
A VERSATILE TOOLKIT FOR CONTROLLING

DYNAMIC STOCHASTIC SYNTHESIS

Gordan Kreković Davor Petrinović

Faculty of Electrical Engineering and Computing,

University of Zagreb, Croatia
gordan.krekovic@fer.hr

Faculty of Electrical Engineering and Computing,

University of Zagreb, Croatia
davor.petrinovic@fer.hr

ABSTRACT

Dynamic stochastic synthesis is one of the non-standard

sound synthesis techniques used mostly in experimental

computer music. It is capable of producing various rich

and organic sonorities, but its drawback is the lack of a

convenient approach to controlling the synthesis parame-

ters. Several authors previously addressed this problem

and suggested direct parameter control facilitated with

additional features such as parameter automation. In this

paper we present a comprehensive toolkit which, besides

direct control, offers several new approaches. First, it

enables controlling the synthesizer with an audio signal.

Relevant audio features of an input signal are mapped to

the synthesis parameters making the control immediate

and intuitive. Second, the toolkit supports MIDI control

so that musicians can use standard MIDI interfaces to

play the synthesizer. Based on this approach we imple-

mented a polyphonic MIDI-controlled synthesizer and

included it in the toolkit along with other examples of

controlling the dynamic stochastic synthesizer. The

toolkit was developed in the widely used visual pro-

gramming environment Pure Data.

1. INTRODUCTION

The usefulness of a sound synthesizer in practical tasks

concerning musical composition depends not only on its

capability to produce desired sonorities, but also on dif-

ferent aspects of its technical implementation [1]. Such

aspects are, for example, suitability for a given hardware

and software environment, intuitiveness of the user inter-

face, flexibility in controlling the synthesis process, and

many others. Nowadays composers have a wide range of

possibilities when choosing sound synthesizers for their

compositions.

Most well-known synthesis techniques have been im-

plemented in various forms: as hardware synthesizers,

software plugins, patches for music-specific program-

ming languages, and applications for mobile devices.

Interfaces for musical expression and parameter automa-

tion ensure convenient control over the synthesis parame-

ters. Modern tools for sound synthesis generally open

numerous opportunities in creating novel sonorities and

successfully follow the growing ambitions of computer

musicians.

However, there are still some insufficiently explored,

yet interesting sound synthesis techniques which could

widen the possibilities of musical expression, but have

not yet been adapted for practical usage. One such exam-

ple is dynamic stochastic synthesis devised by Iannis

Xenakis in the early 1970s. This synthesis technique is

characterized by distinctive and rich timbral qualities.

Nevertheless, a convenient solution for controlling the

synthesis parameters is still missing. We believe that the

lack of an intuitive control is one of the reasons why this

technique has not been employed in a larger number of

compositions or further explored.

Dynamic stochastic synthesis (DSS) produces a wave-

form by interpolating a set of constantly varying break-

points [2]. The waveform evolves over time in a nonde-

terministic manner which results in organic and complex

sonorities. Composers can control the DSS process by

restraining ranges, within which the waveform can

change, and by specifying amounts and probability distri-

butions of those changes. The problem is that manipulat-

ing the aforementioned ranges, amounts, and parameters

of probability distributions is usually inconvenient for

most practical tasks. Such synthesis parameters are not

intuitive and do not allow the use of typical musical inter-

faces for playing. Moreover, the original implementation

of the dynamic stochastic synthesizer did not even pro-

vide any kind of support for changing parameters during

the synthesis process.

Several authors have already addressed the same prob-

lem and proposed various interface designs for direct

parameter control [3-5]. They suggested graphical user

interfaces, keyboard shortcuts, and MIDI controllers. One

standout solution was a mobile application which ob-

tained parameters from multi-touch gestures and accel-

erometers [6]. Even though these interfaces were straight-

forward and helpful, musicians still needed to cope with

values of the synthesis parameters. To avoid numerical

parameters and keep ideas in the musical domain, in our

previous research we proposed an approach that uses an

input audio signal for controlling the DSS process [7].

The algorithm was based on mapping selected audio

features into the synthesis parameters, so that the control

was as intuitive as possible.

The research described in this paper takes a few steps

further in making DSS more suitable for the practical

needs of computer musicians. Several approaches to

controlling synthesis parameters were developed and

Copyright: © 2013 Gordan Kreković, Davor Petrinović. This is an open-

access article distributed under the terms of the Creative Commons

Attribution License 3.0 Unported, which permits unrestricted use, distri-

bution, and reproduction in any medium, provided the original author

and source are credited.

packaged together in a comprehensive toolkit for the

visual programming language Pure Data [8]. Besides

direct parameter control and control using an audio sig-

nal, we introduced a new approach based on MIDI notes

and controllers. This novel approach allows musicians to

play a dynamic stochastic synthesizer using regular MIDI

interfaces. The toolkit was designed so that it can be

easily modified, extended, and integrated in composi-

tions.

2. DYNAMIC STOCHASTIC SYNTHESIS

Before presenting the toolkit for controlling dynamic

stochastic synthesis, here is a short overview of this syn-

thesis technique. Dynamic stochastic synthesis was de-

vised by Iannis Xenakis as a result of his ambition to

achieve unified and simultaneous engagement on differ-

ent time-scales within the composition, from the overall

structure of the composition to its microstructure and tone

quality. Before this breakthrough, he employed stochastic

processes for choosing note attributes and forming musi-

cal structures. To expand the same principle on the mi-

crostructure level, Xenakis suggested applying stochastic

processes to the sample level.

Dynamic stochastic synthesis generates samples by in-

terpolating a set of breakpoints which change their ampli-

tudes and positions in time stochastically. A breakpoint

position is represented relatively to the preceding break-

point in number of samples, so it is commonly called

breakpoint duration. Initial amplitudes and durations are

usually chosen randomly or taken from a trigonometric

function. At every repetition of the waveform, these val-

ues are varied independently of each other using random

walk. That means that both the amplitude and the dura-

tion of a certain breakpoint are changed by adding ran-

dom steps to the values in the previous cycle as shown in

Figure 1. A succession of random steps applied on all

breakpoints causes the continuous variation of the wave-

form. The amount and character of the variation depend

on a selected probability distribution and its parameters.

Both amplitude and duration random walks are limited

each with two reflecting barriers which bounce excessive

values back into the predefined range. These barriers

prevent breakpoints from going too far from their initial

positions and therefore enable control over amplitude and

frequency ranges of the overall waveform.

Figure 1. Breakpoints change their positions from one

repetition to another. Light blue circles in the second

represent positions from the first cycle, whilst darker

circles represent new positions.

Parameterization of the algorithm is achieved through:

(1) the number of breakpoints in a waveform, (2) barriers

of the amplitude random walk, (3) probability distribution

of the amplitude random walk and its parameters, (4)

barriers of the duration random walk, and (5) probability

distribution of the duration random walk and its parame-

ters. The amplitude barriers provide control over the

amplitude range of the generated waveform, whilst the

duration barriers define minimal and maximal number of

samples between two breakpoints. If changes in ampli-

tude and duration in successive repetitions are small, the

synthesized sound is relatively simple, but it can have

interesting modulation effects. On the other hand, as the

changes become larger, the sound becomes more com-

plex and noisier. Detailed explanations of the original

algorithm can be found in [9] and [10]. Several computer

musicians later implemented this algorithm extending the

basic concept with new ideas [3, 5, 11, 12].

3. TOOLKIT FOR PURE DATA

The motivation while developing this toolkit was to make

DSS available to a wider community of computer musi-

cians. Also, by providing several interfaces for control-

ling the DSS process, we wanted to bring this non-

standard synthesis technique closer to the practical needs

of composers and live performers. For implementation

we chose Pure Data, a visual programming language

which is freely available for different operating systems

and which is popular among musicians and multimedia

artists [8]. All parts of this library were developed as

abstract patches, so that everyone familiar with Pure Data

can easily modify and extend them.

3.1 gendyn~

The central patch in the toolkit is a straightforward im-

plementation of the basic DSS algorithm. It was named

gendyn~ after the original program by Xenakis. The pur-

pose of this patch is to synthesize audio signal according-

ly to input parameters. Through the inlets it receives the

number of breakpoints in a waveform n, frequency limits

fmin and fmax, amplitude range a, and statistical parameters

for the both random walks p1 and p2.

Frequency limits fmin and fmax are used to calculate bar-

riers of the duration random walk. Frequency limits ex-

pressed in Hertz are more meaningful then duration limits

expressed in number of samples. They are also more

convenient for direct integration with patches that pro-

vide DSS process control using audio or MIDI signals.

For that reason, gendyn~ receives frequency limits

through the inlets and converts them to the duration limits

using these simple formulae:

() nffd S ⋅= maxmin ,
(1)

() nffd S ⋅= minmax , (2)

where dmin and dmax are the maximal and the minimal

duration expressed in number of samples, fS is the sam-

pling frequency, fmax and fmin represent the frequency

limits, whilst n stands for the number of breakpoints in a

waveform.

The amplitude range of the waveform is controlled with

the parameter a so that the amplitude random walk has

reflecting barriers at –a and +a. Therefore, this parameter

defines the maximal absolute amplitude of the break-

points.

The only probability distribution available in our cur-

rent implementation is the normal distribution. Its mean

value for both random walks is zero, because symmet-

rical probability densities generally prevent breakpoints

from gravitating towards one of the barriers. The standard

deviation of the distribution for the amplitude random

walk is calculated by scaling the parameter p1 proportion-

ally to the amplitude range a. Similarly, for the duration

random walk, its input parameter p2 is scaled accordingly

to the range contained between minimal and maximal

duration. Extending the patch with more probability dis-

tributions is simple, but requires adding a new parameter

for selecting among available distributions.

3.2 audio2gendyn~

An approach to controlling the dynamic stochastic syn-

thesis with an audio signal was proposed in our previous

work [7]. The purpose of that research was to reduce the

need for manipulating numerical parameters and to allow

musicians to control a synthesizer by playing a musical

instrument, singing, or experimenting with different

sound sources. The algorithm was designed to extract

relevant audio features from the input signal and map

them to the synthesis parameters so that the relation be-

tween the input signal and the synthesized signal is as

natural as possible.

As our original implementation version was done in

C++, for the Pure Data toolkit we developed a new patch

from scratch and also introduced several improvements

and simplifications. This new patch is called au-

dio2gendyn~ and uses features of the input audio to cal-

culate synthesis parameters. The synthesis engine gen-

dyn~, which is included in this patch, receives these pa-

rameters and produces the resulting sound accordingly.

The amplitude, frequency, and timbral qualities of the

synthesized sound are expected to follow the correspond-

ing characteristics of the input audio signal. The aim was

not to imitate the input signal (as it is not possible with

DSS anyway), but to achieve intuitive control over the

synthesis process.

The most appropriate audio features of the input signal

for calculating the frequency limits fmin and fmax are fun-

damental frequency f0 and spectral centroid fC. Whilst for

periodic signals the fundamental frequency works well,

for noisy signals much better results are obtained by

using the spectral centroid. Spectral centroid indicates the

center of the gravity of a frequency spectrum and it is

perceptually related to the impression of timbral bright-

ness.

In case of the periodic input signal, the fundamental

frequency is extracted using the object sigmund~ which is

one of the standard Pure Data extras. The frequency lim-

its fmin and fmax are then defined as a perfect fifth below

and a perfect fifth above the fundamental frequency, i.e.

32 0min ff = , 23 0max ff = . (3)

In contrast to our initial algorithm [7], here the frequen-

cy limits are strictly related to the fundamental frequency

by the given musical intervals (i.e. frequency ratios).

Timbral qualities of the input sound are not considered

for determining the frequency limits. The advantage of

this simplification is that the frequency of the overall

synthesized waveform depends only on the fundamental

frequency of the input signal and never drifts too far from

it. However, timbral qualities of the input signal are not

neglected here; they affect the standard deviation of the

probability distribution for the duration random walk as

will be described later.

If the input signal does not show significant periodicity,

the spectral centroid is used similarly as the fundamental

frequency in the earlier case. First, the spectral centroid fC

is calculated using the object specCentroid~ from tim-

breID toolkit [13]. Then the frequency limits are defined

as:

8min Cff = , 4max Cff = . (4)

The scaling factors were obtained experimentally so

that switching between periodic and non-periodic input

signals does not cause unpleasant glitches in the synthe-

sized signal. These factors were chosen after numerous

tests with different types of sounds including those with

both periodic and non-periodic parts such as speech sig-

nals and sounds of plucked instruments.

Defining the barriers for the amplitude random walk

was a much simpler task. The amplitude of the synthe-

sized signal is expected to follow the amplitude of the

input signal, so the algorithm uses the root mean square

amplitude of an input frame to control the parameter a.

Finally, the only remaining parameters are p1 and p2.

Standard deviations of the probability distributions in

random walks significantly affect timbral qualities of the

synthesized sounds. Wider probability density functions

result with a less stable waveform and consequently less

predictable frequency content of the synthesized signal.

For that reason, the parameters p1 and p2 should be de-

fined accordingly to the level of how tone-like the input

sound is, as opposed to being noise-like. A suitable

measure for this purpose is spectral flatness [14]. This

feature is one of audio descriptors in the MPEG-7 stand-

ard and it is commonly used for robust retrieval of song

archives. Spectral flatness quantifies amount of peaks or

resonant structure, as opposed to the flat spectrum of

white noise. A low flatness suggests that the spectral

power is concentrated in a small number of spectral

bands, whilst higher values indicate that the power is

more equally distributed among all bands. The spectral

flatness is defined as a quotient of the geometric and the

arithmetic mean of the power spectrum, i.e.

∑

∏
−

=

−

=
=

1

0

1

0

)(
1

)(

N

n

N
N

n
F

nx
N

nx
S , (5)

where x(n) stands for the magnitude of the n-th frequency

bin.

To calculate the spectral flatness in audio2gendyn~ we

employed the object specFlatness~ from timbreID toolkit

[13]. The scaled spectral flatness is then used for the both

parameters p1 and p2:

FSspp ⋅== 21 , (6)

where s stands for a scaling factor and SF denotes the

spectral flatness. Many subjective tests proved the suita-

bility of such mapping. The value of the scaling factor

was obtained experimentally so that the character of the

synthesized signal is notably affected by the spectral

flatness of the input signal.

3.3 midi2gendyn~

The second solution for controlling DSS included in this

toolkit is based on the standard MIDI interface. The us-

age of MIDI controls was suggested earlier [5], but only

for direct parameter control. The musician could manipu-

late parameters with a MIDI controller and send values to

the dynamic stochastic synthesizer in the same way as if

using a graphical user interface. Evidently, this was not a

different approach to control, but only facilitation.

Most sound synthesizers can be played with MIDI key-

boards and other MIDI interfaces which generate notes

and not just control values. To apply this traditional play-

ing approach to DSS, we implemented midi2gendyn~. It

is the first polyphonic MIDI synthesizer based on DSS.

The patch receives MIDI notes, velocities, and other

controls, maps them into synthesis parameters, and em-

ploys sound units based on gendyn~ to generate the

sound.

To determine frequency limits fmin and fmax from the in-

put note, the algorithm converts the MIDI note number

into the frequency and puts the limits symmetrically

around it. This way, the frequency of the input note is in

the middle between fmin and fmax. The width of that fre-

quency range is specified with a separate MIDI control

value. This approach is convenient in practical cases as

the musician can play the synthesizer using a keyboard

and simultaneously change the frequency width using a

slider, knob, or pedal.

The amplitude range a is calculated by scaling the note

velocity, whilst the parameters p1 and p2 are separately

obtained from corresponding MIDI controls. The synthe-

sizer also receives the pitch bend control which affects

the tone frequency and therefore the frequency limits fmin

and fmax accordingly.

4. EXPERIMENTS AND EXAMPLES

The patches from this toolkit can be used in different

ways. For that reason we prepared several typical usage

examples and included them in the package. Those ex-

amples can be reused, modified, and extended to meet

specific practical needs.

4.1 Direct control and automation

The first two examples show how a dynamic stochastic

synthesizer can be controlled by direct parameter ma-

nipulation. In the first example, sliders on the graphical

user interface are connected to the inlets of gendyn~

(Figure 2). These sliders also receive MIDI controls, so

that they can be managed from a MIDI interface with

physical sliders or knobs. Audio effects can be applied on

the pure audio signal synthesized by a dynamic stochastic

synthesizer. In these examples we added a simple reverb,

which was very efficient in making the sound richer and

characteristically colored.

Figure 2. A patch which demonstrates direct parameter

control using sliders. Beside sliders on the graphical us-

er interface, it is possible to use MIDI controls defined

in the subpatch called control.

The second example of direct parameter control demon-

strates parameter automation (Figure 3). The patch reads

parameter values from tables. As Pure Data supports

drawing values on graphical representations of tables,

such automation could be convenient both for composing

and live performing.

Figure 3. An example of parameter automation. Param-

eter values are stored in the tables on the right side.

4.2 Examples of audio control

Experimenting with different types of sounds for control-

ling the DSS showed that this synthesis technique can

produce more than just buzzing sounds with characteris-

tic drifts in frequency and amplitude. Mapping relevant

audio features into the corresponding synthesis parameter

enables the synthesizer to mimic some characteristics of

the input sound. It is easier to make simultaneous and

quick changes in parameter values than by direct parame-

ter manipulation. The most interesting sounds for control-

ling the DSS are those with high variability of their audio

features such as percussive sounds and human voice.

Within the toolkit we provided two examples of receiv-

ing an audio signal for controlling the DSS. The first one

uses inputs from the audio interface, whilst the second

one reads a wave file as shown in Figure 4.

Figure 4. Controlling the dynamic stochastic synthesis

with an audio signal from a wave file. It is possible to

mix the synthesized and the original signals using the

yellow slider.

4.3 Polyphonic MIDI-controlled synthesizer

To test the midi2gendyn~ patch we used a MIDI key-

board. Phenomena which most strongly affected the play-

ing experience were frequency drifts. They always occur

when the frequency range fmax - fmin and duration standard

deviation obtained from the parameter p2 are higher than

zero. Changes in the waveform frequency are characteris-

tic to DSS and result with buzzing, unstable and drifting

sounds. One of the possible applications of such sounds

in compositions is to layer them with the sounds generat-

ed by other synthesis engines.

Demonstration of the toolkit and highlights from all of

the mentioned experiments are shown in the video which

is available at the following link:

http://www.youtube.com/watch?v=1Uk6KeglvnI

5. CONCLUSIONS

By implementing several different approaches to control-

ling DSS in a single toolkit, we made the synthesis tech-

nique more convenient for particular use cases. This

should motivate musicians to experiment further in their

compositions and live performances. Since it is a non-

standard synthesis technique, we cannot expect DSS to

suddenly become popular in a wider range of music gen-

res even when researches like this one are available.

However, it is now more accessible to musicians than it

was before and it is ready to be used in numerous ways.

6. REFERENCES

[1] D. A. Jaffe, “Ten Criteria for Evaluating Synthesis

Techniques”. Computer Music Journal, vol. 19, no.

1, pp. 76–87, 1995.

[2] I. Xenakis, Formalized Music: Thought and

Mathematics in Music, Stuyvesant NY: Pendragon

Press, 1992.

[3] P. Hoffman, “The new GENDYN program”,

Computer Music Journal, vol. 24, no. 2, pp. 31-38,

2000.

[4] S. Bokesoy and G. Pape. “Stochos: software for real-

time synthesis of stochastic music”, Computer Music

Journal, vol. 27, no. 3, pp. 33-43, 2003.

[5] A. R. Brown, “Extending dynamic stochastic

synthesis”, Proceedings of the International

Computer Music Conference, Barcelona, Spain,

2005, pp. 111-114

[6] N. Collins, “Implementing stochastic synthesis for

SupperCollider and iPhone”. Proceedings of the

Xenakis International Symposium, London, 2011.

[7] G. Kreković, I. Brkić, “Controlling Dynamic

Stochastic Synthesis with an Audio Signal”,

Proceedings of the International Computer Music

Conference, 2012, pp. 100-104.

[8] M. Puckette, “Pure Data”, Proceedings of the

International Computer Music Conference, San

Francisco, USA, 1996.

[9] M. H. Serra, “Stochastic composition and stochastic

timbre: GENDY3 by Iannis Xenakis”, Perspectives

of New Music, vol. 31, no. 1, pp. 236-257, 1992.

[10] S. Loque, “The stochastic synthesis of Iannis

Xenakis”, Leonardo Music Journal, vol. 19, no. 1,

pp. 77-84, 2009.

[11] S. Russell. (2012). Gendyflext [Online]. Available:

https://github.com/ssfrr/gendyflext

[12] J. Young, “Rethinking synthesis: extending and

exploring Gendyn”, BA thesis, University of Sussex:

Department of Informatics, 2010.

[13] W. Brent, “A timbre analysis and classification

toolkit for Pure Data”, Proceedings of the

International Computer Music Conference, New

York, USA, 2010

[14] J. Johnston, “Transform coding of audio signals

using perceptual noise criteria”, IEEE Journal on

Selected Areas in Communications, vol. 6, no. 2, pp.

314-323, 1988.

