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ABSTRACT 

Dynamic stochastic synthesis is one of the non-standard 

sound synthesis techniques used mostly in experimental 

computer music. It is capable of producing various rich 

and organic sonorities, but its drawback is the lack of a 

convenient approach to controlling the synthesis parame-

ters. Several authors previously addressed this problem 

and suggested direct parameter control facilitated with 

additional features such as parameter automation. In this 

paper we present a comprehensive toolkit which, besides 

direct control, offers several new approaches. First, it 

enables controlling the synthesizer with an audio signal. 

Relevant audio features of an input signal are mapped to 

the synthesis parameters making the control immediate 

and intuitive. Second, the toolkit supports MIDI control 

so that musicians can use standard MIDI interfaces to 

play the synthesizer. Based on this approach we imple-

mented a polyphonic MIDI-controlled synthesizer and 

included it in the toolkit along with other examples of 

controlling the dynamic stochastic synthesizer. The 

toolkit was developed in the widely used visual pro-

gramming environment Pure Data. 

1. INTRODUCTION 

The usefulness of a sound synthesizer in practical tasks 

concerning musical composition depends not only on its 

capability to produce desired sonorities, but also on dif-

ferent aspects of its technical implementation [1]. Such 

aspects are, for example, suitability for a given hardware 

and software environment, intuitiveness of the user inter-

face, flexibility in controlling the synthesis process, and 

many others. Nowadays composers have a wide range of 

possibilities when choosing sound synthesizers for their 

compositions.  

Most well-known synthesis techniques have been im-

plemented in various forms: as hardware synthesizers, 

software plugins, patches for music-specific program-

ming languages, and applications for mobile devices. 

Interfaces for musical expression and parameter automa-

tion ensure convenient control over the synthesis parame-

ters. Modern tools for sound synthesis generally open 

numerous opportunities in creating novel sonorities and 

successfully follow the growing ambitions of computer 

musicians. 

However, there are still some insufficiently explored, 

yet interesting sound synthesis techniques which could 

widen the possibilities of musical expression, but have 

not yet been adapted for practical usage. One such exam-

ple is dynamic stochastic synthesis devised by Iannis 

Xenakis in the early 1970s.  This synthesis technique is 

characterized by distinctive and rich timbral qualities. 

Nevertheless, a convenient solution for controlling the 

synthesis parameters is still missing. We believe that the 

lack of an intuitive control is one of the reasons why this 

technique has not been employed in a larger number of 

compositions or further explored. 

Dynamic stochastic synthesis (DSS) produces a wave-

form by interpolating a set of constantly varying break-

points [2]. The waveform evolves over time in a nonde-

terministic manner which results in organic and complex 

sonorities. Composers can control the DSS process by 

restraining ranges, within which the waveform can 

change, and by specifying amounts and probability distri-

butions of those changes. The problem is that manipulat-

ing the aforementioned ranges, amounts, and parameters 

of probability distributions is usually inconvenient for 

most practical tasks. Such synthesis parameters are not 

intuitive and do not allow the use of typical musical inter-

faces for playing. Moreover, the original implementation 

of the dynamic stochastic synthesizer did not even pro-

vide any kind of support for changing parameters during 

the synthesis process. 

Several authors have already addressed the same prob-

lem and proposed various interface designs for direct 

parameter control [3-5]. They suggested graphical user 

interfaces, keyboard shortcuts, and MIDI controllers. One 

standout solution was a mobile application which ob-

tained parameters from multi-touch gestures and accel-

erometers [6]. Even though these interfaces were straight-

forward and helpful, musicians still needed to cope with 

values of the synthesis parameters. To avoid numerical 

parameters and keep ideas in the musical domain, in our 

previous research we proposed an approach that uses an 

input audio signal for controlling the DSS process [7]. 

The algorithm was based on mapping selected audio 

features into the synthesis parameters, so that the control 

was as intuitive as possible.  

The research described in this paper takes a few steps 

further in making DSS more suitable for the practical 

needs of computer musicians. Several approaches to 

controlling synthesis parameters were developed and 
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packaged together in a comprehensive toolkit for the 

visual programming language Pure Data [8]. Besides 

direct parameter control and control using an audio sig-

nal, we introduced a new approach based on MIDI notes 

and controllers. This novel approach allows musicians to 

play a dynamic stochastic synthesizer using regular MIDI 

interfaces. The toolkit was designed so that it can be 

easily modified, extended, and integrated in composi-

tions. 

2. DYNAMIC STOCHASTIC SYNTHESIS 

Before presenting the toolkit for controlling dynamic 

stochastic synthesis, here is a short overview of this syn-

thesis technique. Dynamic stochastic synthesis was de-

vised by Iannis Xenakis as a result of his ambition to 

achieve unified and simultaneous engagement on differ-

ent time-scales within the composition, from the overall 

structure of the composition to its microstructure and tone 

quality. Before this breakthrough, he employed stochastic 

processes for choosing note attributes and forming musi-

cal structures. To expand the same principle on the mi-

crostructure level, Xenakis suggested applying stochastic 

processes to the sample level. 

Dynamic stochastic synthesis generates samples by in-

terpolating a set of breakpoints which change their ampli-

tudes and positions in time stochastically. A breakpoint 

position is represented relatively to the preceding break-

point in number of samples, so it is commonly called 

breakpoint duration. Initial amplitudes and durations are 

usually chosen randomly or taken from a trigonometric 

function. At every repetition of the waveform, these val-

ues are varied independently of each other using random 

walk. That means that both the amplitude and the dura-

tion of a certain breakpoint are changed by adding ran-

dom steps to the values in the previous cycle as shown in 

Figure 1. A succession of random steps applied on all 

breakpoints causes the continuous variation of the wave-

form. The amount and character of the variation depend 

on a selected probability distribution and its parameters. 

Both amplitude and duration random walks are limited 

each with two reflecting barriers which bounce excessive 

values back into the predefined range. These barriers 

prevent breakpoints from going too far from their initial 

positions and therefore enable control over amplitude and 

frequency ranges of the overall waveform. 

 

Figure 1. Breakpoints change their positions from one 

repetition to another. Light blue circles in the second 

represent positions from the first cycle, whilst darker 

circles represent new positions. 

Parameterization of the algorithm is achieved through: 

(1) the number of breakpoints in a waveform, (2) barriers 

of the amplitude random walk, (3) probability distribution 

of the amplitude random walk and its parameters, (4) 

barriers of the duration random walk, and (5) probability 

distribution of the duration random walk and its parame-

ters. The amplitude barriers provide control over the 

amplitude range of the generated waveform, whilst the 

duration barriers define minimal and maximal number of 

samples between two breakpoints. If changes in ampli-

tude and duration in successive repetitions are small, the 

synthesized sound is relatively simple, but it can have 

interesting modulation effects. On the other hand, as the 

changes become larger, the sound becomes more com-

plex and noisier. Detailed explanations of the original 

algorithm can be found in [9] and [10]. Several computer 

musicians later implemented this algorithm extending the 

basic concept with new ideas [3, 5, 11, 12]. 

3. TOOLKIT FOR PURE DATA 

The motivation while developing this toolkit was to make 

DSS available to a wider community of computer musi-

cians. Also, by providing several interfaces for control-

ling the DSS process, we wanted to bring this non-

standard synthesis technique closer to the practical needs 

of composers and live performers. For implementation 

we chose Pure Data, a visual programming language 

which is freely available for different operating systems 

and which is popular among musicians and multimedia 

artists [8]. All parts of this library were developed as 

abstract patches, so that everyone familiar with Pure Data 

can easily modify and extend them. 

3.1 gendyn~ 

The central patch in the toolkit is a straightforward im-

plementation of the basic DSS algorithm. It was named 

gendyn~ after the original program by Xenakis. The pur-

pose of this patch is to synthesize audio signal according-

ly to input parameters. Through the inlets it receives the 

number of breakpoints in a waveform n, frequency limits 

fmin and fmax, amplitude range a, and statistical parameters 

for the both random walks p1 and p2. 

Frequency limits fmin and fmax are used to calculate bar-

riers of the duration random walk. Frequency limits ex-

pressed in Hertz are more meaningful then duration limits 

expressed in number of samples. They are also more 

convenient for direct integration with patches that pro-

vide DSS process control using audio or MIDI signals. 

For that reason, gendyn~ receives frequency limits 

through the inlets and converts them to the duration limits 

using these simple formulae: 

( ) nffd S ⋅= maxmin ,  
(1) 

  

( ) nffd S ⋅= minmax ,  (2) 

where dmin and dmax are the maximal and the minimal 

duration expressed in number of samples, fS is the sam-

pling frequency, fmax and fmin represent the frequency 



limits, whilst n stands for the number of breakpoints in a 

waveform. 

The amplitude range of the waveform is controlled with 

the parameter a so that the amplitude random walk has 

reflecting barriers at –a and +a. Therefore, this parameter 

defines the maximal absolute amplitude of the break-

points. 

The only probability distribution available in our cur-

rent implementation is the normal distribution. Its mean 

value for both random walks is zero, because symmet-

rical probability densities generally prevent breakpoints 

from gravitating towards one of the barriers. The standard 

deviation of the distribution for the amplitude random 

walk is calculated by scaling the parameter p1 proportion-

ally to the amplitude range a. Similarly, for the duration 

random walk, its input parameter p2 is scaled accordingly 

to the range contained between minimal and maximal 

duration. Extending the patch with more probability dis-

tributions is simple, but requires adding a new parameter 

for selecting among available distributions. 

3.2 audio2gendyn~ 

An approach to controlling the dynamic stochastic syn-

thesis with an audio signal was proposed in our previous 

work [7]. The purpose of that research was to reduce the 

need for manipulating numerical parameters and to allow 

musicians to control a synthesizer by playing a musical 

instrument, singing, or experimenting with different 

sound sources. The algorithm was designed to extract 

relevant audio features from the input signal and map 

them to the synthesis parameters so that the relation be-

tween the input signal and the synthesized signal is as 

natural as possible. 

As our original implementation version was done in 

C++, for the Pure Data toolkit we developed a new patch 

from scratch and also introduced several improvements 

and simplifications. This new patch is called au-

dio2gendyn~ and uses features of the input audio to cal-

culate synthesis parameters. The synthesis engine gen-

dyn~, which is included in this patch, receives these pa-

rameters and produces the resulting sound accordingly. 

The amplitude, frequency, and timbral qualities of the 

synthesized sound are expected to follow the correspond-

ing characteristics of the input audio signal. The aim was 

not to imitate the input signal (as it is not possible with 

DSS anyway), but to achieve intuitive control over the 

synthesis process. 

The most appropriate audio features of the input signal 

for calculating the frequency limits fmin and fmax are fun-

damental frequency f0 and spectral centroid fC. Whilst for 

periodic signals the fundamental frequency works well, 

for noisy signals much better results are obtained by 

using the spectral centroid. Spectral centroid indicates the 

center of the gravity of a frequency spectrum and it is 

perceptually related to the impression of timbral bright-

ness. 

In case of the periodic input signal, the fundamental 

frequency is extracted using the object sigmund~ which is 

one of the standard Pure Data extras. The frequency lim-

its fmin and fmax are then defined as a perfect fifth below 

and a perfect fifth above the fundamental frequency, i.e. 

32 0min ff = , 23 0max ff = .              (3) 

In contrast to our initial algorithm [7], here the frequen-

cy limits are strictly related to the fundamental frequency 

by the given musical intervals (i.e. frequency ratios). 

Timbral qualities of the input sound are not considered 

for determining the frequency limits. The advantage of 

this simplification is that the frequency of the overall 

synthesized waveform depends only on the fundamental 

frequency of the input signal and never drifts too far from 

it. However, timbral qualities of the input signal are not 

neglected here; they affect the standard deviation of the 

probability distribution for the duration random walk as 

will be described later. 

If the input signal does not show significant periodicity, 

the spectral centroid is used similarly as the fundamental 

frequency in the earlier case. First, the spectral centroid fC 

is calculated using the object specCentroid~ from tim-

breID toolkit [13]. Then the frequency limits are defined 

as: 

8min Cff = , 4max Cff = .                (4) 

The scaling factors were obtained experimentally so 

that switching between periodic and non-periodic input 

signals does not cause unpleasant glitches in the synthe-

sized signal. These factors were chosen after numerous 

tests with different types of sounds including those with 

both periodic and non-periodic parts such as speech sig-

nals and sounds of plucked instruments. 

Defining the barriers for the amplitude random walk 

was a much simpler task.  The amplitude of the synthe-

sized signal is expected to follow the amplitude of the 

input signal, so the algorithm uses the root mean square 

amplitude of an input frame to control the parameter a.  

Finally, the only remaining parameters are p1 and p2. 

Standard deviations of the probability distributions in 

random walks significantly affect timbral qualities of the 

synthesized sounds. Wider probability density functions 

result with a less stable waveform and consequently less 

predictable frequency content of the synthesized signal. 

For that reason, the parameters p1 and p2 should be de-

fined accordingly to the level of how tone-like the input 

sound is, as opposed to being noise-like. A suitable 

measure for this purpose is spectral flatness [14]. This 

feature is one of audio descriptors in the MPEG-7 stand-

ard and it is commonly used for robust retrieval of song 

archives. Spectral flatness quantifies amount of peaks or 

resonant structure, as opposed to the flat spectrum of 

white noise. A low flatness suggests that the spectral 

power is concentrated in a small number of spectral 

bands, whilst higher values indicate that the power is 

more equally distributed among all bands. The spectral 

flatness is defined as a quotient of the geometric and the 

arithmetic mean of the power spectrum, i.e. 
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where x(n) stands for the magnitude of the n-th frequency 

bin.  



To calculate the spectral flatness in audio2gendyn~ we 

employed the object specFlatness~ from timbreID toolkit 

[13]. The scaled spectral flatness is then used for the both 

parameters p1 and p2:  

FSspp ⋅== 21 ,   (6) 

where s stands for a scaling factor and SF denotes the 

spectral flatness. Many subjective tests proved the suita-

bility of such mapping. The value of the scaling factor 

was obtained experimentally so that the character of the 

synthesized signal is notably affected by the spectral 

flatness of the input signal.  

3.3 midi2gendyn~ 

The second solution for controlling DSS included in this 

toolkit is based on the standard MIDI interface. The us-

age of MIDI controls was suggested earlier [5], but only 

for direct parameter control. The musician could manipu-

late parameters with a MIDI controller and send values to 

the dynamic stochastic synthesizer in the same way as if  

using a graphical user interface. Evidently, this was not a 

different approach to control, but only facilitation. 

Most sound synthesizers can be played with MIDI key-

boards and other MIDI interfaces which generate notes 

and not just control values. To apply this traditional play-

ing approach to DSS, we implemented midi2gendyn~. It 

is the first polyphonic MIDI synthesizer based on DSS. 

The patch receives MIDI notes, velocities, and other 

controls, maps them into synthesis parameters, and em-

ploys sound units based on gendyn~ to generate the 

sound. 

To determine frequency limits fmin and fmax from the in-

put note, the algorithm converts the MIDI note number 

into the frequency and puts the limits symmetrically 

around it. This way, the frequency of the input note is in 

the middle between fmin and fmax. The width of that fre-

quency range is specified with a separate MIDI control 

value. This approach is convenient in practical cases as 

the musician can play the synthesizer using a keyboard 

and simultaneously change the frequency width using a 

slider, knob, or pedal. 

The amplitude range a is calculated by scaling the note 

velocity, whilst the parameters p1 and p2 are separately 

obtained from corresponding MIDI controls. The synthe-

sizer also receives the pitch bend control which affects 

the tone frequency and therefore the frequency limits fmin 

and fmax accordingly. 

4. EXPERIMENTS AND EXAMPLES 

The patches from this toolkit can be used in different 

ways. For that reason we prepared several typical usage 

examples and included them in the package. Those ex-

amples can be reused, modified, and extended to meet 

specific practical needs. 

4.1 Direct control and automation 

The first two examples show how a dynamic stochastic 

synthesizer can be controlled by direct parameter ma-

nipulation. In the first example, sliders on the graphical 

user interface are connected to the inlets of gendyn~ 

(Figure 2). These sliders also receive MIDI controls, so 

that they can be managed from a MIDI interface with 

physical sliders or knobs. Audio effects can be applied on 

the pure audio signal synthesized by a dynamic stochastic 

synthesizer. In these examples we added a simple reverb, 

which was very efficient in making the sound richer and 

characteristically colored. 

 

Figure 2. A patch which demonstrates direct parameter 

control using sliders. Beside sliders on the graphical us-

er interface, it is possible to use MIDI controls defined 

in the subpatch called control. 

 

The second example of direct parameter control demon-

strates parameter automation (Figure 3). The patch reads 

parameter values from tables. As Pure Data supports 

drawing values on graphical representations of tables, 

such automation could be convenient both for composing 

and live performing. 

 

Figure 3. An example of parameter automation. Param-

eter values are stored in the tables on the right side. 



4.2 Examples of audio control 

Experimenting with different types of sounds for control-

ling the DSS showed that this synthesis technique can 

produce more than just buzzing sounds with characteris-

tic drifts in frequency and amplitude. Mapping relevant 

audio features into the corresponding synthesis parameter 

enables the synthesizer to mimic some characteristics of 

the input sound. It is easier to make simultaneous and 

quick changes in parameter values than by direct parame-

ter manipulation. The most interesting sounds for control-

ling the DSS are those with high variability of their audio 

features such as percussive sounds and human voice. 

Within the toolkit we provided two examples of receiv-

ing an audio signal for controlling the DSS. The first one 

uses inputs from the audio interface, whilst the second 

one reads a wave file as shown in Figure 4. 

 

Figure 4. Controlling the dynamic stochastic synthesis 

with an audio signal from a wave file. It is possible to 

mix the synthesized and the original signals using the 

yellow slider. 

 

4.3 Polyphonic MIDI-controlled synthesizer 

To test the midi2gendyn~ patch we used a MIDI key-

board. Phenomena which most strongly affected the play-

ing experience were frequency drifts. They always occur 

when the frequency range fmax - fmin and duration standard 

deviation obtained from the parameter p2 are higher than 

zero. Changes in the waveform frequency are characteris-

tic to DSS and result with buzzing, unstable and drifting 

sounds. One of the possible applications of such sounds 

in compositions is to layer them with the sounds generat-

ed by other synthesis engines. 

Demonstration of the toolkit and highlights from all of 

the mentioned experiments are shown in the video which 

is available at the following link:  

http://www.youtube.com/watch?v=1Uk6KeglvnI 

 

5. CONCLUSIONS 

By implementing several different approaches to control-

ling DSS in a single toolkit, we made the synthesis tech-

nique more convenient for particular use cases. This 

should motivate musicians to experiment further in their 

compositions and live performances. Since it is a non-

standard synthesis technique, we cannot expect DSS to 

suddenly become popular in a wider range of music gen-

res even when researches like this one are available. 

However, it is now more accessible to musicians than it 

was before and it is ready to be used in numerous ways. 
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