and the discrete stochastic
decision process environment is 0.208. To verify this, we
run a Monte-Carlo simulation in each environment with an
expert who only moves right. Over 100,000 simulations,
we obtained average rewards of 0.208 ± 0.0003 in both
environments.

4. Discussion and Conclusions
We verified that the procedure of Kulkarni et al.’s Experi-
ment 1 can be replicated with very similar results. Although
some aspects of the original paper’s description of their
hierarchical Q-learning implementation were confusing or
self-contradicting (see Appendix B for more discussion), it
was useful that the authors took the time to provide a sim-
ple environment, the discrete stochastic decision process,
which can demonstrate h-DQN’s fundamental behavior with
limited computation.

We then presented an analysis of a fully observable variant
on the environment in Experiment 1 of Kulkarni et al. From
our evaluation of Q-learning and hierarchical Q-learning in
this fully observable MDP, we conclude that hierarchical
Q-learning achieves an optimal policy in the original paper’s
experiment, and also that when compared to Q-learning in
an environment of equal sparsity, hierarchical Q-learning
learns the optimal policy more consistently than Hierarchi-
cal Q-learning.

In their original h-DQN paper, Kulkarni et al. demon-
strated that hierarchical reinforcement learning is a powerful
method for planning in domains of sparse reward, partic-
ularly when a useful temporal abstraction of a problem
can be made and the resulting hierarchical structure can be
exploited. This paper’s presentation of a simple discrete
stochastic decision process example was highly illustrative
of its algorithm’s power. Future work in the field of re-
inforcement learning should strive to provide such simple
environments which demonstrate the power of reinforce-
ment learning algorithms, and also to thoroughly elaborate
on why the environments they present are interesting.

References
Kulkarni, T., Narasimhan, K., Saeedi, A., and Tenenbaum,

J. Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In Pro-
ceedings of the 30th Conference on Neural Information
Processing Systems (NIPS), Barcelona, Spain, 2016.

Mnih, V. et al. Human-level control through deep reinforce-
ment learning. Nature, 518:529–541, 2015.

A. Implementation Details
The full code for our implementation of h-DQN is avail-
able on GitHub: https://github.com/gmargo11/
hDQN.

A.1. Discrete Stochastic Decision Process Experiment

In the discrete stochastic decision process example, we
trained Q-learning and hierarchical Q-learning for 20,000
episodes each. The decision process we used for this experi-
ment had states, actions, transitions, and rewards identical
to those of Kulkarni et al.’s Experiment 1. We performed
20 repeated trials of each algorithm with different random
seeds. We then evaluated each algorithm for an additional
5,000 episodes under pure exploitation, with all ε values set
to zero.

A.2. Fully Observable MDP Experiment

In the fully observable MDP example, we trained Q-learning
and hierarchical Q-learning for 20,000 episodes each. The
decision process we used for this experiment had actions,
transitions, and rewards identical to those of Kulkarni et al.’s
Experiment 1, but each state si, i ∈ [1, 5] was supplemented
with an additional state s′i representing the state where s6
has already been visited. We performed 20 repeated trials
of each algorithm with different random seeds. We then
evaluated each algorithm for an additional 5,000 episodes
under pure exploitation, with all ε values set to zero.

A.3. Hyperparameters

Hyperparameters were tuned by hand and were fixed across
all experiments.

Q-learning Our hyperparameters for Q-learning were α =
0.6, γ = 0.9. We annealed ε, the exploration rate, from
1.0 to 0.1 by a constant subtracted step of 1/12000 each
episode.

Hierarchical Q-learning Our hyperparameters for Hierar-
chical Q-learining were α = 0.6, γ = 0.9 for both the
controller and meta-controller. We annealed ε2, the meta-
controller exploration rate, from 1.0 to 0.1 by a constant
subtracted step of 1/12000 each episode. We annealed ε1,g ,
the exploration rate for the controller when the goal is set to
g, by a constant subtracted step of 1/2000 each time the goal
g was chosen. This method of annealing ε1,g departed from
the method mentioned in Kulkarni et al., who stated that
they adaptively annealed ε1,g based on the average success
rate of reaching the goal.

B. Ambiguity in the Original Paper
Kulkarni et al. (2016) described their results in the stochastic

https://github.com/gmargo11/hDQN
https://github.com/gmargo11/hDQN


Replication and Extension of Hierarchical Deep Q-Learning

decision process environment as follows: ”We compare
the performance of our approach (without the deep neural
networks) with Q-Learning as a baseline (without intrinsic
rewards) in terms of the average extrinsic reward gained
in an episode. In our experiments, all ε parameters are
annealed from 1 to 0.1 over 50,000 steps. The learning rate
is set to 0.00025. Figure 3 plots the evolution of reward for
both methods averaged over 10 different runs. As expected,
we see that Q-Learning is unable to find the optimal policy
even after 200 epochs, converging to a sub-optimal policy
of reaching state s1 directly to obtain a reward of 0.01.
In contrast, our approach with hierarchical Q-estimators
learns to choose goals s4, s5 or s6, which statistically lead
the agent to visit s6 before going back to s1. Therefore,
the agent obtains a significantly higher average reward of
around 0.13.”

This summary is somewhat self-contradictory. The note that
the learning rate was set to 0.00025 is incompatible with
the assertion that Q-learning, which does not have a learn-
ing rate but an alpha parameter, was used instead of DQN,
which has a learning rate. Training is stated to take place
over 200 epochs, but the length of an epoch is not defined.
An associated plot in Figure 3 of Kulkarni et al. shows
200 ”steps”, assumed to mean epochs. Meanwhile another
associated plot in Figure 4 of Kulkarni et al. shows 12,000
episodes, rather than the 50,000 claimed in the summary of
results. Because these implementation and evaluation de-
tails were unclear, we tuned our hyperparameters ourselves
to replicate this paper’s results.


